首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
The genetics and biochemistry of oxidative resistance to diazinon were investigated in a diazinon-resistant strain of the house fly, Musca domestica L. The resistant strain was crossed with a multimarker susceptible strain and substrains containing portions of the resistant strain genome were prepared. Resistance, microsomal oxidase, and cytochrome P-450 spectral characteristics were then compared in the different strains. The major gene for resistance to diazinon is semidominant and is located on chromosome II, 13 crossing over units from the recessive mutant stubby wing. Additional resistance genes occur on chromosome II and on other chromosomes as well. Resistance to diazinon was introduced into a susceptible mutant-marked strain via genetic crossing over. Increases in parathion oxidase, total and P-450-specific N- and O-demethylase activity, and resistant strain type I binding spectrum were introduced along with resistance, indicating genes controlling these parameters and resistance are either identical or closely linked. No increase in activity of cytochrome P-450 itself was introduced into the mutant strain. Additional genes controlling the amount of cytochrome P-450 and several spectral changes characteristic of the resistant strains are apparently controlled by genes located at different loci on chromosome II. Resistance factors on other chromosomes are also present, but were not characterized.  相似文献   

3.
The foliar wheat disease septoria tritici blotch can cause significant yield losses. A source of resistance has been mapped on chromosome 7D of spelt wheat, Triticum aestivum L. subsp. spelta (L.) Thell. The microsatellite-based genetic map was constructed from a set of 87 single-chromosome recombinant doubled-haploid lines bred from the cross between the landrace ‘Chinese Spring’ and a ‘Chinese Spring’-based line carrying chromosome 7D from spelt wheat. Two regions of the chromosome were associated with isolate-specific QTL expressed one at the seedling and another at the adult plant stage. The seedling resistance locus QStb.ipk-7D1 was found in the centromeric region of chromosome 7D, which corresponds to the location of the major resistance genes Stb4 originating from bread wheat cultivar ‘Tadinia’ and Stb5 originating from Triticum tauschii. The adult resistance locus QStb.ipk-7D2 was found on the short arm of chromosome 7D in a similar position to the locus Lr34/Yr18 known to be effective against multiple pathogens. Composite interval mapping confirmed QStb.ipk-7D1 and QStb.ipk-7D2 to be two distinct loci.  相似文献   

4.
To further the understanding of the natural genetic diversity for disease resistance to powdery mildew ( Erysiphe cichoracearum ) in Arabidopsis thaliana , quantitative trait loci analysis was undertaken on recombinant inbred lines derived from a cross between the resistant accession Warschau-1 and the susceptible Columbia-0. Powdery mildew grew less well on Warschau-1, but the resistance was not associated with a specific block in the infection sequence. Two potential powdery mildew disease-resistance loci were identified and mapped, one with a major effect and one with a minor effect on disease resistance. The two loci acted in an additive manner to confer resistance, and together they explained 65% of the variation in resistance. In addition, the major powdery mildew disease-resistance locus was genetically mapped to the bottom of chromosome III, a region containing the powdery mildew resistance loci RPW7 , RPW8 and RPW10 . Unlike resistance mediated by the RPW8 locus in the accession Moscow-1, resistance in Warschau-1 was not correlated with the hypersensitive response, highlighting the influence of genetic background or environmental factors on the expression of disease resistance. Together with the powdery mildew resistance loci described in other studies, these results suggest that A. thaliana is a useful source of natural powdery mildew disease resistance, which potentially can be utilized in fundamental studies and as a tool for applied studies.  相似文献   

5.
 粳稻品种东农415自育成以来一直以其早熟、抗病、高产特性而著称,在黑龙江省稻瘟病高发区种植20多年均表现高抗稻瘟病。本研究利用158个采集于黑龙江省不同稻区的稻瘟病菌株对东农415进行接种鉴定,结果表明东农415对黑龙江省稻瘟病菌株有很强的抗性,抗谱高达89.2%。以东农415与丽江新团黑谷(LTH)杂交衍生的F1和F2群体为遗传分析试验材料,通过接种鉴定,发现东农415对稻瘟病菌株F-10-11的抗性由一个显性基因控制。进一步采用分子标记结合隐性群体分离分析法,以对菌株F-10-11极端感病的99个F2单株为作图群体,将东农415的抗病基因定位在第2染色体,距离基因两侧标记RM5300和RM213的遗传距离分别为7.6和3.0 cM,暂命名为Pi-dn(t)。将Pi-dn(t)位点映射到水稻参考基因组图谱上,在抗病位点基因组区段内发现3个编码基因Os02g56010、Os02g55540和Os02g56400具有抗病基因结构域,可作为Pi-dn(t)的候选基因。  相似文献   

6.
Asian soybean rust (ASR), caused by Phakopsora pachyrhizi, is one of the most serious diseases of soybean. The soybean landraces PI 594767A, PI 587905 and PI 416764 previously showed high levels of resistance to a wide range of ASR fungus, while the genetic basis of the resistance has yet to be understood. In this study, the ASR resistance loci were mapped using three independent mapping populations, POP‐1, POP‐2 and POP‐3 derived from crosses BRS184 × PI 594767A, BRS184 ×  PI 587905 and BRS184 × PI 416764, respectively. In each population, the resistance to ASR segregated as a single gene, but the resistance was dominant in PI 594767A and PI 587905 and incompletely dominant in PI 416764. The resistance genes from both PI 594767A and PI 587905 were mapped on chromosome 18 corresponding to the same location as known resistance locus Rpp1. Quantitative trait locus (QTL) analysis performed on POP‐3 identified the putative ASR resistance locus in PI 416764 on the defined region of chromosome 6 where Rpp3 was located. The QTLs detected by the mapping explained about 67–72% of the phenotypic variation in POP‐3. Cluster analysis based on disease reactions to 64 ASR populations demonstrated the presence of at least two types of functional resistant Rpp1 alleles: strong and weak allele(s), e.g. soybean accession PI 594767A and PI 587905 carry the strong resistant Rpp1 allele(s). Introducing or pyramiding strong Rpp1 allele(s) in elite soybean cultivars is expected to be useful against the South American rust population.  相似文献   

7.
A genetic linkage map of the fungal pathogen Phaeosphaeria nodorum, the causal agent of stagonospora nodorum blotch disease of wheat, was created. A total of 152 ascospore-derived progeny from a single pseudothecium, which resulted from a cross of two opposite mating type isolates, Sn37-1 and S-81-B13B, was analysed with AFLP, RAPD, ISSR, expressed sequence tag (EST)-derived microsatellite primers and sequence tagged site markers developed from specific genes. The genetic linkage map consisted of 276 molecular markers, and included markers developed from five genes [Glyceraldehyde 3-phosphate dehydrogenase (gpd), malate synthase (Mls1), mannitol 1-phosphate dehydrogenase (Mpd1), mating type (MAT1) and RNA polymerase II (RPB2)], which were assigned to 21 major linkage groups (LGs). The total length of the 21 major LGs was 1,932.1 centiMorgans (cM) with an average spacing of 6.88 cM between loci. The idiomorph mating type gene (MAT1) loci was placed in LG 2 and was closely linked to RAPD marker A4-680. On the other hand, 24 molecular markers and four gene loci [β-glucosidase (bgl1), histidinol dehydrogenase (Hdh2), mannitol 1-phosphate dehydrogenase (Mpd2), and xylanase (Xyl 10-2)] were dispersed in 11 minor LGs. The segregation ratio of the xylanase (Xyl 10-1) locus was distorted and not mapped. This is the first genetic linkage map reported for this important foliar pathogen of wheat. In combination with the genomic sequence of P. nodorum strain SN15 (), the availability of a genetic linkage map of this organism would be an important tool to investigate quantitative trait loci (QTL) of biologically important phenotypes and for positional cloning.  相似文献   

8.
Individual factors of resistance to insecticides attributable to chromosomes II, III and V of the SKA strain of houseflies (Musca domestica L) were combined in pairs to determine how their presence affects resistance. The re-synthesised strains with resistance factors on chromosomes II and V, and on chromosomes III and V, were tested with several organophosphorus insecticides and DDT. The penetration delaying mechanism Pen on chromosome III, which alone gives little or no resistance, slightly increased the resistance of flies with the microsomal detoxifying factor Ses on chromosome V to diazinon and malaoxon-ethyl (c. × 1.5), but was more effective in increasing resistance to DDT (× 6). There was no effect on the response to other insecticides tested. The combined effect of the mechanisms of resistance on chromosome II (glutathione S-ethyl transferase and phosphatase) and on chromosome V (microsomal detoxication) approximated to the product of the resistance conferred by each of these mechanisms singly, suggesting that the mechanisms of resistance on the two chromosomes act independently. Therefore, most of the strong resistance to organophosphorus insecticides in the SKA strain results from the interaction between delayed penetration (chromosome III) and the factors of resistance on chromosome II, and the independent action of the resistance factors on chromosomes II and V.  相似文献   

9.
为评估在水稻育种中被广泛利用的广谱抗稻瘟病基因Piz-t的有效性,对不同年份分离自海南省陵水黎族自治县和三亚市水稻的273株田间稻瘟病菌株中的AvrPiz-t位点变异及其与菌株致病性的相关性进行系统研究。结果表明,海南省田间菌株中无毒基因AvrPiz-t位点的变异频率为0~100.00%,陵水黎族自治县菌株中的变异频率远远高于三亚市菌株。在菌株中共鉴定到3种AvrPiz-t位点变异类型,分别为基因位点完全缺失、DNA重复元件MGR583在基因位点启动子区-10 bp上游和编码区218 bp下游插入。所有AvrPiz-t位点变异的菌株对携带Piz-t抗病基因的单基因水稻系IRBL-11均表现出强的致病性。陵水黎族自治县菌株中AvrPiz-t位点的变异频率呈逐年增加趋势,2021年94株菌株中AvrPiz-t位点的变异频率为100.00%,其中51.06%的菌株变异是MGR583在启动子区-10 bp上游插入,表明DNA重复元件MGR583在AvrPiz-t位点插入是AvrPiz-t从无毒到有毒进化的重要机制之一。  相似文献   

10.
Genetic linkage maps of Heliothis virescens and Helicoverpa armigera are being used to identify and characterize resistance-conferring genes. The insensitive acetylcholinesterase conferring resistance to organophosphorus insecticides and the insensitive sodium channel conferring resistance to pyrethroids have both been mapped in H. virescens. The linkage mapping approach permits a genetic dissection of resistance, even when the mode of action and lethal target are not precisely known, such as for the insecticidal toxins from the bacterium Bacillus thuringiensis (Bt). We have identified and mapped a major Bt-resistance locus in a strain of H. virescens exhibiting up to 10000-fold resistance to Cry1Ac toxin and are currently developing a linkage map for H. armigera with a set of ‘anchor’ loci to facilitate comparison with H. virescens. Both species are currently experiencing their first significant selective pressure in the field by transgenic cotton expressing Cry1Ac, and timely identification of resistance mechanisms and their underlying genetic basis will be essential in successfully managing the Bt resistance that will eventually appear. ©1997 SCI  相似文献   

11.
Selected strains of non-pathogenic rhizobacteria have the ability to trigger an induced systemic resistance (ISR) response in plants. In Arabidopsis, rhizobacteria-mediated ISR has been extensively studied, using Pseudomonas fluorescens WCS417r as the inducing agent and P. syringae pv. tomato DC3000 (Pst) as the challenging pathogen. To investigate how far expression of ISR depends on the level of basal resistance, 10 different Arabidopsis ecotypes were screened for their potential to express WCS417r-mediated ISR and basal resistance against Pst. Two Arabidopsis ecotypes, RLD and Wassilewskija (Ws), were found to be blocked in their ability to express ISR. This ISR-noninducible phenotype correlated with a relatively low level of basal resistance against Pst. Genetic analysis of crosses between the ISR-inducible ecotypes Columbia (Col) and Landsberg erecta (Ler), on the one hand, and the non-inducible ecotypes RLD and Ws, on the other hand, revealed that ISR inducibility and basal resistance against Pst were inherited as monogenic dominant traits that are genetically linked. Neither ISR inducibility, nor basal resistance against Pst was complemented in the F1 progeny of a cross between RLD and Ws, indicating that both ecotypes are affected in the same locus. This locus, designated ISR1, was mapped between markers Ein3 and GL1 on chromosome III. Interestingly, ecotypes RLD and Ws also failed to express ISR against the oomycetous pathogen Peronospora parasitica, but they were not affected in their level of basal resistance against this pathogen. Thus, the ISR1 locus controls the expression of ISR against different pathogens but basal resistance only against Pst and not against P. parasitica. Like ecotypes RLD and Ws, ethylene-insensitive mutants showed the isr1 phenotype in that they were unable to express WCS417r-mediated ISR and show enhanced susceptibility to Pst infection. Analysis of ethylene responsiveness of RLD and Ws revealed that both ecotypes exhibit reduced sensitivity to ethylene. Therefore, it is proposed that the Arabidopsis ISR1 locus encodes a component of the ethylene-response pathway that plays an important role in ethylene-dependent resistance mechanisms.  相似文献   

12.
The genetic basis of deltamethrin resistance or sensitivity in two strains of Drosophila melanogaster was studied by means of chromosomal analysis. Eight homozygote combinations of resistant (SR) and sensitive (HS1) strains were constructed by chromosome substitution and were tested using topical bioassay and electrophysiological tests. The analysis of the data showed that resistance to lethal effects was multigenic, with the major factor(s) located on the first (X) and second chromosomes. One significant positive interaction between the two chromosomes was also found. For the resistance to knockdown (measured by time-based topical test), the second chromosome was found to be much more important than the first and third chromosomes. However, analysis of the onset of the deltamethrin-induced electrical activity for each constructed strain suggested that reduced nerve sensitivity (probably associated to the deltamethrin resistance) was linked to both chromosomes X and 2. Similarly, bursts of large excitatory junctional currents (which were observed in sensitive and wild strains following topical application of deltamethrin) were not observed in resistant strains when these two chromosomes originated from the SR strain. A good correlation was found between the latency and LD50 suggesting that the same factors might be involved in the electrophysiological effects and the lethal effects. In our strains, resistance most probably corresponds to reduced nerve sensitivity. Our data are consistent with the location of the sodium channel gene in Drosophila on the chromosome X but clearly demonstrate that this major gene cannot by itself explain target site resistance to deltamethrin.  相似文献   

13.
The goal of this research was to identify quantitative trait loci (QTLs) for potato tuber resistance to the soil- and seedborne bacterium Dickeya solani and for tuber starch content, to study the relationship between these traits. A resistant diploid hybrid of potato, DG 00-270, was crossed with a susceptible hybrid, DG 08-305, to generate the F1 mapping population. Tubers that were wound-inoculated with bacteria were evaluated for disease severity, expressed as the mean weight of rotted tubers, and disease incidence, measured as the proportion of rotten tubers. Diversity array technology (DArTseq) was used for genetic map construction and QTL analysis. The most prominent QTLs for disease severity and incidence were identified in overlapping regions on potato chromosome IV and explained 22.4% and 22.9% of the phenotypic variance, respectively. The second QTL for disease severity was mapped to chromosome II and explained 16.5% of the variance. QTLs for starch content were detected on chromosomes III, V, VI, VII, VIII, IX, XI, and XII in regions different from the QTLs for soft rot resistance. Two strong and reproducible QTLs for resistance to D. solani on potato chromosomes IV and II might be useful for further study of candidate genes and marker development in potato breeding programmes. The relationship between tuber resistance to bacteria and the starch content in potato tubers was not confirmed by QTL mapping, which makes the selection of genotypes highly resistant to soft rot with a desirable starch content feasible.  相似文献   

14.
Pine wilt disease (PWD) is the most destructive disease threatening pine worldwide. The disease is mainly caused by the pine wood nematode, Bursaphelenchus xylophilus, which is vectored by pine sawyer longhorn-beetles, Monochamus spp. This study aimed to select resistance-inducing pine endophytic bacteria for management of PWD. To set up a defence-related genes expression pattern for screening, four chemical inducers (salicylic acid, γ-aminobutyric acid (GABA), β-aminobutyric acid and α-aminobutyric acid) were tested in vitro on pine calli and in vivo on pine seedlings. Treatment with GABA had the greatest reduction in PWD severity on pine seedlings. The pattern of defence-related gene expression in calli treated with GABA was used to select potential resistance-inducing bacterial strains. In addition, 92 bacterial strains were isolated from pine tree needles and stems and were tested for expression of defence-related genes in pine calli in vitro. Among the tested strains, 13 showed a similar pattern to GABA treatment in at least four tested defence-related genes and were selected for the seedling assay. From the seedling assay, three bacterial strains (16YSM-E48, 16YSM-P180 and 16YSM-P39) showed significant reduction in PWD severity compared to the untreated control. Moreover, among the selected strains, cell-free culture supernatant of strain 16YSM-P180 significantly reduced PWD severity in inoculated pine seedlings. The selected strains were identified based on the 16S rRNA sequence as Pseudomonas putida 16YSM-E48, Curtobacterium pusillum 16YSM-P180 and Stenotrophomonas rhizophila 16YSM-P39. These selected strains are suggested as potential alternatives for management of PWD by induction of systemic resistance.  相似文献   

15.
Disease resistance mediated by the resistance gene Xa21 is developmentally controlled in rice. We examined the relationship between Pathogenesis Related (PR) defense gene expression and Xa21-mediated developmental disease resistance induced by Xanthomonas oryzae pv. oryzae (Xoo). OsPR1a, OsPR1b, and OsPR1c genes were cloned and their induction was analyzed, in addition to the OsPR10a gene, at the juvenile and adult stages in response to a wildtype Xoo strain that induces a resistance response (incompatible interaction) and an isogenic mutant Xoo strain that does not (compatible interaction). We found that the adult stage leaves are more competent to express these OsPR1 genes and that the Xa21 locus is required for the highest levels of induction.  相似文献   

16.
为明确不同野生葡萄株系对霜霉病的抗性差异,以18个种的46份野生葡萄株系为试材,采用叶盘法鉴定其对霜霉病的抗性,并利用实时荧光定量PCR(real-time quantitative polymerase chain reaction,RT-qPCR)技术对部分关键基因进行定量分析,探讨其在不同抗病株系中的表达模式差异。结果表明,46份野生葡萄株系的病情指数为0~34.72,其中17份为感病株系,病情指数在25.93~34.72;21份为抗病株系,病情指数在5.32~24.35;5份圆叶葡萄株系均表现为免疫,病情指数为0.00;云南-元谋2、云南-2和木扎岭-3为高抗株系,病情指数分别为1.81、4.40和1.62。当被霜霉病菌侵染后,抗病株系和感病株系中的PAL、PR1、TLP和NPR1基因的诱导表达模式不同;与感病株系相比,抗病株系中的TLP、PR1和NPR1基因有强烈的诱导表达,PAL基因在感病株系比在抗病株系中表达量高。在免疫株系普莱德和高抗株系云南-元谋2中,NPR1与其它3个基因的表达模式差异最大;TLP在抗病株系蘡薁-林县中与其它3个基因的表达模式差异最大;在感病株系秋-嵩县中,NPR1与TLP表达模式相近,PAL和PR1表达模式相近。研究表明,在中国野生葡萄种质中,云南-元谋2、云南-2和木扎岭-3对霜霉病有良好的抗性,可作为抗病育种的原始材料;抗性基因可能在抗病株系中发挥着重要作用。  相似文献   

17.
18.
Genetic work with 51 fenarimol-selected strains of Nectria haematococca var. cucurbitae identified a polygenic system for resistance with at least nine chromosomal loci involved. The mutant genes, designated fen-1 to fen-9, gave low levels of resistance to fenarimol and to three other C-14 demethylation inhibiting (DMI) fungicides, namely triforine, imazalil, and triadimenol. Haploid strains carrying two fen mutations exhibit higher levels of resistance, indicating additivity of gene effects. All fen mutations appear to be pleiotropic, having more or less adverse effects on growth, sporulation, spore germination, pathogenicity, and tolerance of somewhat high temperatures. Accumulation of fenarimol in resistant strains was lower than in the wild type, suggesting that fen mutations code for a common resistance mechanism based on a permeability barrier. Various inhibitors of energy generation increased the accumulation level, indicating that accumulation is energy dependent and may be the result of passive influx and energy-dependent efflux. Lower accumulation in resistant strains is probably the result of increased efflux, as has been found with other fungi. A double mutant carrying the mutations fen-7 and fen-9 showed lower accumulation of fenarimol than a strain carrying the fen-7 only, indicating additivity of effects in this regard also.  相似文献   

19.
20.
Rice bacterial blight (BB), caused by Xanthomonas oryzae pv. Oryzae (Xoo), is a serious disease in rice production worldwide. Rice cv. Zhenhui 084, a newly developed strong indica restorer line, exhibits high resistance to most of the Philippine races of BB and has been widely used in rice hybrids in China; however, the resistance gene has not yet been cloned. Here, we show that the resistance of Zhenhui 084 to Xoo strains is similar to that of IRBB7 containing Xa7, a durable and broad resistance dominant gene for BB. To map the resistance gene in Zhenhui 084, a F2 population with 331 highly susceptible individuals derived from a cross between Chenghui 448 and Zhenhui 084 was built. We finely mapped the target R gene to a region between two proximal markers RM20576 and MY4 in rice chromosome 6. A marker-based physical map of chromosome six was used to construct the contig covering the genomic region between two markers RM20576 and MY4. The target gene was assumed to be in an interval of approximate 200 kb, in which 16 candidate genes were predicted. Our findings will greatly facilitate the isolation and characterisation of the target R gene allelic to Xa7. Additionally, two PCR-based markers, tightly linked to the target R gene locus, will be a useful tool for the marker-assisted selection of the target R gene allelic to Xa7 in breeding programmes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号