首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
Fruit of cv. Gros Michel banana were treated with 1-MCP (1000 nL L−1 for 4 h at 25 °C) and then packed in non-perforated polyethylene (PE) bags for modified atmosphere storage (MAP). The bags were placed in corrugated cardboard boxes and stored at 14 °C. Fruit were removed from cool storage and ripened at room temperature using ethephon. The length of storage life was determined by the change in peel color to yellow, after this ethephon treatment. Fruit treated with 1-MCP + MAP had a storage life of 100 days. The storage life of control fruit (no 1-MCP and no MAP) was 20 days. Fruit held in PE bags without 1-MCP treatment had a 40 day storage life, and the same was found in fruit treated with 1-MCP but without PE bags. 1-MCP is an inhibitor of ethylene action, but also inhibited ethylene production, mainly through inhibition of ACC oxidase activity in the peel. MAP inhibited ethylene production mainly through inhibition of ACC oxidase, both in the peel and pulp. The combination of 1-MCP treatment and MAP storage resulted in much lower ethylene production due to inhibition of both ACC synthase and ACC oxidase activity.  相似文献   

2.
Mangosteen (Garcinia mangostana L.) fruit were harvested when the peel (pericarp) was light greenish yellow with scattered pinkish spots. Fruit were exposed to 1 μL L−1 1-methylcyclopropene (1-MCP) for 6 h at 25 °C and were then stored at 25 °C (control) or 15 °C. The 1-MCP treatment only temporarily delayed softening of the fruit flesh, during storage. Storage life, defined as the time until the pericarp was dark purple, was much longer in fruit stored at 15 °C than in fruit stored at 25 °C. It was also longer in 1-MCP treated fruit (storage life at 15 °C: control 18 d, 1-MCP-treated fruit 27 d). The 1-MCP treatment also increased the length of shelf life, defined as the time until the pericarp turned blackish purple or showed calyx wilting, at 25 °C. 1-MCP treatment reduced ethylene production. It also reduced pericarp levels of 1-aminocyclopropane-1-carboxylic acid (ACC), and the pericarp activities of ACC synthase (ACS) and ACC oxidase (ACO). In the fruit flesh, in contrast, 1-MCP did not affect ACC levels and ACS activity, but the treatment reduced ACO activity. Taken together, both the storage life and the shelf life of the fruit were extended by the 1-MCP treatment. A decrease in ACO activity largely accounted for the effects of the 1-MCP on ethylene production in the pericarp.  相似文献   

3.
A feature of ‘Honeycrisp’ apples [Malus sylvestris (L.) Mill var. domestica (Borkh.) Mansf.] is that they maintain flesh firmness over extended storage. The objective of this study was to elucidate molecular mechanisms that are responsible for slow softening of ‘Honeycrisp’ as compared with a rapidly softening cultivar, ‘McIntosh’. Fruit from both cultivars were picked during the normal harvest period and stored at 20 °C for 10 d. Internal ethylene concentrations (IECs) in ‘Honeycrisp’ fruit were lower than in ‘McIntosh’, but at climacteric levels of ethylene ‘Honeycrisp’ fruit maintained their firmness over this period, while ‘McIntosh’ softened rapidly. Concentrations of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) were higher in ‘Honeycrisp’ than in ‘McIntosh’ apples. qRT-PCR analysis was carried out for genes involved in ethylene biosynthesis, perception and signaling [ACC synthase (MdACS); ACC oxidase (MdACO); ethylene receptors (MdETR and MdERS); constitutive triple response (MdCTR); ethylene response factor (MdERF)], as well as those involved in cell wall metabolism [polygalacturonase (MdPG); xyloglucan endotransglucosylase (MdXTH); expansin (MdEXP); β-galactosidase (Md β-GS); arabinofuranosidase (MdAFase); pectate lyase (MdPL)]. At comparable IECs, the expression of genes involved in ethylene synthesis, ethylene perception and signal transduction was generally much higher in ‘Honeycrisp’ than in ‘McIntosh’ fruit. However, the expression of MdAFase and MdEXP3 was generally lower in ‘Honeycrisp’ than in ‘McIntosh’, while that of MdPG and MdPL was extremely low in ‘Honeycrisp’. Expression of MdPG1 was very low, even though IECs were at climacteric levels. Absence of fruit softening in ‘Honeycrisp’ is probably associated with restricted cell wall enzyme activity. The lower maximum IECs found in ‘Honeycrisp’ compared with ‘McIntosh’ do not appear to be related to expression of genes involved in ethylene biosynthesis.  相似文献   

4.
Factors that affect the efficacy of 1-methycyclopropene (1-MCP) treatment of apples [Malus sylvestris (L.) Mill var. domestica (Borkh.) Mansf.] include cultivar and maturity. In this study, ‘McIntosh’, ‘Cortland’ and ‘Empire’ apples were categorized by internal ethylene concentrations (IECs) at harvest, treated with 1 μL L−1 1-MCP, and the IECs of individual fruit followed at 30 d intervals during air storage at 0.5 °C for 90 d. IECs at harvest ranged from <0.5 μL L−1 to ≥100 μL L−1, 51 < 100 μL L−1, and 10 < 50 μL L−1 for ‘McIntosh’, ‘Cortland’ and ‘Empire’, respectively. 1-MCP treatment resulted in a decrease of IECs in fruit of all cultivars by day 30 after harvest. During subsequent storage IECs remained low in fruit with <1 μL L−1 at harvest, but in ‘McIntosh’, ‘Cortland’ increased in proportion to IECs at harvest, but not in ‘Empire’. The importance of initial IECs in fruit on the persistence of 1-MCP inhibition of ethylene production was confirmed in a further experiment, in which IECs in untreated and 1-MCP treated ‘McIntosh’ and ‘Empire’ apples were measured for up to 194 d. 1-MCP also decreased 1-aminocyclopropene-1-carboxylic acid (ACC) concentrations in fruit. The results of our study are consistent with the hypothesis that IEC modulates the sensitivity of climacteric fruit to 1-MCP.  相似文献   

5.
6.
7.
The mode of action of nitric oxide (NO) in inhibiting ethylene biosynthesis and fruit softening during ripening and cool storage of mango fruit was investigated. Hard mature green mango (Mangifera indica L. cv. ‘Kensington Pride’) fruit were fumigated with 20 μL L−1 NO for 2 h at 21 °C and allowed to ripen at 21 ± 1 °C for 10 d, or stored at 13 ± 1 °C for 21 d. During ripening and cool storage, ethylene production and respiration rate from whole fruit were determined daily. The 1-aminocyclopropane-1-carboxylic acid (ACC) content, activities of ACC synthase (ACS), ACC oxidase (ACO), and fruit softening enzymes such as pectin esterase (PE), endo-1,4-β-d-glucanase (EGase), exo- and endo-polygalacturonase (exo-PG, endo-PG) as well as firmness and rheological properties of pulp were determined at two- and seven-day intervals during ripening and cool storage, respectively. NO fumigation inhibited ethylene biosynthesis and respiration rate, and maintained higher pulp firmness, springiness, cohesiveness, chewiness, adhesiveness, and stiffness. NO-fumigated fruit during cool storage and ripening had lower ACC contents through inhibiting the activities of both ACS and ACO in the fruit pulp. NO-fumigated fruit showed decreased activities of exo-PG, endo-PG, EGase, but maintained higher PE activity in pulp tissues during ripening and cool storage. In conclusion, NO fumigation inhibited ethylene biosynthesis through inhibition of ACS and ACO activities leading to reduced ACC content in the fruit pulp which consequently, reduced the activities of fruit softening enzymes during ripening and cool storage.  相似文献   

8.
Summary The common cultivated tomato (Lycopersicon esculentum Mill.) provides a major focus for improvement of crop quality through genetic engineering. Identification of ripening-related cDNAs has enabled the modification of specific aspects of ripening by manipulating gene expression in transgenic plants. By utilizing antisense RNA to modify expression of ripening genes, we have inhibited the production of the cell wall-metabolising enzymes polygalacturonase and pectinesterase and created transgenic plants that contain, effectively, single, targeted mutations affecting these genes. Furthermore, this approach has been used with previously unidentified cDNA clones to enable both functional identification and manipulation of genes involved in ethylene production (ACC oxidase) and carotenoid biosynthesis (phytoene synthase). The use of antisense RNA targeted to specific genes to alter ripening phenotypes and improve commercial utility of fruit by affecting shelf-life, processing characteristics and nutritional content is discussed.We have used the extreme ripening-impaired mutant, ripening inhibitor (rin) to identify additional genes implicated in the ripening process. This approach has resulted in the cloning of several novel ripening-related mRNAs which are now being studied by antisense experiments. This may enable identification and manipulation of additional genes involved in processes such as softening, flavour and aroma generation and susceptibility to pathogens.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - PE pectinesterase - PG polygalacturonase - SAM S-adenosyl methionine - SARs scaffold attachment regions  相似文献   

9.
The allelic polymorphism and inheritance of MdACS1 and MdACO1 genes were analysed in 28 apple cultivars, which were derived from reciprocal crosses of the following parental pairs: ‘Golden Delicious’ × ‘James Grieve’, ‘Golden Delicious’ × ‘Jonathan’, ‘Cox's Orange Pippin’ × ‘Golden Delicious’, ‘Cox's Orange Pippin’ × ‘Jonathan’. Polymorphisms were detected by PCR and the use of two restriction enzymes (BamH1 and RsaI). In addition, new primers were designed for the further discrimination of MdACO1 alleles. Two alleles of MdACS1 gene (MdACS1‐1 and MdACS1‐2) and three alleles of MdACO1 gene (a, b and c) were detected. Cloning and sequencing of MdACO1 alleles confirmed a high conservation and some differences within the coding regions and helped to reconcile between different numbering systems. Observed segregations confirmed that alleles a, b and c belonged to the MdACO1 gene. It is apparent that polymorphisms within the MdACS1 and MdACO1 genes could aid cultivar genotyping and identification and, furthermore, that the MdACS1‐2/2 genotype is correlated with a long apple storage life.  相似文献   

10.
Polish apple cvs: ‘Ligol’, ‘Odra’ and ‘Primula’ served for studies of self-incompatibility. Basing on available sequence data, a new set of primers upstream and downstream of the hypervariable (HV) region of apple S-RNases were designed. Using the RT-PCR method, cDNA was amplified on RNA isolated from styles. PCR products were cloned and sequenced. A new trans-generic S-RNase allele, designated as Skb (GenBank accession no. EU443101), was discovered in cvs ‘Odra’ and ‘Primula’. Nucleotide sequence alignment revealed that Skb-RNase shows 98% identity to SaucS19-RNase from Sorbus aucuparia and 97% identity to CmonS17-RNase from Crataegus monogyna. The occurrence of extensive intergeneric hybridization among extant Pyrinae is considered since the deduced amino acid sequence of Skb-RNase from M. × domestica showed higher similarity to CmonS17 from C. monogyna, SaucS19-RNase from S. aucuparia, St from Malus transitoria, S5-RNase and S3-RNase from Pyrus pyrifolia, and S40-RNase from P. ussuriensis than to S-alleles from Malus × domestica and all of them are grouped in the same cluster of phylogenetic tree. In respect to extremely high similarities between aforementioned S-RNases it could be possible that these alleles existed before the separation of Malus, Pyrus, Sorbus and Crataegus genera. Within Malus, the Skb-RNase from M. × domestica and St-RNase from M. transitoria show 100% identity of the HV region at the deduced amino acid level, suggesting that these S-RNases diverged more recently than the other Malus S-RNases. In ‘Ligol’, the agronomically most important cultivar in Poland, the S2 and S9 were identified.  相似文献   

11.
‘Granny Smith’ apples are highly susceptible to superficial scald, a symptom of chilling injury. For many crops, low temperature storage results in oxidative stress and chilling injury, caused by increased production of superoxide anions which in turn leads to the generation of other dangerous reactive oxygen species (ROS). Application, prior to cold storage, of low oxygen (LO2, <0.5%) atmospheres, ethanol (<2% vapour) or 1-methylcyclopropene (1-MCP, 0.5 μL L−1) at 20 °C, was effective in reducing superficial scald in fruit following 24 weeks of cold storage. ROS levels were measured by confocal laser-scanning microscopy of apple peel treated with the fluorescent probe 2′,7′-dichlorodihydrofluorescein diacetate. In control fruit, ROS levels increased during cold storage and shelf-life and were very high after only 8 weeks, whereas in 1-MCP-, ethanol- and LO2-treated fruit, ROS levels remained low throughout storage. Gene-expression levels of ROS-scavenging enzymes were induced by the various pretreatments: catalase (MdCAT) was induced by LO2 treatment, whereas Mn superoxide dismutase (MdMnSOD) was induced by 1-MCP treatment. Polyphenol oxidase (MdPPO) gene expression levels were associated with scald symptom development and were highest in control fruit. Ethylene levels and expression of ethylene biosynthesis genes were correlated with α-farnesene levels and <alpha>-farnesene synthase (MdAFS) gene expression in the variously treated fruit. Accumulation of the α-farnesene oxidation product, 6-methyl-5-hepten-2-one (MHO), was highest in control fruit after 8 weeks, in accordance with ROS accumulation. The LO2 pretreatment mechanism might involve production of anaerobic metabolites, causing a delay in ethylene and α-farnesene biosynthesis and oxidation; this is different from the mechansism of action of 1-MCP, even though both consequently reduce ROS accumulation and scald symptoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号