首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the level of pyrethroid resistance in Anopheles sinensis Wiedemann 1828 (Diptera: Culicidae), a major malaria vector in Korea, we cloned and sequenced the IIS4-6 transmembrane segments of the sodium channel gene that encompass the most widely known kdr mutation sites. Sequence analysis revealed the presence of the major Leu-Phe mutation and a minor Leu-Cys mutation at the same position in permethrin-resistant field populations of An. sinensis. To establish a routine method for monitoring resistance, we developed a simple and accurate real-time PCR amplification of specific allele (rtPASA) protocol for the estimation of resistance allele frequencies on a population basis. The kdr allele frequency of a field population predicted by the rtPASA method (60.8%) agreed well with that determined by individual genotyping (61.7%), demonstrating the reliability and accuracy of rtPASA in predicting resistance allele frequency. Using the rtPASA method, the kdr allele frequencies in several field populations of An. sinensis were determined to range from 25.0 to 96.6%, suggestive of widespread pyrethroid resistance in Korea.  相似文献   

2.
3.
The relative rates of cytochrome P450 selection in southern Mexican Anopheles albimanus populations were investigated during a 3 years indoor residual house spraying intervention with a pyrethroid (PYR) or DDT, a mosaic of organophosphate (OP)-PYR, and the annual rotation of OP-PYR-carbamate (CARB). This insecticide resistance mechanism, initially evenly spread in the mosquito population, correlated with PYR resistance during the second treated year, when cytochrome P450 contents increased in most villages of the PYR, rotation and mosaic schemes. However, by the third year, mean cytochrome P450 contents declined to susceptible levels in mosquitoes of the rotation and one mosaic group but not in the PYR-treated villages. In DDT-treated villages, a continuous decrement of cytochrome P450 levels occurred since the first treatment year, and susceptible levels were observed at the end of the intervention. Most correlations of cytochrome P450 levels and PYR resistance were lost during the third year, indicating that another mechanism evolved in resistant mosquito populations.  相似文献   

4.
A resistance management programme comparing rotations, mosaics and single use of insecticides for residual house-spraying against the insect vectors of malaria is being carried out in Southern Mexico. The area was chosen because of its prior history of insecticide use, relatively sedentary vector, and physical features of the area which limit inward migration of insects to the study area. A high level of resistance to DDT and low levels of organophosphorus (OP), carbamate and pyrethroid resistance were detected by WHO discriminating-dose assays in field populations of Anopheles albimanus in the pre-spray period in the region where this resistance management project is being undertaken. After the first year of spraying, resistance, as measured by a discriminating-dose assay, was still at a high level for DDT and had risen for all the other insecticides. Biochemical assays showed that DDT resistance was primarily caused by elevated levels of glutathione S-transferase (GST) activity leading to increased rates of metabolism of DDT to DDE. The numbers of individuals with elevated GST and DDT resistance were well correlated, suggesting that this is the only major DDT resistance mechanism in this population. The carbamate resistance in this population was conferred by an altered acetylcholinesterase (AChE) mechanism. The level of resistance in bioassays correlated well with the frequency of individuals homozygous for the altered AChE allele. This suggests that the level of resistance conferred by this mechanism in its heterozygous state is below the level of detection of the bioassay. The low levels of OP and pyrethroid resistance could be conferred by either the elevated esterase or monooxygenase enzymes. The esterases, however, are elevated only with p-nitrophenyl acetate (PNPA), and are unlikely to be causing broad-spectrum OP resistance. The altered AChE mechanism may also be contributing to the OP but not the pyrethroid resistance. There were significant differences in some resistance gene frequencies for insects obtained by different indoor and outdoor trapping methods. To determine whether the different sampling methods were effectively sampling the same interbreeding population, RAPD analysis of insects obtained by different collection methods in different villages was undertaken. There was no observed variability in the RAPD patterns for the different mosquito samples with a number of primers. ©1997 SCI  相似文献   

5.
Insecticide resistance in the bedbug Cimex hemipterus was investigated using 4211 bedbugs collected from three districts of Sri Lanka. Insecticide bioassays were carried out with discriminating dosages of deltamethrin, permethrin, DDT, malathion, and propoxur. Activity levels of insecticide metabolizing enzymes and the insecticide target site acetylcholinesterase were monitored using biochemical assays. Percentage survivals after DDT, malathion, and propoxur exposure were 41-88%, 18-64%, and 11-41%, respectively. For deltamethrin and permethrin, KT50/KT90 (time to knock-down 50%/90% of the population) values were 0.5-24/1.0-58 and 1.3-10/2.5-47 h, respectively. Both elevated esterase and malathion carboxylesterase mechanisms were present in bedbug populations. Monooxygenase levels were heterogeneous. Organophosphate and carbamate target site acetylcholinesterase, was insensitive in 29-44% of the populations. High DDT resistance was probably due to glutathione S-transferases. Malathion carboxylesterases are mainly responsible for high malathion resistance. High tolerance to both DDT and pyrethroids suggests the presence of ‘kdr’ type resistance mechanism in one population.  相似文献   

6.
Microplate assay technique for estimation of esterase activity in a single insect was used in combination with dose mortality bioassays to detect pyrethroid resistance in three strains of Helicoverpa armigera and to study the frequency of pyrethroid resistant individuals within the population of the same strain at two larval stages, third and fifth instar. The third and fifth instar larvae of the field strains i.e., Nagpur strain and Delhi strain that displayed high degree of resistance towards deltamethrin, had higher esterase activity compared to a susceptible laboratory strain. The frequency distribution of individuals with elevated esterase activity above 1.00 absorbance unit was correlated with the resistance level of the strains. The frequency of resistant individuals in the third instar larvae of Nagpur strain and Delhi strain were 29% and 23%, respectively compared to 4% in the susceptible strain. The resistant individuals in the resistant strains have markedly increased in the fifth instar larvae with a frequency distribution of 63% and 90% in Delhi strain and Nagpur strain, respectively, while only 14% of individuals was found to have elevated esterase activity in the susceptible strain. The results demonstrated the role of esterase in pyrethroid resistance in H. armigera. Microplate assay proved to be a rapid and reliable biochemical technique for monitoring of pyrethroid resistance in H. armigera.  相似文献   

7.
Insecticide resistance is conferred by a limited number of clearly defined mechanisms. Previously, resistance detection in field populations of insects was confined to bioassays, which gave information limited to the presence of resistance to the insecticide tested. Biochemical tests have now been introduced into the field in Sri Lanka, which give information on the underlying mechanism of resistance. These tests, as well as being cheap and easy, work at the level of the individual insect and hence give information on the spectrum of resistance, the level of resistance and the frequency of resistance genes in field populations. In Sri Lanka, a malathion-specific carboxylesterase has been detected in Anopheles culicifacies, an altered acetylcholinesterase in Anopheles nigerrimus and oxidase and glutathione S-transferase based mechanisms in Anopheles subpictus. The selective advantage of resistant individuals under field insecticide spraying regimes has been estimated, and the relative importance of larval and adult insecticide selection assessed.  相似文献   

8.
为探究靶序列位置对RNA介导的病毒抗性产生的影响,利用聚合酶链式反应(polymerase chain reaction,PCR)技术扩增马铃薯Y病毒(Potato virus Y,PVY)复制酶基因(nuclear inclusion b,NIb)不同位置的cDNA区段,反向插入双元载体pROKII中,构建了发夹RNA(hairpin RNA,hpR-NA)结构的植物表达载体。将构建的植物表达载体采用冻融法转入农杆菌LBA4404,叶盘法转化烟草NC89,获得转基因植株。攻毒试验表明:PVYNIb基因不同位置cDNA区段介导的对PVY的抗性存在显著差异;3′端1/2处和中间位置的序列可介导高水平的病毒抗性,抗性植株的比例在50%以上,而5′端、5′端1/2处和3′端的序列介导的抗性效率较低,抗性植株的比例仅为10%~30%。Northern杂交显示:抗病植株中RNA的积累量明显低于同类型的感病植株,抗性与RNA积累量呈负相关;抗病转基因植株中有siRNA存在,表明病毒抗性是由RNA介导的。  相似文献   

9.
Four alkaloids, 10-O-demethyl-17-O-methylisoarnottianamide 1, 6-acetonyl-N-methyl-dihydrodecarine 2, nitidine 3, and chelerythrine 4 were isolated from the plant Zanthoxylum lemairei (Rutaceae) and evaluated for mosquito larvicidal activity against the malaria vector Anopheles gambiae. The mortalities of the larvae were determined after 24 h. The results of the larvicidal tests demonstrated that compounds 1 and 2 were the most potent with mortality rates of 96.7% and 98.3% at a concentration of 250 mg/L, respectively. Compound 3 was less potent with a mortality of 28.3% at the same concentration. The percent mortality of 100% was observed at a concentration of 500 mg/L. The least potent of the four alkaloids was compound 4, which achieved 100% mortality at 1000 mg/L. These findings could be useful in the research for newer more selective, biodegradable and natural larvicidal compounds or can be used as lead compounds for the development of larvicides.  相似文献   

10.
药剂对小菜蛾抗性及敏感品系乙酰胆碱酯酶抑制作用比较   总被引:5,自引:1,他引:4  
采用浸叶法测定了云南通海、元谋和澜沧的小菜蛾plutella xylostella田间种群对常用杀虫剂的抗药性。结果表明,云南上述地区小菜蛾田间种群对各类杀虫剂均产生了不同程度的抗性。对有机磷类药剂的抗药性为1.74~31.1倍;对菊酯类药剂的抗药性为7.41~764倍;对阿维菌素类药剂则产生了 5.60~4.06×104倍的抗性。通过离体和活体试验测定了药剂对小菜蛾头部乙酰胆碱酯酶(AChE)的抑制作用。敌敌畏和灭多威对通海抗性品系AChE离体和活体内的抑制中浓度(I50)分别是敏感品系的209、26.5倍和2.21、2.16倍;敌敌畏对通海小菜蛾种群的离体和活体内抑制中时间(IT50)小于敏感品系,分别是敏感品系的0.32和0.17倍;而灭多威对通海小菜蛾种群的离体和活体内抑制中时间(IT50)则大于敏感品系,分别是敏感品系的1.37和1.74倍。  相似文献   

11.
The field strain of Anopheles stephensi, the main malaria vector in south of Iran, was colonized in laboratory and selected with DDT and dieldrin in two separate lines for 3 generations to a level of 19.5- and 14-fold for DDT and dieldrin resistance, respectively. Synergist tests with chlorofenethol (DMC) and piperonyl butoxide (PBO) on the selected strains indicated that dehydrochlorination and oxidative detoxification might be the underlying mechanisms involved in the resistance to dieldrin and DDT in selected strains. DDT selection decreased susceptibility to DDT and pyrethroids including lambdacyhalothrin, permethrin deltamethrin and cyfluthrin. The result also showed that selection with dieldrin caused negative and positive cross-resistance to pyrethroid and fipronil, respectively. Based on these results, it can be concluded that besides metabolic resistance mechanisms, other factors such as mutation in γ aminobutyric acid (GABA) and voltage-gated sodium channels (Kdr) might be involved.  相似文献   

12.
Pollen beetle, Meligethes aeneus F. (Coleoptera: Nitidulidae) is a major univoltine pest of oilseed rape in many European countries. Winter oilseed rape is cultivated on several million hectares in Europe and the continuous use of pyrethroid insecticides to control pollen beetle populations has resulted in high selection pressure and subsequent development of resistance. Resistance to pyrethroid insecticides in this pest is now widespread and the levels of resistance are often sufficient to result in field control failures at recommended application rates. Recently, metabolic resistance mediated by cytochrome P450 monooxygenases was implicated in the resistance of several pollen beetle populations from different European regions. Here, we have also investigated the possible occurrence of a target-site mechanism caused by modification of the pollen beetle para-type voltage-gated sodium channel gene. We detected a single nucleotide change that results in an amino acid substitution (L1014F) within the domain IIS6 region of the channel protein. The L1014F mutation, often termed kdr, has been found in several other insect pests and is known to confer moderate levels of resistance to pyrethroids. We developed a pyrosequencing-based diagnostic assay that can detect the L1014F mutation in individual beetles and tested more than 350 populations collected between 2006 and 2010 in 13 European countries. In the majority of populations tested the mutation was absent, and only samples from two countries, Denmark and Sweden, contained pollen beetles heterozygous or homozygous for the L1014F mutation. The mutation was first detected in a sample from Denmark collected in 2007 after reports of field failure using tau-fluvalinate, and has since been detected in 7 out of 11 samples from Denmark and 25 of 33 samples from Sweden. No super-kdr mutations (e.g. M918T) known to cause resistance to pyrethroids were detected. The implications of these results for resistance management strategies of pollen beetle populations in oilseed rape crops are discussed.  相似文献   

13.
Dengue is one of the most important vector-borne diseases worldwide and is a public health problem in Mexico. Most programs in dengue endemic countries rely on insecticides for Aedes control. In Mexico, pyrethroid insecticides (mainly permethrin and deltamethrin) have been extensively used over a decade as adulticides and represented a strong selection for insecticide resistance for dengue vectors in several parts of the country. We studied the type, frequency and distribution of insecticide resistance mechanisms in Aedes aegypti from six municipalities in the state of Guerrero selected on the basis of historically intense chemical control and a high risk for dengue transmission. Ae. aegypti eggs were collected from October 2009 to January 2010 using ovitraps. F1 adults, emerged from these collections, were exposed to permethrin, deltamethrin and DDT in WHO diagnostic tests and showed high resistance levels to both pyrethroids and DDT. This was consistent with the presence of increased metabolic enzyme activities and target site insensitivity due to kdr mutations. Biochemical assays showed elevated esterase and glutathione S-transferase activities in the six municipalities. The V1016I kdr mutation on the IIS6 domain of the sodium channel gene was present in an overall frequency of 0.80. A second mutation, F1534C on the IIIS6 domain of the same gene was also detected, being the first report of this mutation in Guerrero. The multiple resistance mechanisms present in Ae. aegypti from Guerrero state represent a warning for the efficacy of the pyrethroid usage and consequently for the success of the dengue control program.  相似文献   

14.
Sodium channel mutations were investigated through nucleotide sequencing of three cDNA fragments amplified from permethrin resistant and susceptible Aedes aegypti from northern Thailand. There was a novel nucleotide substitution (T → G) at the second position of codon 1552 resulting in the replacement of Phenylalanine by Cysteine in segment 6 domain III. This amino acid was indicated by another study to involve an aromatic-aromatic contact between the sodium channel protein and the first aromatic ring of the pyrethroid alcohol moiety. Reciprocal crosses between the homozygous parental susceptible and resistant strains indicated that resistance was autosomal and incompletely recessive, and highly associated with the homozygous mutation. The bioassay of the F2 progeny, formed by backcrossing the F1 with the resistant parental strain, did not show a clear plateau curve across the range of doses, suggesting that resistance to permethrin was controlled by more than one gene locus. Other possible resistance mechanisms involved are discussed.  相似文献   

15.
Resistance in Spodoptera litura (Fabricius) has been attributed to enhanced detoxification of insecticides by increased levels of esterases, oxidases and/or glutathione S-transferases. Enzyme inhibiting insecticide synergists can be employed to counter increased levels of such enzymes in S. litura. Dihydrodillapiole induced synergism of pyrethroid toxicity was examined in the laboratory-reared third instar larval population of S. litura collected in Delhi (susceptible), and Guntur (resistant) region of Andhra Pradesh, India. The Guntur population was found to be 7.04 and 10.19 times resistant to cypermethrin and lambdacyhalothrin, respectively. The activity of cypermethrin, lambdacyhalothrin and profenophos against susceptible and resistance populations of S. litura, was gradually increased when used along with a plant-derived insecticide synergist dihydrodillapiole. The α-naphthyl acetate hydrolysable esterase activity in Delhi population was less as compared to the Guntur population. Resistance associated esterases in Delhi population were inhibited by pre-treatment with dihydrodillapiole. The esterase level in insect was instantly reduced initially, sustained for about 3 h and equilibrated at 4 h post treatment. The esterase activity of Guntur population was increased to 1.28 μmoles/mg/min at 2 h post treatment and subsequently reduced to lower than 0.70 μmoles at 4-12 h post treatment. The variation in esterase activity is suggestive of its homeostatic regulation in test populations. Dihydrodillapiole thus caused significant reduction of resistance in S. litura to cypermethrin, lambda cyhalothrin and profenophos.  相似文献   

16.
A housefly strain, originally collected in 1998 from a dump in Beijing, was selected with beta-cypermethrin to generate a resistant strain (CRR) in order to characterize the resistance and identify the possible mechanisms involved in the pyrethroid resistance. The resistance was increased from 2.56- to 4419.07-fold in the CRR strain after 25 consecutive generations of selection compared to a laboratory susceptible strain (CSS). The CRR strain also developed different levels of cross-resistance to various insecticides within and outside the pyrethroid group such as abamectin. Synergists, piperonyl butoxide (PBO) and S,S,S-tributyl phosphorotrithioate (DEF), increased beta-cypermethrin toxicity 21.88- and 364.29-fold in the CRR strain as compared to 15.33- and 2.35-fold in the CSS strain, respectively. Results of biochemical assays revealed that carboxylesterase activities and maximal velocities to five naphthyl-substituted substrates in the CRR strain were significantly higher than that in the CSS strain, however, there was no significant difference in glutathione S-transferase activity and the level of total cytochrome P450 between the CRR and CSS strains. Therefore, our studies suggested that carboxylesterase play an important role in beta-cypermethrin resistance in the CRR strain.  相似文献   

17.
Insect resistance to the pyrethroid toxins has been examined previously using a number of traditional biochemical and molecular techniques. In this study, a proteomic approach involving two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and tandem mass spectrometry (MS/MS) were applied to examine changes in resistant stains larvae of Bactracera dorsalis Hendel induced by pyrethroid treatment over a 3 h, 6 h and 12 h time period, and a number of proteins changes were observed to change in the level of regulation. Out of total 15 proteins, 9 proteins were observed only after pyrethroid treatment; 6 proteins showed different expression. After MALDI-TOF analyses and peptide mapping method, the data was compared with those of the known proteins available in public databases. Sequence analyses revealed that resistance response correlates with up-regulation (glycerol-3-phosphate dehydrogenase) and down-regulation (ATP-ADP antiporter) of energy-related proteins. It indicated that increased metabolism and energy-indeed as a resistance response to pyrethroid toxins. The regulation of cytoskeleton proteins were possibly a B. dorsalis tissue repair response or in cell division. Up-regulation of protein synthesis would results in substantial bioenergetic enhancement, suggesting a trade-off insect resistance to pyrethroid. Down regulation of neural protein indicated that neural system was physically injured after pyrethroid stress. Some remaining proteins were not identifiable, suggesting these may be novel proteins. Oriental fruit fly proteomes of pesticide induced provide an integrative basis for consolidating our knowledge of insect resistance. The results pave the way for future investigation of the alteration of the insect resistance to chemical pesticides.  相似文献   

18.
Strains of sheep louse Bovicola ovis (Schrank) with various levels of resistance to pyrethroid and one strain with high degree of resistance to organophosphate (OP) insecticides were used to investigate the biochemical mechanisms of insecticide resistance, i.e., enhanced levels of general esterases, specific acetylcholinesterases (AChE), glutathione S-transferase (GST), and mixed function oxidases. Native gel electrophoresis combined with quantitative enzyme assays showed analogous expression profiles of several esterase isozymes in all the strains tested. The determination of the sensitivity of each esterase isozyme to five inhibitors (acetylthiocholine iodide, butyrylthiocholine iodide, paraoxon eserine sulfate, and pCMB) led to the identification of nine esterases in the B. ovis strain. Gel electrophoresis results are supported by enzyme assay studies where, except for the OP resistant strain, no differences in esterase activities were detected in all the pyrethroid resistant and susceptible strains assayed. Statistical analyses demonstrated that some strains have elevated GST activities compared to the susceptible reference strain.  相似文献   

19.
Herbicide resistance or tolerance in weeds mediated by cytochrome P450 monooxygenase is a considerable problem. However, cytochrome P450 mediated resistance or tolerance in weeds was less studied. Thus, in this work, the role of the cytochrome P450 monooxygenase in the different responses of Poa annua and Alopecurus aequalis to fenoxaprop-P-ethyl was studied. We found that the effect of fenoxaprop-P-ethyl could be synergized by piperonyl butoxide (PBO) in P. annua, but not by malathion. After being treated with fenoxaprop-P-ethyl (containing mefenpyr-diethyl), the contents of cytochrome P450 and cytochrome b5 in P. annua increased significantly compared to plants treated with mefenpyr-diethyl only or untreated plants. However, the increase was less in A. aequalis, which was susceptible to fenoxaprop-P-ethyl. The activities of ρ-nitroanisole O-demethylase (PNOD), ethoxyresorufin O-deethylase (EROD), ethoxycoumarin oxidase (ECOD) and NADPH-dependent cytochrome P450 reductase mediated by cytochrome P450 monooxygenase increased in P. annua after treatment with fenoxaprop-P-ethyl, especially the activities of ECOD and cytochrome P450 reductase. Besides this, cytochrome P450 monooxygenase activity toward fenoxaprop-P-ethyl in P. annua increased significantly compared to untreated or treated with mefenpyr-diethyl plants and treated or untreated A. aequalis. Cytochrome P450 monooxygenase may play an important role in the different responses to fenoxaprop-P-ethyl in P. annua and A. aequalis.  相似文献   

20.
Decreased insecticides cuticular penetration, as one of resistant mechanisms in insect, has been extensively documented. Laccases, are enzymes with p-diphenol oxidase activity, was related to the cuticular tanning in insect. In this study, one laccase 2 gene (CpLac2) was cloned from Culex pipiens pallens. The CpLac2 contains an open reading frame (ORF) of 2289 bp and encodes a putative 762 amino acid protein. The deduced protein of CpLac2 was more similar to laccase 2 than other insect laccases, and shared the highest identity with laccases from the same family mosquito, Aedes aegypti and Anopheles gambiae. The developmental expression model of CpLac2 in C. pipiens pallens was measured by RT-PCR. The result showed the CpLaC2 was abundantly expressed in egg, the 4th instar larva and pupa, which suggested the role of CpLac2 for egg chorion tanning and cuticular sclerotization. Meanwhile, the expression of CpLac2 in fenvalerate-susceptible and -resistant strains of C. pipiens pallens was measured by real-time PCR. The result revealed the CpLac2 was significant higher expressed in resistant strain than in susceptible strain. The overexpression of CpLac2 in resistant strain suggested that resistance could derive from reinforcement of the cuticle, which decreased the penetration of insecticide in cuticle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号