首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect on growth and body composition of various dietary additives with putative growth or health‐enhancing properties were determined in juvenile olive flounder (25 g initial weight). Nine experimental diets were prepared to contain one of the following additives: control (Con) with no additive, Opuntia ficus‐indica ver. saboten (OF), propolis (PP), lactic acid bacteria (LA), γ‐poly‐glutamic acid (PG), onion extract (OE), organic sulfur (OS), Biostone® (BS), and fig extract (FE). Fishmeal, dehulled soybean meal, and corn gluten were used as the protein source of the experimental diets. Wheat flour and soybean oil were used as the carbohydrate and lipid sources, respectively. Dietary additives were included in each experimental diet at 1% at the expense of wheat flour except for the FE (aqueous), which was substituted at 1% of the amount of water added to the diet. Fish were hand‐fed to satiation twice a day for 6 d/wk for 6 wk. Weight gain of fish fed the OE diet was higher than that of fish fed with the PP diet. Chemical composition of fish was not different among the experimental diets. OE was the most effective dietary additive to improve performance of olive flounder among additives used in this study.  相似文献   

2.
The study was conducted to investigate the effects of dietary Chlorella powder (C) supplementation on growth performance, blood characteristics, and whole-body composition in juvenile Japanese flounder Paralichthys olivaceus . Four experimental diets were supplemented with C at 0, 1, 2 and 4% (C0, C1, C2, and C4) on a dry-weight basis. Three replicate groups of fish averaging 1.13 ± 0.02 g (Mean ± SD) were randomly distributed in each aquarium and fed one of four experimental diets for 12 wk. After 12 wk of the feeding trial, fish fed C2 diet had higher weight gain (WG), feed efficiency (FE), and protein efficiency ratio (PER) than did fish fed C0 and C1 diets ( P 0.05); however, there was no significant difference among fish fed C1 and C4 diets, and among fish fed C2 and C4 diets ( P > 0.05). Fish fed C2 and C4 diets had a lower serum cholesterol level than did fish fed C0 and C1 diets ( P 0.05). Fish fed C2 and C4 diets had a lower body fat than did fish fed C0 ( P 0.05). These results indicate that dietary supplementation of 2% Chlorella powder in the commercial diets could improve growth, feed utilization, serum cholesterol level, and whole-body fat contents in juvenile Japanese flounder.  相似文献   

3.
ABSTRACT

The present study was conducted toestimate the optimum dietary supplementation level of Chlorella powder as a feed additive to optimize growth of juvenile olive flounder, Paralichthys olivaceus. Four experimental diets supplemented with Chlorella powder (CHP) at 0, 1, 2 and 4% (CHP0, CHP1, CHP2, and CHP4, respectively) of diet as a dry-matter (DM) basis were prepared. Three replicate groups of fish averaging 1.1±0.02 g were fed one of the four experimental diets for 12 weeks. After the feeding trial, fish fed the CHP2 diet had a higher (P < 0.05) weight gain (819%) than did fish fed CHP0 (707%) and CHP1(712%); however, there was no significant difference between fish fed CHP2 (8197%) and CHP4 (7559%) as among fish fed CHP0, CHP1, and CHP4 (P > 0.05). Fish fed CHP2 had a higher (P < 0.05) feed efficiency (134%) than did fish fed CHP0 (123%); however, there was no significant difference (P > 0.05) among fish fed CHP0 (123%), CHP1 (125%), and CHP4 (125%) as among fish fed CHP1 (125%), CHP2 (134%), and CHP4 (125%). Fish fed CHP2 and CHP4 had a lower (P < 0.05) serum glucose level (average 32.9 mg/dL) than did fish fed CHP0 and CHP1 (average 34.8 mg/dL). Fish fed CHP1 and CHP2 had a lower (P < 0.05) serum glutamic oxaloacetic transaminase (GOT) level than did fish fed CHP0 and CHP4. Glutamic pyruvic transaminase (GPT) levels significantly (P < 0.05) deceased as dietary CHP increased. Fish fed CHP2 and CHP4 had a less (P < 0.05) whole-body fat than did fish fed CHP0. These results indicate that the optimum dietary supplementation level of Chlorella powder as a feed additive in juvenile olive flounder could be approximately 2% of diet.  相似文献   

4.
Critical swimming speed (Ucrit) of juvenile Japanese flounder Paralichthys olivaceus with 12.5-cm body length was determined to be 1.8-body lengthkec. A feeding trial was conducted to investigate the effects of water velocity on growth and other nutritional parameters of juvenile flounder (initial mean body weight: 5.7 g/fish), which is a sedentary species. The fish were raised in three water velocities, < 0.3 body length/sec (control), 0.9 body length/sec (slow) and 2.1 body length/sec (moderate), for 8 wk. Over the course of the feeding trial, the weight gain of the control, slow and moderate groups of fish were. 634%. 671% and 564%. respectively (significant between slow and moderate groups). A second order polynomial suggested that the optimum water velocity occurred at about 1.0 body length/sec. The feed efficiency of the moderate group (1.48) was significantly lower than those of the control (1.56) and slow (1.56) groups, while there were no significant differences in feed intake (1.72–1.75% of wet biomass) among the treatments. Water velocity did not affect the proximate composition of the whole body; however, rearing the fish at the moderate water velocity did slightly but significantly reduce protein retention. Lipid content of fin muscles was significantly different among the treatments: control (14.9%), slow (17.6%) and moderate groups (11.6%). Unlike salmonids, water current does not seem effective for improving growth and feed efficiency in juvenile Japanese flounder.  相似文献   

5.
This study evaluated the effects of dietary fermented tuna by‐product meal (FTBM) in juvenile olive flounder, Paralichthys olivaceus. Five diets were formulated to replace fishmeal (FM) with FTBM at 0% (FTBM0), 12.5% (FTBM12.5), 25.0% (FTBM25), 37.5% (FTBM37.5), or 50% (FTBM50). After 8 wk, weight gain, specific growth rate, and feed efficiency of fish fed FTBM0 and FTBM12.5 diets were significantly higher than fish fed the other diets (P < 0.05). Also, mean cumulative survival rates (%) of fish fed the FTBM0 and FTBM12.5 diets were significantly higher than those fed FTBM50 diet at Day 9 postchallenge with Edwardsiella tarda (P < 0.05). Protein efficiency ratio of fish fed FTBM0 and FTBM12.5 diets was significantly higher (P < 0.05) than fish fed diets FTBM37.5 and FTBM50. Broken‐line regression analysis of weight gain showed an optimal FM replacement level of 10.65% with FTBM. Therefore, the optimal dietary inclusion of FTBM in juvenile olive flounder diets could be greater than 10.65% but less than 12.5% without any adverse physiological effects on fish health.  相似文献   

6.
Abstract.— The present study was conducted to investigate the effects of dietary supplementation of β‐1,3 glucan and a laboratory developed feed stimulant, BAISM, as feed additives for juvenile olive flounder, Paralichthys olivaceus. Eight experimental diets were formulated to be isonitrogenous and isocaloric and to contain 50.0% crude protein and 16.4 kJ of available energy/g with or without dietary β‐1,3 glucan and BAISM supplementation. β‐1,3 glucan (G) and BAISM (B) were provided at 0% in the control diet (G0B0) and at 0.05% G + 0.45% B (G0.05B0.45), 0.05% G + 0.95% B (G0.05B0.95), 0.1% G + 0.90% B (G0.1B0.9), 0.10% G + 1.90% B (G0.1B1.9), 0.15% G + 1.35% B (G0.15B1.35), 0.15% G + 2.85% B (G0.15B2.85), and 0.30% G + 2.70% B (G0.3B2.7) in experimental diets. After the feeding trial, fish fed G0.1B0.9, G0.1B1.9, and G0.15B1.35 diets had higher percent weight gain (WG), feed efficiency ratio (FER), specific growth rate (SGR), protein efficiency ratio (PER), and condition factor (CF) than those fed G0B0, G0.05B0.45, G0.05B0.95, G0.15B2.85, and G0.3B2.7 diets (P < 0.05); however, there was no significant differences among fish fed G0.1B0.9, G0.1B1.9, and G0.15B1.35 diets. Fish fed G0.1B0.9 and G0.1B1.9 diets had higher chemiluminescent responses (CL) than those fed the other diets (P < 0.05). Lysozyme activity of fish fed G0.1B0.9 diet was significantly higher than that of fish fed the other diets (P < 0.05). These results indicated that the optimum dietary supplementation level of β‐1,3 glucan and BAISM could be approximately 0.10% β‐1,3 glucan + 0.90% BAISM (G0.1B0.9) of diet based on WG, FER, SGR, PER, CF, CL, and lysozyme activity in juvenile olive flounder, P. olivaceus.  相似文献   

7.
The present study was conducted to determine the safe and toxic levels of dietary copper in juvenile olive flounder, Paralichthys olivaceus, fed Mintrex® copper, a chelated dietary copper source. Fish averaging 3.8 ± 0.13 g (mean ± SD) were fed 1 of 10 diets (n = 3) containing 7 (Cu0), 10.4 (CuM5), 15.8 (CuM10), 24.9 (CuM20), 43.4 (CuM40), 82.1 (CuM80), 158 (CuM160), 308 (CuM320), 658 (CuM640), and 1267 (CuM1280) mg Cu/kg diet. At the end of 12 wk of feeding trial, weight gain (WG), specific growth rate, and protein efficiency ratio of fish fed CuM5 and CuM10 diets were significantly higher than those fed CuM80, CuM160, CuM320, CuM640, and CuM1280 diets (P < 0.05). Survival of fish fed Cu0, CuM5, CuM10, CuM20, and CuM40 diets was significantly higher than those of fish fed CuM320, CuM640, and CuM1280 diets. Whole‐body lipid content of fish decreased while whole‐body ash increased with dietary copper levels. Whole‐body and tissue copper concentrations increased with dietary copper levels. Although ANOVA test suggested that the toxic level of dietary Cu in juvenile olive flounder, P. olivaceus, could be 320 mg/kg diet, broken‐line analysis of WG indicated a level of 286 mg/kg diet when Mintrex®Cu is used as the dietary copper source.  相似文献   

8.
A feeding trial of three protein levels (30, 40 and 50%) and two energy levels (300 and 400 kcal/100-g diet) factorial design with three replications was carried out to investigate the proper dietary protein and energy levels for the growth of juvenile flounder Paralichthys olivaceus . Weight gain of fish tended to improve with increasing dietary protein level. Weight gain of fish fed either the 40% or 50% protein diet with 300 kcal/100-g diet was significantly higher ( P < 0.05) than with 400 kcal/100-g diet. The best weight gain was obtained from fish fed the 50% protein diet with 300 kcal/100-g diet. Feed efficiency tended to improve with increasing dietary protein level. However, dietary energy level had no significant effect on feed efficiency of fish fed the 30% or 50% protein diet, but that of fish fed the 40% protein diet with 300 kcal/100-g diet was significantly higher than with 400 kcal/100-g diet. Protein retention tended to increase as dietary protein level increased and energy level decreased. Lipid content of fish fed the diet containing 400 kcal/100-g diet was significantly higher than that of fish fed the diet containing 300 kcal/100-g diet at all protein levels. Fatty acid compositions such as linoleic acid, EPA (20:5n-3) and DHA (22:6n-3) offish were directly affected by dietary lipid (squid liver oil and/or soybean oil) used for energy source. Based on the above results, it can be concluded that the proper dietary protein and energy levels for the growth of juvenile flounder are 50% and 300 kcal/100-g diet, respectively.  相似文献   

9.
An 11‐wk feeding trial was conducted to evaluate three different protein hydrolysates as feed ingredients in high‐plant‐protein diets for juvenile olive flounder. Five experimental diets were fed to juvenile olive flounder to examine the effect of three different protein hydrolysates on growth performance, innate immunity, and disease resistance against bacterial infection. A basal fishmeal (FM)‐based diet was regarded as a high‐FM diet (HFM) and a diet containing soy protein concentrate (SPC) as a substitute for 50% FM protein was considered as a low‐FM diet (LFM). Three other diets contained three different sources of protein hydrolysates, including shrimp, tilapia, and krill hydrolysates (designated as SH, TH, and KH), replacing 12% of FM protein. All diets were formulated to be isonitrogenous and isocaloric. Triplicate groups of fish (15.1 ± 0.1 g) were handfed one of the diets to apparent satiation twice daily for 11 wk and subsequently challenged against Edwardsiella tarda. Growth performance and feed utilization of fish fed hydrolysate‐supplemented diets were significantly improved compared to those of fish fed the LFM diet. Dietary inclusion of the protein hydrolysates significantly enhanced apparent digestibility of dry matter and protein of the diets. In the proximal intestine, histological alterations were observed in the fish fed the LFM diet. The fish fed the hydrolysate diets showed significantly longer mucosal fold and enterocytes and greater number of goblet cells compared to fish fed the LFM diet. Respiratory burst activity was significantly higher in fish fed the TH and KH diets than fish fed the LFM diet. Significantly higher immunoglobulin levels were found in fish fed SH and KH diets compared to those of fish fed the LFM diet. Dietary inclusion of the protein hydrolysates in SPC‐based diets exhibited the highest lysozyme activity. Significantly higher superoxide activity was observed in groups of fish fed the KH diet. Fish offered the protein hydrolysates were more resistant to bacterial infection caused by E. tarda. The results of this study suggest that the tested protein hydrolysates can be used as potential dietary supplements to improve growth performance and health status of juvenile olive flounder when they were fed a LFM diet.  相似文献   

10.
11.
不同摄食水平对牙鲆幼鱼生长及能量收支的影响   总被引:1,自引:0,他引:1  
在水温(20.0±0.5)℃,摄食水平分别为体质量的1.0%、1.5%及饱食条件下,进行牙鲆幼鱼[体质量为(35.08±0.05)g]的生长和能量收支的研究。试验结果表明,随着摄食水平的增加,鱼体干物质、蛋白质和能量表观消化率随摄食水平的增加而增加;湿质量特定生长率随摄食水平的增加呈线性上升,干物质、蛋白质和能量特定生长率呈对数增加;饲料湿质量转化效率不受摄食水平的影响,饲料干物质、蛋白质和能量转化效率随摄食水平的增加先升后降。粪能占摄食能的比例随摄食水平的增加而显著降低,生长能占摄食能的比例随摄食水平的增加先升后降,代谢能占摄食能的比例变化与生长能占摄食能的比例变化相反。各个摄食水平下能量收支式为:1.0%:100.00C=28.99G+2.34F+6.03U+62.64R;1.5%:100.00C=37.19G+1.94F+5.27U+55.60R;饱食:100.00C=30.73G+1.36F+5.16U+62.75R。  相似文献   

12.
Soy peptide (SP), a soy protein enzymatic hydrolysate, contains bioactive substances that could be utilized as an immune‐stimulating feed ingredient. The experiment evaluated the efficacy of dietary SP on promoting growth, and enhancing tolerance and survival to heat stress in juvenile Japanese flounder, Paralichthys olivaceus. Four diets were incorporated with different levels of SP (0, 2, 5, and 10%) and a 6‐wk feeding trial ensued. Following the feeding trial, the experimental groups were subjected to heat stress to measure survival rate and heat shock protein 70s (HSP70s) in gill, liver, and skin. Fish fed diets with SP inclusion showed considerable decrease in percent weight gain. Significantly higher lethal time values to 50% mortality (LT50) value were recorded for fish fed 10% SP. Moreover, LT50 values of fish fed 2 and 5% SP were significantly higher compared with fish fed control diet. HSP70s produced in all the tissues were significantly highest in fish fed 10% SP. HSP70s values were significantly higher in fish fed 2 and 5% SP compared with fish fed control diet. A significant reduction in HSP70s among all groups during recovery period was also observed. These results suggest that SP can be used to enhance the immune response and survival of P. olivaceus under heat stress.  相似文献   

13.
This study was carried out to investigate the effects of dietary inclusion of defatted Chlorella on growth performance, body composition, blood biochemistry, and antioxidant enzyme activity in olive flounder. Four isonitrogenous (51% crude protein) diets were formulated to contain 0 (control), 5, 10, or 15% Chlorella meal (CM) (designated as Con, CM5, CM10, and CM15, respectively) and fed to triplicate groups of fish (104.4 g) to apparent satiation twice daily for 8 wk. At the end of the feeding trial, significant enhancement (P < 0.05) in growth performance was obtained at over 10% CM compared to fish fed the control diet. No significant changes in dorsal muscle and liver proximate composition were found following CM administration. The groups fed CM‐containing diets revealed significantly lower plasma cholesterol concentration than those fed the control diet. Dietary CM affected antioxidant enzyme activity; significantly higher plasma catalase activity was found in fish fed ≥10% CM and total antioxidant capacity increased in CM5 and CM10 groups compared to the control. However, plasma glutathione peroxidase and superoxide dismutase activities were not significantly influenced by dietary CM. Also, significant enhancement in 1,1‐diphenyl‐2‐picryl‐hydrazyl radical scavenging activity was found in dorsal muscle of fish fed CM15 diet compared to the control. The findings in this study showed that dietary inclusion of 10–15% CM can enhance growth performance and affect antioxidant enzyme activity and lipid metabolism in olive flounder.  相似文献   

14.
The olive flounder Paralichthys olivaceus is one of the most commercially important fish species in Korea. In order to formulate better diets for cultured olive flounder we evaluated the optimum dietary protein requirements for larval, fry and juvenile olive flounder, and the optimum dietary protein to energy ratio for juvenile olive flounder. Results of four separate experiments suggested that the optimum dietary protein requirements were 60% in larvae (0.3 g), 46.4–51.2% in 4.1-g juvenile, and 40–44% in 13.3 g growing olive flounder. The optimum dietary protein to energy ratio based on weight gain, feed efficiency, specific growth rate, and protein retention efficiency was 27–28 mg protein/kJ 2 energy (35 and 45% CP for diets containing 12.5 and 16.7 kJ energylg diet, respectively).  相似文献   

15.
16.
The effects of passive integrated transponder (PIT) tagging on the growth and survival of olive flounder, Paralichthys olivaceus (initial average mass ± SD: 502 g ± 14.3), were examined for 8 mo. Tag readability in relation to implant position (eyed‐side muscle, blind‐side muscle, and peritoneal cavity) was also documented. The overall weight gain of fish tagged in the eyed‐side muscle (444 g) was significantly less than control and tagged fish in the blind‐side muscle and peritoneal cavity, which showed 470–488 g of weight gain (KW, P < 0.001, N= 78, df = 3). Specific growth rates (%/d) did not differ significantly (P > 0.05) among control, blind‐side muscle, and peritoneal cavity groups. No significant (P > 0.05) difference in survival rate was found between treatment and control. The readability of PIT tags in all implanted positions was 100%. The average time spent tagging at each position was less than 30 sec. These results show that PIT tagging of olive flounder weighing approximately 500 g in the blind‐side muscle and peritoneal cavity is feasible and reliable with fewer negative effects on growth than observed on the eyed‐side muscle site trial.  相似文献   

17.
Hybrid and parental backcross experiments were performed using olive flounder, Paralichthys olivaceus, summer flounder, Paralichthys dentatus, and their female F1 hybrids to examine hybrid fitness in the backcross. Fertilization rate, hatching rate, and combined fitness measure (CFM, product of fertilization rate and hatching rate) were detected and the results showed that the CFM of hybrid and backcross generations was reduced significantly compared to pure olive flounder crosses. Genomic inheritance from parents to backcross progeny was also detected by amplified fragment length polymorphism (AFLP). Almost all AFLP bands observed in parents were presented in backcross progeny (backcross1, 218/227; backcross2, 265/282), although 9 and 17 parental bands were missing in backcross1 and backcross2, respectively. Novel bands (absent in parents) also occurred in progeny at the frequencies of 5.63% (13/231) in backcross1 and 3.28% (9/274) in backcross2. Additionally, 27.40 and 31.18% of AFLP markers deviated from expected Mendelian ratio in backcross1 and backcross2, respectively. The present study suggests that genetic incompatibilities may exist between olive flounder and summer flounder. Furthermore, possible implications of segregation distortion for reduced hybrid fitness in backcross generations are discussed.  相似文献   

18.
The effect of different solvent‐based (methanol, ethanol, and aqueous) extracts of Liriope platyphylla at 0, 0.1, 1.0, and 2.0 mg doses on hematology and innate immune response in olive flounder, Paralichthys olivaceus, against Flexibacter maritimus is reported. The red blood cells and white blood cells significantly increased with ethanol and aqueous extracts with any dose against F. maritimus while the hematocrit level significantly increased with methanol or ethanol extracts. However, the hemoglobin content significantly increased irrespective of the doses and type of extracts, whereas the mean corpuscular volume, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration significantly decreased. The lymphocytes and monocytes significantly increased in all doses and extracts, whereas neutrophils increased in ethanol or aqueous extracts. However, the thrombocytes level neither the doses nor extracts did not significant changes to the control against pathogen. Total protein and globulin levels significantly increased with all the doses of ethanol extract while does not significant change in methanol extract. The phagocytic activity and complement activity were significantly enhanced with any dose of ethanol extract while with aqueous extract it was only at 1.0 and 2.0 mg doses. At all the doses of each extract significantly enhanced the leucocytes activity against F. maritimus. The results confirm that the ethanolic and aqueous extracts of L. platyphylla stimulate the immune response against F. maritimus in P. olivaceus.  相似文献   

19.
This study was performed to determine compensatory growth of juvenile olive flounder fed the extruded pellet (EP) with different feeding regimes. Seven treatments with triplicates of different feeding regimes were prepared; α fish was daily fed for 6 d a week throughout 8 wk (8WF); α fish was starved for 1 wk and then fed for 3 wk twice [(1WS + 3WF) × 2]; β fish was starved for 2 wk and then fed for 6 wk (2WS + 6WF); χ fish was starved for 5 d and then fed for 9 d four times [(5DS + 9DF) × 4]; δ fish was starved for 10 d and then fed for 18 d twice [(10DS + 18DF) × 2]; δ fish was starved for 2 d, fed for 5 d, starved for 3 d, and then fed for 4 d four times [(2DS + 5DF + 3DS + 4DF) × 4]; and φ fish was starved for 4 d, fed for 10 d, starved for 6 d, and then fed for 8 d twice [(4DS + 10DF + 6DS + 8DF) × 2], respectively. Total feeding day was all same, 36 d except for control group (48 d). Weight gain of flounder in the 8WF treatment was higher than that of fish in other treatments. And weight gain of flounder in the 2WS + 6WF treatment was higher than that of fish in the (5DS + 9DF) × 4 and (4DS + 10DF + 6DS + 8DF) × 2 treatments. Feed consumption of flounder in the 8WF treatment was higher than that of fish experienced feed deprivation. Feed efficiency ratio (FER), protein efficiency ratio (PER), and protein retention (PR) were not significantly different among treatments. Chemical composition of the whole body of fish with and without liver, except for moisture content of liver, was not different among treatments. T3 level of fish in the 8WF and 2WS + 6WF treatments was higher than that of fish in the (5DS + 9DF) × 4 treatment. It can be concluded that juvenile olive flounder achieved better compensatory growth at 6‐wk refeeding after 2‐wk feed deprivation compared with that of fish with different feeding regimes. And T3 level of fish seemed to partially play an important role in achieving compensatory growth.  相似文献   

20.
A 10‐wk feeding experiment was conducted to evaluate the potential use of fermented soybean curd residues (FSCR) as an energy source in diets for juvenile olive flounder, Paralichthys olivaceus. Five isonitrogenous and isoenergetic diets were formulated to contain dry soybean curd residues to replace wheat meal (WM) at the levels of 0, 25, 50, 75, and 100% (FSCR0, FSCR25, FSCR50, FSCR75, and FSCR100, respectively). Fish averaging 6.00 ± 0.07 g (mean ± SD) were randomly distributed into 15 aquaria as groups of 15 fish and fed the experimental diets in triplicate at a rate of 4–5% of wet body weight per day twice daily on dry matter basis. At the conclusion of the feeding trial, weight gain (WG) and specific growth rate (SGR) of fish fed diet FSCR25 were significantly higher than those of fish fed diets FSCR50, FSCR75, and FSCR100 (P < 0.05); however, there were no significant differences in WG and SGR among fish fed diets FSCR0 and FSCR25 and among those fed diets FSCR0 and FSCR50. Feed efficiency and protein efficiency ratio of olive flounder fed diet FSCR25 were significantly higher than those of fish fed diets FSCR50, FSCR75, and FSCR100 (P < 0.05); however, there were no significant differences in these parameters among fish fed diets FSCR0 and FSCR25 and among those fed diets FSCR0, FSCR50, FSCR75, and FSCR100. Hematological characteristics, condition factor, hepatosomatic index, and survival rate of fish fed FSCR0 were not significantly different from those of fish fed the other diets. These results indicated that FSCR could replace up to 50% WM as an energy source in juvenile olive flounder diets based on ANOVA test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号