首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The feeding trial was conducted in 80 days to assess the effects of stoking densities on growth, digestive enzymes activities, serum biochemical parameters and antioxidant status of juvenile genetically improved farmed tilapia (GIFT, Oreochromis niloticus) reared in in‐pond raceway recirculating culture system (IPRS). Fish (initial body weight: 6.25 ± 0.32g ) were randomly allotted to six in‐pond raceways (22 × 5 × 2.5 m) stocked at three different stocking densities: low stocking density (LSD, 0.28 kg/m3), medium stocking density (MSD, 0.57kg /m3) and high stocking density (HSD, 0.85 kg /m3). The results indicated that no significant differences were observed in final body weight, weight gain and specific growth rate of GIFT reared at different stocking densities on day 20 (p > 0.05). Fish reared in the HSD group showed poor growth than those reared in the LSD and MSD groups on day 50, but fish reared in the MSD and HSD groups showed poor growth than those reared in the LSD group on day 80. There were no significant differences found in digestive enzyme activities, serum cortisol, lysozyme and superoxide dismutase (SOD) content, hepatic catalase (CAT), total SOD, total antioxidant capacity (T‐AOC) activities and malondialdehyde (MDA) content among fish reared at different densities treatments (p > 0.05). Fish reared in the HSD group exhibited significant higher red blood cell number, haematocrit and glucose (GLU) contents on day 80 (p < 0.05). In brief, under this trial conditions, high stocking densities (0.57 kg/m3) resulted in decrease in growth, and GIFT might have an adaptation capability to crowding stress without a change in antioxidant activity, some physiological and immune parameters.  相似文献   

2.
The influence of three different initial stocking densities (low stocking density [LSD] = 1.5 kg/m2; medium stocking density [MSD] = 3 kg/m2; and high stocking density [HSD] = 6 kg/m2) in flow‐through systems was evaluated on growth and welfare in beluga, Huso huso, and ship sturgeon, Acipenser nudiventris, juveniles for 2 mo. Fish were kept in 18 concrete square tanks (2.0 × 1.0 × 1.2 m3) at 22.3 ± 0.4 C and under a natural photoperiod. In both species, the growth performance in terms of final body weight, weight gain, specific growth rate, and feed intake significantly decreased with increasing stocking density (P < 0.05). In both species, the percent of neutrophils increased after 60 d of trial (P < 0.05). Moreover, hematocrit and white blood cell counts increased after 60 d of trial in ship sturgeon (P < 0.05). Plasma immunoglobulin significantly decreased with increasing stocking density in both species. Plasma insulin‐like growth factor I decreased with increasing stocking density in beluga; however, it was not affected in ship sturgeon. Overall, these results showed that the LSD group in both species demonstrated more homogeneous and higher growth rate than the MSD and HSD groups.  相似文献   

3.
The first step for rearing the newly produced hybrid of Asp, Leuciscus aspius ♀, × Caspian Kutum, Rutilus frisii ♂ (so‐called “Aspikutum”) is to understand essential production requirements such as stocking density. For this purpose, fish (60.4 g) were held at five stocking densities of 2, 4, 6, 8, and 10 kg/m3 in circular concrete tanks (603 L) for a period of 56 d. The culture system was maintained at natural temperature and photoperiod. Fish were fed thrice a day using a commercial diet. At the end of the trial, growth indices, including final mean weight, weight gain, and specific growth rate, were significantly higher at the density of 10 kg/m3 compared with 2 kg/m3 (P< 0.05). Feed intake was significantly greater at 10 kg/m3 compared with 2 kg/m3 (P< 0.05); however, feed efficiency, protein efficiency ratio, protein productive value, and hepatosomatic index remained unchanged among the stocking densities (P> 0.05). Increased stocking density caused significant increase in body protein and fat contents (P< 0.05). Condition factor in higher densities (8 and 10 kg/m3) was significantly higher compared with 2 kg/m3 (P< 0.05). The results indicated that rearing this hybrid in the studied weight range at high density of 10 kg/m3 or more is possible without negative impacts on growth performance and body composition.  相似文献   

4.
5.
Growout production of the camouflage grouper, Epinephelus polyphekadion (Bleeker), in a 10-m3-capacity fibreglass tank culture system was evaluated, using hatchery-produced fingerlings (56-59 g initial weight) at stocking densities of five, 15 and 45 fish m?3. During the first 9 months of a 12-month growout period, the fish were fed twice a day with a moist pellet feed containing 40.9% protein. From month 10 onwards until harvest, the fish were fed moist pellets in the morning and trash fish in the evening at a 1:1 ratio. The final weight of fish at harvest was up to 900 g, with mean weights of 544.6 ± 170.72 g at five fish m?3, 540.2 ± 150.82 g at 15 fish m-?3 and 513.3 ± 134.52 g at 45 fish m?3. The results showed no significant differences (P > 0.05) in growth rate and fish size between the different stocking densities tested. The average daily growth rate ranged from 0.62 to 3.38 g fish?1 day?1, with mean weights of 1.49 ± 0.74 g fish?1 day?1 at five fish m?3 through 0.53 to 2.38 g fish?1 day?1, 1.32 ± 0.57 g fish?1 day?1 at 15 fish m?3 to 0.48-3.32 g fish?1 day?1 and 1.31 g fish?1 day?1 at 45 fish m?3 stocking density. Although up to 100% survival was observed at the lowest stocking density, the survival rate significantly decreased (P < 0.05) with increasing stocking density. The food conversion ratio (FCR) significantly decreased (P <0.05) with increasing stocking densities, showing efficient feed utilization with increasing stocking densities of E. polyphekadion. The FCR averaged 2.1 at a stocking density of 45 fish m?3. The yield in terms of kg fish produced m?3 of water used in the culture system significantly increased (P < 0.001) from five to 45 fish m?3. The yield averaged 17.3 ±0.53 kg m?3 at a stocking density of 45 fish m?3. The present results show that the present tank culture system could sustain more biomass in terms of increasing fish stocking densities. The growth performance of E. polyphekadion observed during this investigation has been reviewed with other grouper species.  相似文献   

6.
This research was conducted to investigate the effect of stocking density on the growth performance and yield of Oreochromis niloticus in cage culture in Lake Kuriftu. The treatments had stocking densities of 50 (50F), 100 (100F), 150 (150F), and 200 (200F) fish per m?3. All treatments were in duplicate. Juveniles with an average weight of 45. 76±0.25 g were stocked in the treatments. The fish were fed a composite mixture of mill sweeping, cotton seed, and Bora food complex at 2% of their body weight twice per day using feeding trays for 150 days in powdered form. The growth performance of O. niloticus was density dependent. The final mean weight of O. niloticus ranged 147.76±0.28–219.71±1.42 g and the mean daily weight gain was 0.69±0.01–1.15±0.02 g day?1. Fish held in cages with lower density were heavier than the ones held at higher densities, and showed higher weight gain and daily weight gain. The most effective stocking density, in terms of growth parameters, was 50 fish m?3. The gross yield (4.5–20.55 kg cage?1) showed a significant difference with increasing stocking density (P<0.05). Moreover, the apparent food conversion ratio (2.48–7.22) was significantly affected by stocking density (P<0.05). However, survival rate was not affected by stocking density (P>0.05). It can be concluded that the most effective stocking densities were at 50 fish m?3 cage for larger size fish demand in a short period and 200 fish m?3 for higher gross production with supplementary feed.  相似文献   

7.
A study to determine the effects of four stocking densities on growth and feed utilization of wild‐caught black sea bass Centropristis striata was conducted in a pilot‐scale recirculating tank system. The outdoor system consisted of 12 insulated fiberglass tanks (dia. = 1.85 m; vol. = 2.17 m3) supported by biological filters, UV sterilizers, and heat pumps. Subadults (N= 525; ×± SD = 249 ± 16.8 g) were stocked at densities of 4.6 fish/m3 (1.18 kg/m3), 16 fish/ m3 (3.91 kg/m3), 25.3 fish/m3 (6.83 kg/m3), and 36 fish/m3 (7.95 kg1m3), with three replicate tanks per treatment. Fish were grown under 35 ppt salinity, 21‐25 C, and under ambient photoperiod conditions. A commercial flounder diet containing 50% protein and 12% lipid was hand‐fed twice daily to satiation for 201 d. Mean (range) total ammonia‐nitrogen, 0.61 (0‐2.1) mg/L, nitrite‐nitrogen, 0.77 (0.04‐3.6) mg/L, and nitrate‐nitrogen 40.1 (0‐306) mg/L were significantly higher (P < 0.0001) in the 25.3 and 36 fish/m3 treatments than in the 4.6 and 16 fish/m3 treatments [0.19 (0.05‐0.5), 0.1 (0.24‐0.63), and 11.9 (1.3‐82.2) mg/L, respectively]. However, there were no significant differences (P > 0.05) in growth (RGR = 196.8‐243.1%; DWG = 2.55‐2.83 g/d; and SGR = 0.55‐0.61%/d), coefficient of variation of body weight (CwtV., = 0.24‐0.25), condition factor (K = 2.2‐2.4), feed consumption (FC = 1.45‐1.65%/d), and feed conversion ratio (FCR = 1.45‐1.52) among stocking densities. Final biomass densities on day 201 reached 3.48, 12.0, 21.1, and 27.2 kg/m3 at stocking densities of 4.6, 16, 25.3, and 36 fish/m3, respectively. Survival (83.8‐99.1%) did not differ among treatments. Apparent net protein retention (ANPR) was significantly higher (P < 0.005) for fish stocked at the lower densities of 4.6 and 16 fish/m3 (22.5‐23.7%) than for those stocked at 25.3 and 36 fish/m3 (21‐20.1%). There were no significant differences (P > 0.05) in apparent net energy retention (ANER = 55.9‐59.1 %) among stocking densities. Final whole body protein (15.3‐16.3%) and lipid (23.1‐26.4%) levels did not differ significantly (P > 0.05) among treatments. The results demonstrated that growth, survival, and feed utilization were not impaired under stocking densities ranging from 4.6‐36 fish/m3 (3.48‐27.2 kg/m3), despite a slight reduction in water quality at the higher densities. In addition, growth variation and final whole body protein and lipid levels were not influenced by these densities. The results suggest that black sea bass are tolerant of crowding and moderate variations in water quality during intensive culture in recirculating tank systems and that higher stocking densities are possible.  相似文献   

8.
The effect of stocking density on growth and size variability in gilthead sea-bream, Sparus aurata (L.), was tested by growing juveniles at densities of 0.35 kgm?3, 1.3 kg m?3 and 3.2 kg m?3. Fish in the highest density group grew 25% slower than fish in the lowest density group. The coefficient of variation of weight (standard deviation/mean) did not change during the experiment. The effect of size variability on growth rate was tested by creating groups with coefficients of variation of weights ranging from 0.11 to 0.32, and growing them at similar density (1.5 kg m?3). No differences in growth rates between groups were found. Only the more heterogeneous group showed a large decrease in the coefficient of variation over time. It was concluded that growth in gilthead sea-bream, although negatively correlated to stocking density, did not seem to be related to intraspecific competition as assessed by changes in size variability.  相似文献   

9.
An energetic method was used to investigate the effects of stocking density and dissolved oxygen (DO) concentration on the growth of juvenile Paralichthys olivaceus. Fish, with initial weights of 14±2.1 g, were exposed to a normal and a high DO of 5.5±0.5 and 14±2 mg L?1, as well as four stocking densities per DO concentration (100, 200, 300 and 400 ind m?2 for the normal DO and 200, 400, 600 and 800 ind m?2 for the high DO). The feed efficiency (FEW) decreased significantly with increasing stocking density and increased significantly with increasing DO concentration. The maximum weight was achieved at 400 ind m?2 under a high DO depending on our rearing conditions. The stocking density and DO concentration change energy ingestion and its allocation for respiration, growth and excretion lost in nitrogen excretion, but do not affect the energy loss through faeces. The results of the body composition of fish indicated that the stocking density and DO concentration had no significant effects on the moisture, lipid content and gross energy, but are affected by the same. Energetic analysis demonstrated that high DO concentrations could alleviate the growth depression caused by high stocking densities, decrease energy loss in respiration and nitrogen excretion and increase the energy proportion allocated to growth.  相似文献   

10.
This study was carried out to investigate the viability of utilizing aquaponic technology in culturing local fish: snakehead Channa striata and water spinach Ipomoea aquatica. Snakehead was raised for 150 days in a floating plastic pond with an area of 3 × 4 × 1.2 m having a capacity volume of ∼14.4 m3. Fish were randomly arranged into two experimental systems at density of ∼0.3 kg fingerlings/m3 e.g. SAQ – snakehead in aquaponics; SC – snakehead in normal system where control ponds were continuously aerated with ∼20% daily exchange of water. Fish were fed commercial feed twice a day. Initial results showed that in aquaponics compared with normal systems the SAQ efficiency exhibited 70% water exchange; five times lower in NH3 level: (0.01–0.03 mg/L vs. 0.05–0.16 mg/L); three times lower in NO2 level: (0.28–0.58 mg/L vs. 0.56–2.59 mg/L). Snakehead production was significantly higher in aquaponics with higher survival ratio of fish: 99.76% vs. 71.40%; ∼3 times higher in fish yield: 366 kg vs. 130 kg. The production of water spinach was also elevated in aquaponics versus normal systems 406.4 kg vs. 188 kg. The total income from snakehead and water spinach in SAQ were 4 times higher than in normal farming systems: 1219.42 $US and 307.04 $US. Based on the results of the current study, it is expected that applying aquaponics utilizing local available materials and species will enhance the sustainability of the overall system and keep the aquaponics lasting and expanding to social life especially on sustainable culturing snakehead Channa striata.  相似文献   

11.
Two consecutive experiments were conducted to study the effects of stocking density on growth, food utilization, production and farming profitability of Nile tilapia (Oreochromis niloticus) fingerlings (initial mean weight: 16.2 ± 0.2 g) fed Azolla, as a main component in diet. In experiment 1, fish were hand‐fed twice daily with three isonitrogenous (28.5% crude protein) and isocaloric (14.5 kJ g−1) diets A30, A35 and A40 containing 30%, 35% and 40%Azolla, respectively, for 90 days. Diets were formulated by mixing Azolla with locally available by‐products. No significant differences were found in growth parameters and production (P>0.05). Total investment cost was significantly higher with A30 (P<0.05), but same profitability values were obtained with all diets (P>0.05). In experiment 2, three stocking densities, 1, 3 and 5 m−2, were assigned to three treatments T1, T2 and T3 respectively. Fish were hand‐fed twice daily with diet A40. The final mean weight (89.53–115.12 g), the mean weight gain (0.81–1.10 g day−1), the specific growth rate (1.90–2.20% day−1) and the apparent food conversion ratio (1.29–1.58) were affected by stocking density, with significant difference (P<0.05) at 5 m−2, compared with the other densities. Stocking density did not affect survival rate (P>0.05). Yield and annual production increased with increasing stocking density, ranging from 7.10 ± 0.90 to 25.01 ± 1.84 kg are−1 and 28.79 ± 3.66 to 101.42 ± 7.48 kg are−1 year−1, respectively, with significant differences between all densities (P<0.05). Higher stocking density resulted in higher gross return and lower cost of fish production, with significant variations (P<0.05). The net return increased with increasing stocking density (P<0.05). However, both densities of 3 and 5 m−2 produced the same profitability values. On the basis of growth values and economic return, it was concluded that Nile tilapia could be raised at a density of 3 fish m−2 with A40 to improve production and generate profit for nutritional security and poverty alleviation in rural areas.  相似文献   

12.
This study tested the feasibility of a low-cost seaweed biofiltration system for pond-based aquaculture through an indoor-integrated fish-seaweed culture experiment using weekly nutrient supply regime and different seaweed stocking densities. The culture experiment was conducted in glass aquaria that were stocked with Gracilariopsis bailiniae at 3 densities (low = 0.5 kg m?2, middle = 2 kg m?2 and high = 3.5 kg m?2) and provided either with effluents from intensive milkfish (Chanos chanos) culture or with effluent-free seawater (control) as nutrient source. Stocking density was used as a factor in optimizing nutrient availability for growth and nutrient removal under such low water exchange conditions. Our results showed that G. bailiniae cultivated in milkfish effluents had higher growth, biomass and nitrogen yields than those cultivated in effluent-free seawater. Among the different stocking densities tested, highest growth rate (1.03 % day?1) was obtained in the middle density. Increasing biomass and nitrogen yields were also obtained at this density until the end of the culture period. Poorer growth rates at low and high stocking densities were attributed to light limitation from phytoplankton and self-shading, respectively. Due to seaweed treatment, average outflow concentration of NH4 + was reduced from half of its pretreated level. This study showed that a weekly effluent supply at 2 kg m?2 seaweed stocking density can sustainably support the growth of G. bailiniae as long as the dissolved nutrients are present at high levels.  相似文献   

13.
The effects of time restricted feeding, possibility of bottomfeeding and stocking density on the growth of Arctic charr(Salvelinus alpinus L.) were examined in fish held at lowtemperature (<2 °C). Fish fed for a restricted time (1 h) hadsignificantly (p < 0.05) lower specific growth rate (0.15 vs0.32% per day) than those fed the same ration over an extendedtime period (12 h). Increasing stocking densities had a positive andsignificant effect (p < 0.05) on growth with SGR increasing from 0.27to 0.52% per day at 2–30 kg m-3. Fish withaccess to feed on the tank floor had a significantly higher (p <0.05) growth rate (0.3 vs 0.13% per day) than those without thepossibility to feed from the bottom. When fish were held underconditions without access to the bottom a doubling of the feed rationdid not result in a significant (p > 0.05) increase in growth rate(0.13 vs 0.12%percnt; per day).  相似文献   

14.
The sutchi catfish, Pangasius sutchi (Fowler 1937) was grown at 10 stocking densities in cages suspended in a river‐fed channel during the summer of 2000. Catfish fingerlings (mean length 9.1–9.7 cm and mean weight 5.9–6.7 g) were stocked at densities of 60, 70, 80, 90, 100, 110, 120, 130, 140 and 150 fish m?3. After 150 days, growth and yield parameters were studied and a simple economic analysis was carried out to calculate profitability. The mean gross yield ranged from 15.6±0.27 to 34.5±0.44 kg m?3 and the net yield ranged from 15.2±0.22 to 33.5±0.36 kg m?3 and showed significant variations (P<0.05). The mean weights of fish at harvest were inversely related to stocking density. Both gross and net yields were significantly different and were directly influenced by stocking density but the specific growth rate, survival rate and feed conversion rate were unaffected. Higher stocking density resulted in higher yield per unit of production cost and lower cost per unit of yield. The net revenue increased positively with increasing stocking density. A density of 150 fish m?3 produced the best production and farm economics among the densities tested in this experiment.  相似文献   

15.
Effects of daily feeding frequency, water temperature, and stocking density on the growth of tiger puffer, Takifugu rubripes, fry were examined to develop effective techniques to produce tiger puffer in a closed recirculation system. Fish of 4, 14, and 180 g in initial body weight were fed commercial pellet diets once to five times a day to apparent satiation each by hand for 8 or 12 wk at 20 C. Daily feeding frequency did not affect the growth of 14‐ and 180‐g‐size fish. However, the daily feed consumption and weight gain of the 4‐g‐size fish fed three and five times daily were significantly higher than those of fish fed once daily (P < 0.05). Fish of 4 and 50 g in initial body weight were reared with the pellet diet at 15–30 C for 8 wk. The weight gain of fish increased with increasing water temperature up to 25 C and decreased drastically at 30 C for both sizes. Similar trends were observed for feed efficiency, although 4‐g fish had highest efficiency at 20 C. Effects of stocking density on growth were examined with fish of 8, 13, and 100 g in initial body weight. Fish were reared with the pellet diet for 8 or 16 wk at 20 C. Fish were placed in floating net cages in the culture tank, and the stocking density was determined based on the total weight of fish and volume of the net cage. Fish of 8 g in body weight grew up to 35–36 g during the 8‐wk rearing period independent of the stocking density of 8, 15, and 31 kg/m3 at the end of rearing. Final biomass per cage reached 32, 60, and 115 kg/m3 for 13‐g‐size fish, and 10, 18, and 35 kg/m3 for 100‐g‐size fish, and the growth of the fish tended to decrease with increasing stocking density for both sizes.  相似文献   

16.
We investigated the effects of the stocking density of white shrimp (Litopenaeus vannamei) on shrimp and tilapia growth and nutrient conversion in an integrated closed recirculating system both with and without Nile tilapia (Oreochromis niloticus). A 2 × 3 factorial design involving tilapia presence/absence and shrimp stocking densities of 40, 80 and 120 m?2 was applied, using a tilapia:shrimp ratio of 0.025. There were no significant interactions between tilapia presence and shrimp stocking density in terms of shrimp growth performance or feed utilization. The presence of tilapia had no effect on the shrimp growth rate, survival rate or total weight gain (%). Shrimp growth declined significantly with increased shrimp stocking density, but the growth of tilapia was not significantly different among the three shrimp densities tested. The conversion of feed nitrogen and phosphorus into total harvested animal biomass was significantly higher in the presence than in the absence of tilapia. The nutrient conversion rate at the lowest shrimp density (40 m?2) was significantly higher than at the highest density tested (120 m?2).  相似文献   

17.
Largemouth bass (LMB), Micropterus salmoides, are a highly desirable food fish especially among Asian populations in large cities throughout North America. The primary production method for food‐size LMB (>500 g) has been outdoor ponds that require two growing seasons (18 mo). Indoor, controlled‐environment production using recirculating aquaculture system (RAS) technologies could potentially reduce the growout period by maintaining ideal temperatures year‐round. Researchers conducted a 26‐wk study to evaluate optimal stocking densities for growout of second‐year LMB to food‐fish size in an indoor RAS. LMB fingerlings (112.0 ± 38.0 g) were randomly stocked into nine 900‐L tanks to achieve densities of 30, 60, or 120 fish/m3 with three replicate tanks per density. The RAS consisted of a 3000‐L sump, ¼ hp pump, bead filter for solids removal, mixed‐moving‐bed biofilter for nitrification, and a 400‐watt ultraviolet light for sterilization. Fish were fed a commercially available floating diet (45% protein and 16% lipid) once daily to apparent satiation. At harvest, all fish were counted, individually weighed, and measured. Total biomass densities significantly increased (P ≤ 0.05) with stocking rate achieving 6.2, 13.2, and 22.9 kg/m3 for fish stocked at 20, 60, and 120 fish/m3, respectively. The stocking densities evaluated had no significant impact (P > 0.05) on survival, average harvest weight, or feed conversion ratio which averaged 92.9 ± 5.8%, 294.5 ± 21.1 g, and 1.8 ± 0.3, respectively. After approximately 6 mo of culture, LMB did not attain target weights of >500 g. Observed competition among fish likely resulted in large size variability and overall poor growth compared to second‐year growth in ponds. Additional research is needed to better assess the suitability of LMB for culture in RAS.  相似文献   

18.
ABSTRACT

Fish cage culture is an intensive, continuous-flow fish farming system, allowing intensive exploitation of water bodies with relatively low capital investment. This study aimed to determine the production function of Nile tilapia, Oreochromis niloticus, in cages; the profit-maximizing biomass at 300–400 and 500–600 fish per m3 for cages of different volumes; and the influence of water body conditions in fish performance. Feed intake, survival rate, and water temperature were monitored daily; dissolved oxygen, pH, and transparency of water were monitored each 15 days. Caged tilapia were fed daily on commercial, floating pellets (32% crude protein) at 0900, 1300, and 1700, and feeding rate was adjusted based on weight gain and survival rate. Data were analyzed statistically by ANOVA (P = 0.05) and regression analysis; the Mitscherlich function was chosen to represent the production function. Carrying capacity of both stocking densities reached 200 kg/m3 and no differences were found (P > 0.05) regarding accumulated biomass and individual average weight over time. The larger stocking density yielded larger accumulated biomass and had better feeding efficiency and no differences between individual average weights of fish at both densities were observed (P > 0.05). Profit-maximizing biomass at 500–600 fish/m3 was 145 kg/m3 and at 300–400 fish/m3 was 121 kg/m3. Cage farming of Nile tilapia at 500–600 fish/m3, individual average weight 283 g, presented many advantages: optimization of space and production time, better feed efficiency, higher fish production per unit volume of cages, and increased profitability.  相似文献   

19.
Growth and survival of hatchery‐bred Asian catfish, Clarias macrocephalus (Günther), fry reared at different stocking densities in net cages suspended in tanks and ponds were measured. The stocking densities used were 285, 571 and 1143 fry m?3 in tanks and 114, 228 and 457 fry m?3 in ponds. Fish were fed a formulated diet throughout the 28‐day rearing period. Generally, fish reared in cages in ponds grew faster, with a specific growth rate (SGR) range of 10.3–14.6% day?1, than those in cages suspended in tanks (SGR range 9–11.3% day?1). This could be attributed to the presence of natural zooplankton (copepods and cladocerans) in the pond throughout the culture period, which served as additional food sources for catfish juveniles. In both scenarios, the fish reared at lower densities had significantly higher SGR than fish reared at higher densities. In the pond, the SGR of fish held at 228 and 457 m?3 were similar to each other but were significantly lower than those of fish held at 114 m?3. The zooplankton in ponds consisted mostly of copepods and cladocerans, in contrast to tanks, in which rotifers were more predominant. Per cent survival ranged from 85% to 89% in tanks and from 78% to 87% in ponds and did not differ significantly among stocking densities and between rearing systems. In conclusion, catfish nursery in cages suspended in tanks and ponds is density dependent. Catfish fry reared at 285 m?3 in tanks and at 114 m?3 in ponds had significantly faster growth rates than fish reared at higher densities. However, the desired fingerling size of 3–4 cm total length for stocking in grow‐out culture can still be attained at stocking densities of 457 m?3 in nursery pond and 571 m?3 in tanks.  相似文献   

20.
Walleye, Stizostedion vitreum, fry were raised at densities of 20,30 and 40/m3 in ponds initially fertilized with alfalfa and yeast and supplementally fertilized with liquid inorganic fertilizers. Liquid fertilizers were added weekly to maintain N and P concentrations of 600 and 30 ug/L, respectively. Fish growth was not affected by stocking rate, but survival was significantly (P < 0.05) reduced in ponds stocked at the two higher rates. The fertilization procedure we used did not provide a sufficient forage base to support more that 20 walleye/m3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号