首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human basophilic KU812 cells express the high-affinity IgE receptor Fc epsilon RI, which plays a central role in the IgE-mediated allergic response. The effect of several major tea catechins, (+)-catechin, (-)-epicatechin, (-)-epigallocatechin, (-)-epicatechin gallate, and (-)-epigallocatechin gallate (EGCg), on the cell surface expression of Fc epsilon RI in KU812 cells was studied. Flow cytometric analysis showed that only EGCg was able to decrease the cell surface expression of Fc epsilon RI after a 24 h treatment in a dose-dependent manner. Moreover, immunoblot analysis revealed that the total cellular expression of the Fc epsilon RI alpha chain decreased upon treatment with EGCg. Fc epsilon RI is a tetrameric structure comprising one alpha chain, one beta chain, and two gamma chains. The level of mRNA production of each subunit in KU812 cells was investigated. KU812 cells treated with EGCg expressed lower levels of Fc epsilon RI alpha and gamma mRNA than nontreated cells. These results suggest that EGCg has an ability to down-regulate Fc epsilon RI expression, and this suppressive effect may be due to the down-regulation of Fc epsilon RI alpha and gamma mRNA levels.  相似文献   

2.
We examined the effect of flavones on the expression of the high-affinity IgE receptor FcepsilonRI, which plays a central role in the IgE-mediated allergic response. Flow cytometric analysis showed that the flavones chrysin and apigenin were able to reduce the cell surface expression of FcepsilonRI in human basophilic KU812 cells. Immunoblot analysis revealed that the total cellular expression of the FcepsilonRI alpha and gamma chains decreased upon treatment with chrysin and apigenin. Moreover, the level of mRNA expression of the FcepsilonRI alpha and gamma chains also decreased when the cells were cultured with the two flavones. Previously, we demonstrated that the reduction of extracellular signal-regulated kinase1/2 (ERK1/2) phosphorylation was involved in the downregulation of FcepsilonRI expression. The two flavones were shown to reduce the level of ERK1/2 phosphorylation. These results suggested that chrysin and apigenin have the ability to downregulate FcepsilonRI expression and this suppressive effect may be due to the reduction of ERK1/2 phosphorylation.  相似文献   

3.
It was previously reported that (-)-epigallocatechin-3-O-gallate (EGCG) suppresses the expression of the high-affinity IgE receptor FcepsilonRI in human basophilic cells and that this suppressive effect is associated with EGCG binding to the cell surface. This study examined the effects of five methylated derivatives of EGCG, (-)-epigallocatechin-3-O-(3-O-methyl)gallate (EGCG 3' 'Me), (-)-epigallocatechin-3-O-(4-O-methyl)gallate (EGCG 4' 'Me), (-)-4'-O-methyl-epigallocatechin-3-O-gallate (EGCG 4'Me), (-)-epigallocatechin-3-O-(3,4-O-methyl)gallate (EGCG 3' '4' 'diMe), and (-)-4'-O-methyl-epigallocatechin-3-O-(4-O-methyl)gallate (EGCG 4'4' 'diMe) on FcepsilonRI expression and ERK1/2 phosphorylation, and each of their cell surface binding activities was measured. Of these five methylated derivatives, three that are methylated at the 3' '- and/or 4' '-position, EGCG 3' 'Me, EGCG 4' 'Me, and EGCG 3' '4' 'diMe, suppressed FcepsilonRI expression and ERK1/2 phosphorylation, although the suppressive effects were lower than that of EGCG. EGCG 4'Me and EGCG 4'4' 'diMe, both of which are methylated at the 4'-position, did not demonstrate a suppressive effect. Furthermore, it was found that EGCG 3' 'Me, EGCG 4' 'Me, EGCG 3' '4' 'diMe, and EGCG 4'Me, which are methylated at the 3' '- and/or 4' '-positions or the 4'-position, could bind to the cell surface even though their binding activities were lower than that of EGCG. Only EGCG 4'4' 'diMe, which is methylated at both the 4'- and 4' '-positions, could not bind. These results suggest that the trihydroxyl structure of the B ring is essential for EGCG to exert the suppressive effects and that the hydroxyl groups on both the 4'-position in the B ring and the 4' '-position in the gallate are crucial for the cell surface binding activity of EGCG.  相似文献   

4.
It has been reported that epigallocatechin-3-O-(3″-O-methyl)-gallate (EGCG3″Me) and the EGCG3″Me-rich green tea ( Camellia sinensis L.) cultivar 'Benifuuki' exhibit antiallergic effects. The objective of this study was to investigate the effect of various tea leaf catechins on histamine release from murine bone marrow mast cells (BMMC). At a dose of 50 μg/mL, the rank order of histamine release inhibition was observed to be epicatechin-3-O-(3″-O-methyl)-gallate (ECG3″Me) > gallocatechin-3-O-(3″-O-methyl)-gallate (GCG3″Me) > EGCG3″Me > gallocatechin-gallate (GCG) > catechin-gallate (CG) > EGCG > epicatechin-gallate (ECG) > epigallocatechin (EGC) > gallocatechin (GC). Of the various tea cultivars analyzed by HPLC, the greatest content of ECG3″Me was found in the third crop of 'Benifuuki' (1.05% dry weight). Moreover, ECG3″Me content was positively correlated with EGCG3″Me content in 'Benifuuki' tea leaves. In an assay of mixtures of ECG3″Me and EGCG3″Me, inhibitory activity (50 μg/mL in total) was increased as the content of ECG3″Me increased. This suggests that ECG3″Me might link to the antiallergic effect of 'Benifuuki' tea, as has been reported for EGCG3″Me.  相似文献   

5.
The inhibitory effects of tea catechins, the O-methylated derivatives of (-)-epigallocatechin-3-O-gallate (EGCG), and the polyphenol extracts from tea leaves (Camellia sinensis L.) on oxazolone-induced type IV allergy in male ICR mice were investigated. Four major tea catechins and two O-methylated derivatives, (-)-epigallocatechin-3-O-(3-O-methyl)gallate (EGCG3' 'Me) and (-)-epigallocatechin-3-O-(4-O-methyl)gallate (EGCG4' 'Me), showed significant inhibitory effects on mouse type IV allergy after a percutaneous administration at a dose of 0.13 mg/ear. Among tea catechins, the compounds including galloyl moieties, such as EGCG and (-)-epicatechin-3-O-gallate (ECG), showed the strongest inhibitory activities on mouse type IV allergy. The inhibitory activities of EGCG3' 'Me and EGCG4' 'Me were higher than that of EGCG at a dose of 0.05 mg/ear. Polyphenol extract from tea leaves of Benihomare cultivar, which includes EGCG3' 'Me, strongly inhibited mouse type IV allergy after percutaneous administration in comparison with that from Yabukita cultivar, which does not include EGCG3' 'Me, at doses of 0.05 and 0.13 mg/ear. EGCG3' 'Me is thought to contribute, at least in part, to the inhibitory ability of Benihomare tea leaves on mouse type IV allergy. EGCG and the polyphenol extracts from Benihomare and Yabukita tea leaves also inhibited mouse type IV allergy by oral administration at 1 h before the sensitization and at 1 h before the challenge with oxazolone. Therefore, daily intake of tea drinks could have potential to prevent type IV allergy.  相似文献   

6.
Epimerization at C-2 of O-methylated catechin derivatives and four major tea catechins were investigated. The epimeric isomers of (-)-epicatechin (I), (-)-epicatechin-3-O-gallate (II), (-)-epigallocatechin (III), (-)-epigallocatechin-3-O-gallate (IV), and (-)-epigallocatechin-3-O-(3-O-methyl)gallate (V) in green tea extracts increased time-dependently at 90 degrees C. The epimerization rates of authentic tea catechins in distilled water are much lower than those in tea infusion or in pH 6.0 buffer solution. The addition of tea infusion to the authentic catechin solution accelerated the epimerization, and the addition of ethylenediaminetetraacetic acid, disodium salt (Na(2)EDTA) decreased the epimerization in the pH 6.0 buffer solution. Therefore, the metal ions in tea infusion may affect the rate of epimerization. The proportions of the epimers to authentic tea catechins [III, IV, V, and (-)-epigallocatechin-3-O-(4-O-methyl)gallate (VI)] in pH 6.0 buffer solution after heating at 90 degrees C for 30 min were 42.4%, 37.0%, 41.7%, and 30.4%, respectively. These values were higher than those of I and II (23.5% and 23.6%, respectively). The O-methylated derivatives at the 4'-position on the B ring of IV and VI were hardly epimerized. These results suggest that the hydroxyl moiety on the B ring of catechins plays an important role in the epimerization in the order 3',4',5'-triol type > 3',4'-diol type > 3',5'-diol type.  相似文献   

7.
The inhibitory effects of C-2 epimeric isomers of (-)-epigallocatechin-3-O-gallate (EGCG) and two O-methylated EGCG derivatives, (-)-epigallocatechin-3-O-(3-O-methyl)gallate (EGCG3'Me) and (-)-epigallocatechin-3-O-(4-O-methyl)gallate (EGCG4'Me), against oxazolone-induced type IV allergy in male mice were investigated. These compounds exhibited strong antiallergic effects by percutaneous administration at a dose of 0.13 mg/ear. The inhibition rates of (-)-gallocatechin-3-O-gallate (GCG), (-)-gallocatechin-3-O-(3-O-methyl)gallate (GCG3'Me), and (-)-gallocatechin-3-O-(4-O-methyl)gallate (GCG4'Me) on mouse type IV allergy were 52.1, 53.3, and 54.8%, respectively. However, the antiallergic effects were weaker than those of their corresponding original tea catechins (2R,3R type). The inhibition rates of those were 88.0, 73.2, and 77.6%, respectively. For all of the catechins tested, oral administration at a dose of 50 mg/kg body weight significantly suppressed the allergic symptoms. The inhibitory rates varied from 24.0 to 60.6%. No significant differences were observed between the effects of the epimers (2S,3R type) and their corresponding original catechins (2R,3R type). The antiallergic effects of tea catechins and their C-2 epimers observed in this study were dose-dependent. These results suggest that C-2 epimers of tea catechins, which are produced during heat processing at high temperatures, could be disadvantageous for the antiallergic effects on type IV allergy.  相似文献   

8.
(-)-Epigallocatechin-3-gallate (EGCG), a major polyphenol of green tea, undergoes substantial biotransformation to species that includes the methylated compounds. Recent studies have demonstrated that the methylated EGCG has many biological activities. In this study, we have investigated the composition of the three O-methylated EGCG derivatives, (-)-epigallocatechin-3-O-(3-O-methyl)gallate (3' '-Me-EGCG), (-)-epigallocatechin-3-O-(4-O-methyl)gallate (4' '-Me-EGCG) and (-)-4'-methyl epigallocatechin-3-O-(4-O-methyl)gallate (4',4' '-di-Me-EGCG) in tea leaves which were picked from various species and at various seasons, ages of leaves, locations, and fermentation levels. Higher levels of 3' '-Me-EGCG and 4' '-Me-EGCG were detected in Chinshin-Kanzai (a species of Camellia sinensis) cultivated in the mountain area of Sansia, Taipei County, Taiwan. Also, these O-methylated EGCG levels were found to be higher in autumn and winter than in spring and summer. The young leaves were found to be richer in the O-methylated compounds than old leaves and the amount of O-methylated EGCG was higher in unfermented longjin green tea than in semifermented oolong tea. However, the fermented black tea and puerh tea did not contain these compounds. 4',4' '-diMe-EGCG could not be detected in either fresh tea leaves or commercial tea leaves. We also found that 3' '-Me-EGCG has a higher inhibitory effect on the nitric oxide generation and inducible nitric oxide synthase (iNOS) expression as compared with EGCG, while 4' '-Me-EGCG and 4',4' '-di-Me-EGCG were less effective.  相似文献   

9.
10.
The partially purified catechin fraction isolated from green tea extract was treated with a variety of acylating agents (acyl anhydrides/chloride) to obtain (-)-epigallocatechin-3-gallate (EGCG) O-acyl derivatives in 20-25.4% yields. The (-)-EGCG O-acyl derivatives were characterized by physical data and spectral studies. These compounds were evaluated for their antitumor activity by use of a two-stage carcinogenesis model in 7,12-dimethylbenz[a]anthracene (DMBA)/12-O-tetradecanoylphorbol 13-acetate (TPA)--induced cancer in Swiss albino mice. The study showed that there was a significant decrease in the antitumor activity with the increase in size and branching of the chain length of acyl groups. The results indicated that these O-acyl derivatives of (-)-EGCG have the potential to be developed as cancer chemopreventive agents. Keywords: Green tea; catechins; (-)-EGCG O-acyl derivatives; antitumor activity.  相似文献   

11.
12.
This study examined the growth inhibitory effects of the structurally related beta-diketones compounds in human cancer cells. Here, we report that 1-(2-hydroxy-5-methylphenyl)-3-phenyl-1,3-propanedione (HMDB) induces growth inhibition of human cancer cells and induction of apoptosis in A431 cells through modulation of mitochondrial functions regulated by reactive oxygen species (ROS). ROS generation occurs in the early stages of HMDB-induced apoptosis, preceding cytochrome c release, caspase activation, and DNA fragmentation. The changes occurred after single breaks in DNA were detected, suggesting that HMDB induced irreparable DNA damage, which in turn triggered the process of apoptosis. Up-regulation of Bad and p21; down-regulation of Bcl-2, Bcl-XL, Bid, p53, and fatty acid synthase; and cleavage of Bax were found in HMDB-treated A431 cells. Glutathione and N-acetylcysteine (NAC) suppress HMDB-induced apoptosis. HMDB markedly enhanced growth arrest DNA damage inducible gene 153 (GADD153) mRNA and protein in a time- and concentration-dependent manner. NAC prevented up-regulation of GADD153 mRNA expression caused by HMDB. These findings suggest that HMDB creates an oxidative cellular environment that induces DNA damage and GADD153 gene activation, which in turn helps trigger apoptosis in A431 cells.  相似文献   

13.
14.
Previous studies reported that peracetylated (-)-epigallocatechin-3-gallate (AcEGCG) has antiproliferative and anti-inflammatory activities. Here, we evaluated the chemopreventive effects and underlying molecular mechanisms of dietary administration of AcEGCG and EGCG in dextran sulfate sodium (DSS)-induced colitis in mice. The mice were fed a diet supplemented with either AcEGCG or EGCG prior to DSS induction. Our results indicated that AcEGCG administration was more effective than EGCG in preventing the shortening of colon length and the formation of aberrant crypt foci (ACF) and lymphoid nodules (LN) in mouse colon stimulated by DSS. Our study observes that AcEGCG treatment inhibited histone 3 lysine 9 (H3K9) acetylation but did not affect histone acetyltransferase (HAT) activity and acetyl- CREB-binding protein (CBP)/p300 levels. In addition, pretreatment with AcEGCG decreased the proinflammatory mediator levels by down-regulating of PI3K/Akt/NFκB phosphorylation and p65 acetylation. We also found that treatment with AcEGCG increased heme oxygenase-1(HO-1) expression via activation of extracellular signal-regulated protein kinase (ERK)1/2 signaling and acetylation of NF-E2-related factor 2 (Nrf2), thereby abating DSS-induced colitis. Moreover, dietary feeding with AcEGCG markedly reduced colitis-driven colon cancer in mice. Taken together, these results demonstrated for the first time the in vivo chemopreventive efficacy and molecular mechanisms of dietary AcEGCG against inflammatory bowel disease (IBD) and potentially colon cancer associated with colitis. These findings provide insight into the biological actions of AcEGCG and might establish a molecular basis for the development of new cancer chemopreventive agents.  相似文献   

15.
Sulforaphane (SFN) has been indicated for the prevention and suppression of tumorigenesis in solid tumors. Herein, we evaluated SFN's effects on imatinib (IM)-resistant leukemia stem cells (LSCs). CD34(+)/CD38(-) and CD34(+)/CD38(+) LSCs were isolated from KU812 cell line flowcytometrically. Isolated LSCs showed high expression of Oct4, CD133, β-catenin, and Sox2 and IM resistance. Differentially, CD34(+)/CD38(-) LSCs demonstrated higher BCR-ABL and β-catenin expression and imatinib (IM) resistance than CD34(+)/CD38(+) counterparts. IM and SFN combined treatment sensitized CD34(+)/CD38(-) LSCs and induced apoptosis, shown by increased caspase 3, PARP, and Bax while decreased Bcl-2 expression. Additionally, the combined treatment reduced BCR-ABL and β-catenin and MDR-1 protein expression. Mechanistically, IM and SFN combined treatment resensitized LSCs by inducing intracellular reactive oxygen species (ROS). Importantly, β-catenin-silenced LSCs exhibited reduced glutathione S-transferase pi 1 (GSTP1) expression and intracellular GSH level, which led to increased sensitivity toward IM and SFN. We demonstrated that IM and SFN combined treatment effectively eliminated CD34(+)/CD38(-) LSCs. Since SFN has been shown well tolerated in both animals and human, this regimen could be considered for clinical trials.  相似文献   

16.
Tumor-associated fatty acid synthase (FAS) is implicated in tumorigenesis and connected to HER2 (human epidermal growth factor receptor 2) by systemic analyses. Suppression of FAS in cancer cells may lead to growth inhibition and cell apoptosis. Our previous study demonstrated that (-)-epigallocatechin 3-gallate (EGCG), the green tea catechin, could down-regulate FAS expression by suppressing EGFR (epidermal growth factor receptor) signaling and downstream phosphatidylinositol 3-kinase (PI3K)/Akt activation in the MCF-7 breast cancer cell line. Herein, we examined the effects of EGCG on FAS expression modulated by another member of the erbB family, that is, HER2 or HER3. We identified that heregulin-beta1 (HRG-beta1), a HER3 ligand, stimulated dose-dependent FAS expression in breast cancer cell lines MCF-7 and AU565, but not MDA-MB-453. The time-dependent increase in FAS expression after HRG-beta1 stimulation was also observed in MCF-7 cells, and this up-regulation was de novo RNA synthesis dependent. Treatment of MCF-7 cells with EGCG markedly inhibited HRG-beta1-dependent induction of mRNA and protein of FAS. EGCG also decreased the phosphorylation of Akt and extracellular signal-regulated kinase 1/2 that were demonstrated as selected downstream HRG-beta1-responsive kinases required for FAS expression using dominant-negative Akt, PI3K inhibitors (LY294002 and wortmannin), or MEK inhibitor (PD98059). FAS induction by HRG-beta1 was also blocked by AG825, a selective HER2 inhibitor, and by genistein, a selective tyrosine kinase inhibitor, indicating the formation of a heterodimer between HER2 and HER3, and their tyrosine kinase activities are essential for HRG-beta1-mediated elevation of FAS. Additionally, growth inhibition of HRG-beta1-treated cells was parallel to suppression of FAS by EGCG. Taken together, these findings extend our previous study to indicate that EGCG may be useful in the chemoprevention of breast carcinoma in which FAS overexpression results from HER2 or/and HER3 signaling.  相似文献   

17.
以大鼠前体脂肪细胞原代单层培养为模型,分别以0(对照组)、40(低剂量组)和160 μmol/L(高剂量组)的二十二碳六烯酸(DHA)处理未分化的前体脂肪细胞(培养第1天)和分化的脂肪细胞(分化第1天)。采用流式细胞仪(FCM)检测细胞周期分布;逆转录-聚合酶链反应(RT-PCR)分析环氧合酶-2(COX-2 )mRNA表达情况,探讨DHA对脂肪细胞周期及基因表达的调节作用。结果显示,未分化的前体脂肪细胞经DHA作用48 h,各处理组前体脂肪细胞G1期百分比均呈上升趋势,但与对照无显著性差异;分化的脂肪细胞经DHA作用24 h,40 μmol/L组细胞内COX-2 mRNA的表达量显著下降,而160 μmol/L组则显著增加。以上结果表明,DHA对大鼠前体脂肪周期无明显的调节作用,而对脂肪细胞内COX-2 mRNA的调节具有明显的浓度依赖效应。  相似文献   

18.
Twenty-eight new oxa(thia)diazolyl 3(2H)-pyridazinone derivatives were synthesized. Some compounds showed good chronic growth activities against the armyworm, Pseudaletia separata (Walker). Their EC50 values were determined in vivo. Nineteen 2-tert-butyl-4-chloro-5-[5'-aryl-2'-(1',3',4'-oxadiazolyl)methoxy]-3(2H)-pyridazinones were quantitatively analyzed using the QSAR procedure. The partial least squares method was applied to find relationships between activity and the physicochemical data. The results showed that dipole moment, molar refractivity, and log P are identified as critical parameters for chronic growth effects.  相似文献   

19.
There is great interest in the nutritional potential of (-)-epicatechin, a common polyphenolic constituent of many foods and beverages, because of its potent antioxidant capacity. To better evaluate the biological role of (-)-epicatechin, we studied the urinary excretion of 5-(3',4'-dihydroxyphenyl)-gamma-valerolactone, a ring-fission metabolite of (-)-epicatechin by intestinal microflora, in rats as well as its antioxidant activity in vitro. The method for measuring the urinary levels of (-)-epicatechin and 5-(3',4'-dihydroxyphenyl)-gamma-valerolactone was based on the enzymatic hydrolysis of beta-glucuronidase and sulfatase, and was subsequently determined by HPLC coupled to an electrochemical detector. Following administration of (-)-epicatechin at doses of 0, 20, 40, and 80 mumol per rat, (-)-epicatechin and 5-(3',4'-dihydroxyphenyl)-gamma-valerolactone were excreted into the urine within 24 h in a dose-dependent manner. Urinary 5-(3',4'-dihydroxyphenyl)-gamma-valerolactone was mostly in the conjugated form, with a higher ratio of conjugation than (-)-epicatechin. We assessed the relative antioxidant potentials for scavenging radicals in the aqueous phase as expressed in the Trolox equivalent antioxidant capacity (TEAC). The results demonstrated that the degradation of (-)-epicatechin into 5-(3',4'-dihydroxyphenyl)-gamma-valerolactone attenuated the antioxidant ability of the former. However, 5-(3',4'-dihydroxyphenyl)-gamma-valerolactone showed stronger antioxidant activity than l-ascorbic acid. These results led us to suppose that 5-(3',4'-dihydroxyphenyl)-gamma-valerolactone, a microbial metabolite of (-)-epicatechin, circulating in the body may also at least be biologically active in terms of contributing to its combined antioxidant effect.  相似文献   

20.
The inhibitory effects of five tea polyphenols, namely theaflavin (TF1), theaflavin-3-gallate (TF2), theaflavin-3,3'-digallate (TF3), (-)-epigallocatechin-3-gallate (EGCG), and gallic acid, and propyl gallate (PG) on xanthine oxidase (XO) were investigated. These six antioxidant compounds reduce oxidative stress. Theaflavins and EGCG inhibit XO to produce uric acid and also act as scanvengers of superoxide. TF3 acts as a competitive inhibitor and is the most potent inhibitor of XO among these compounds. Tea polyphenols and PG all have potent inhibitory effects (>50%) on PMA-stimulated superoxide production at 20 approximately 50 microM in HL-60 cells. Gallic acid (GA) showed no inhibition under the same conditions. At 10 microM, only EGCG, TF3, and PG showed significant inhibition with potency of PG > EGCG > TF3. The superoxide scavenging abilities of these six compunds are as follows: EGCG > TF2 > TF1 > GA > TF3 > PG. PG was the most potent inhibitor of PMA-stimulated H(2)O(2) production in HL-60 cells. The order of H(2)O(2) scavenging ability was TF2 > TF3 > TF1 > EGCG > PG > GA. Therefore, the antioxidative activity of tea polyphenols and PG is due not only to their ability to scavenge superoxides but also to their ability to block XO and related oxidative signal transducers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号