首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 359 毫秒
1.
在节水灌溉技术的推广应用中,灌区量水是一项基础的、关键性的技术.灌区量水设施灌区节水、实现水资源高效可持续利用具有重要意义。随着节水农业的发展和水价制度的改革,迫切需要研究并推广可对灌区末级渠系计量的量水设备。抛物线形移动式量水堰板和便携式量水槽是针对小型U形渠道测流而提出的量水设备,具有使用方便,结构简单等优点。通过对2种量水设备的比较,模拟分析了在不同渠道条件下的量水性能指标。结果表明:2种量水设备的量水精度均可满足灌区测流要求;抛物线形移动式量水堰板测流幅度大,渠道适应性好;在可以适用的缓坡渠道条件下,可优选便携式量水槽。  相似文献   

2.
U形渠道直壁式量水槽水力特性的研究   总被引:4,自引:0,他引:4  
灌区的水费改革有利于我国节水制度的加强,这就需要推广一种切实、有效的量水设施,而U形渠道直壁式量水槽由于具有与U形渠道自然衔接,不抬高底坎,过沙能力较强,工程量较小,量水精度较高的优点,是U形渠道理想的优化选择。对U形渠道直壁式量水槽进行试验,并对实验数据进行分析,得出U形渠道直壁式量水槽的基本水力特性。  相似文献   

3.
针对辽宁省平原灌区渠道的主要特点,开展了渠道量水技术应用研究,先后提出了平底无喉道量水槽,弧形量水槽和U形渠道水位流量计,经过室内模型试验,并在灌区进行了初试应用,取得了比较好的应用效果。将这3种渠道量水技术加以介绍,以便促进渠道量水技术的推广,切实发挥渠道量水技术在灌区用水管理方面的作用。  相似文献   

4.
U型渠道平底抛物线形无喉段量水槽流量公式的改进   总被引:6,自引:1,他引:5  
U形渠道已在我国广大灌区大量应用,针对适用于U形渠道量水的平底抛物线型无喉段量水槽流量公式计算复杂的问题。文中通过理论分析推导出了简化的量水槽流量计算公式,计算了结果与原流量迭代公式比较相对差值〈0.。5%,便于采用抛物线型量水槽的生产单位应用。  相似文献   

5.
U型渠道平底抛物线形无喉段量水槽流量公式的改进   总被引:1,自引:0,他引:1  
U 形渠道已在我国广大灌区大量应用,针对适用于U 形渠道量水的平底抛物线型无喉段量水槽流量公式计算复杂的问题,文中通过理论分析推导出了简化的量水槽流量计算公式,计算结果与原流量迭代公式比较相对差值< 0.5% ,便于采用抛物线型量水槽的生产单位应用  相似文献   

6.
机翼形量水槽是一种适用于平原灌区末级渠系的新型量水设备,其槽后水跃的相关参数是判别量水槽选型是否合理的重要标准之一。为对该问题进行深入研究,选用在灌区末级U形渠道中较有代表性的0.45与0.49两组收缩比,采用基于Tru-VOF方法追踪自由液面、Favor技术实现网格优化的Flow-3D软件,对U型渠道机翼形量水槽水跃进行三维数值模拟,提取槽后水跃的时均流场、流速分布、共轭水深、水跃长度等相关参数,并通过水工模型试验对数模结果进行验证。对比结果表明,二者吻合度较高,从而证明本文所建立的紊流数学模型是合理的,对水跃问题的研究以及机翼形量水槽在平原灌区U型渠道的应用提供一定的工程技术参考。  相似文献   

7.
U形渠道具有其他形式输水渠道无法比拟的防渗效果好、整体性强、输水率高、抗冻胀、渠道占地面积小等优点,在渠灌区已经作为标准渠道推广应用,但U形渠道的量水槽选型是困扰U形渠道推广应用的瓶颈.目前作为标准推广应用的U形渠道的量水设施有3种,在通过实验室和灌区实际测试的基础上,从不同的角度对3种量水设施进行对比分析,为灌区U形渠道量水设施的选型提供依据.  相似文献   

8.
为了详细探究机翼柱型量水槽应用于U形渠道的量水性能,设置了4个不同的量水槽收缩比开展水力性能试验。通过对流量、收缩比和上游水位等数据进行分析,拟合出机翼柱型量水槽的流量公式。研究还对测流精度、上游佛汝德数、临界淹没度等参数进行了详细分析。试验结果表明,机翼柱型量水槽水位~流量相关性极高,相关系数R2达0.998,利用试验数据拟合出的流量公式简单易用,平均流量误差约为2.47%,上游佛汝德数小于0.3,临界淹没度最高为0.887。与传统的U形渠道量水槽相比,机翼柱型量水槽的流动公式简单易用,U形渠道机翼柱型量水槽的结构为进一步研究提供了新的思路和参考。  相似文献   

9.
U形渠道机翼形量水槽试验研究   总被引:10,自引:3,他引:7  
主要介绍了机翼形量水槽的构造、测流原理。通过在U形渠道上的试验研究得出该槽的流量公式、流量水头关系、测流误差。试验结果表明机翼形量水槽测流精确且投资较小,适合灌区量水的要求。  相似文献   

10.
为了解决坡度为1/100~1/200的U形渠道量水问题,开发了一种椭直形量水槽。选用6种不同收缩比,在3种不同规格的U形渠道上进行田间试验。利用量纲分析法推求水深流量关系,提出田间试验中壅水高度的计算方法,探讨壅水长度对量水槽建造位置的影响,分析了测流精度和佛汝德数。结果表明:相对水深与相对流量具有良好的幂函数关系,R2=0.995,由此建立的自由出流流量公式具有一定的精度,平均相对误差为2.38%,最大相对误差为5.04%;量水槽的收缩比应控制在0.55以下;量水槽距离渠道进口应大于渠宽的15倍。研究为椭直形量水槽在陡坡U形渠道上的进一步应用提供参考。  相似文献   

11.
翼柱型量水槽在3种常用渠道上的应用性能对比试验研究   总被引:1,自引:0,他引:1  
翼柱型量水槽是一种新型量水槽,其应用在灌区具有成本低、便于修建、量水精度高的特点。【目的】探讨翼柱型量水槽在矩形渠道、梯形渠道、U形渠道上的适用范围。【方法】试验在矩形渠道、梯形渠道、U形渠道上分别设计3种收缩比的量水槽,在不同流量工况下进行试验,并对测流精度、佛汝德数、水头损失、壅水高度等进行比较分析。【结果】拟合出矩形渠道、梯形渠道、U形渠道不同收缩比量水槽的流量公式,平均误差分别为0.42%、1.34%、1.65%,均满足规范误差小于5%的要求;翼柱型量水槽在3种渠道上游佛汝德数Fr均小于0.4,在U形渠道上游Fr最小;翼柱型量水槽在3种渠道上最大临界淹没度均大于0.85,应用于U形渠道的最大临界淹没度最高;矩形渠道修筑翼柱型量水槽产生的水头损失占上游总水头比例最小。【结论】翼柱型量水槽可用于灌区节水续建配套,同一比降条件下,矩形渠道与U形渠道衔接位置应用翼柱型量水槽效果最佳。  相似文献   

12.
为了改善量水槽在平原灌区应用受限的状况,利用鸽子翅膀截面曲线,通过仿生优化设计了一种鸽翼形量水槽,并通过模型试验研究不同流态下量水槽的水力特性.试验结果表明:自由出流时水深-流量的稳定关系在淹没出流时仍然存在;不同流态时,水跃发生位置不同,自由出流时,水跃发生在出口断面附近,淹没出流时,则在喉口附近;自由出流时的测流精度高于淹没出流,测流误差在2%~3%,但淹没出流的测流误差随着流量增大而减小;鸽翼形量水槽的临界淹没度均在0.850以上,最高可达0.933,具有较大的测流范围.鸽翼形量水槽的工作性能良好,可开展标准化设计和工程应用.  相似文献   

13.
介绍抛物线形喉口量水槽的选型、设计方法、量水槽流量计算以及量水槽适用条件 ,便于灌区应用。  相似文献   

14.
长喉道量水槽的应用研究   总被引:2,自引:0,他引:2  
介绍了长喉道量水槽的结构、测流原理、设计计算方法以及在江苏省南通市几个灌区 3年多的应用研究成果。实际应用表明 :长喉道量水槽具有稳定的工作性能 ,精度高 ,相对误差小于 5 % ,能满足农用量水设备的精度要求。  相似文献   

15.
明渠测流及量水槽精度的鉴定   总被引:1,自引:0,他引:1  
水的逐步商品化要求供水计量精度得到保证,特别是大流量的农业灌溉或工业供水尤显重要。大水港灌溉工程高干渠渠首无喉道量水槽的量水精度,采用明渠测流法进行精度鉴定,并在定量定性的基础上,评定量水槽的适用性。  相似文献   

16.
【目的】为探究翼柱型量水槽在自由出流和淹没出流时的量水性能。【方法】试验观测10种流量条件下,量水槽进口到出口13个测流断面的水位,对自由出流和淹没出流两种工况下的水面线、佛汝德数、测流精度等水力参数进行分析与对比。【结果】自由出流状态下在断面11到断面12之间形成了临界流,流量在0.044 m3/s以下时没有产生临界流从而得到了U形渠道翼柱型量水槽的最小工作流量。翼柱型量水槽过槽流量与上游水深具有良好的相关关系,通过拟合得到了自由出流和淹没出流状态下的流量公式,其中自由出流状态下最大误差为-2.54%,淹没出流下为6.50%,二者平均误差均小于0.3%,满足现行渠道量水规范的误差要求。本文拟合的淹没出流流量公式最大淹没度高达0.958,适用范围较大。此外,U形渠道翼柱型量水槽具有较大的自由出流范围,临界淹没度可达0.890。【结论】经试验确定临界流断面位于距进口约为量水槽4倍翼高处。翼柱型量水槽可满足小比降既成渠道的测流要求,进一步解决了量水槽流量公式在淹没出流情况下测流误差较大的问题。  相似文献   

17.
为了了解测控一体化板闸在高含沙水渠道的测流精度是否满足规范要求,选取宁夏南山台扬水灌区18条测流条件较好且具有代表性的支渠,通过对比无喉道量水槽的测流结果,整理分析不同灌水时期测控一体化板闸的测流数据,采用ANSYS Fluent建立物理模型,模拟研究测控一体化板闸的水力性能随含沙量的变化规律,并结合Rubicon测控一体化板闸测流原理,分析含沙量影响测控一体化板闸测流精度的成因.结果表明:当渠道水含沙量较大时,测控一体化板闸与无喉道量水槽的测流结果偏差较大;板闸计量箱内的流速分布、湍动能、含沙量、沙粒粒径均可能影响超声波流量计的测流精度;随着含沙量的增加,测控一体化板闸计量箱内湍动能减小,但流速分布无明显变化.因此,含沙量对测控一体化板闸测流精度有一定影响,主要由超声波在含沙水中的衰减作用以及含沙水的制紊作用导致,而流速分布对其影响较小.  相似文献   

18.
为提高新型超声波方形量水槽在非淹没出流条件下的测流量精度,加强新型超声波方形量水槽在明渠量测水中的适应性,进而推进灌区信息化建设,在超声波方形量水槽前后加设水力收缩段,并引入水力学公式辅助测流,最后与三角堰进行流量误差对比试验研究.研究结果表明:无收缩段的方形量水槽在淹没出流条件下测流误差低于8%;有收缩段方形量水槽在...  相似文献   

19.
【目的】探究巴歇尔槽上游进口连接段最优形式。【方法】采用SolidWorks建模软件对不同进口连接段形式(内接圆弧过渡段、外接圆弧过渡段、直面过渡段、无过渡段)建立物理模型,利用ANSYS18.0软件对模型进行网格划分与数值模拟,运用Tecplot后处理软件,在自由出流情况下,分析不同进口连接段形式对水头损失、水面线、测流误差、流速及压强的变化情况,得出输水效率最高的连接段形式。【结果】采取进口连接段过渡的巴歇尔槽相比无连接段过渡的水流流线更平缓;无连接段过渡的巴歇尔槽局部水头损失最大、内接圆弧过渡段形式巴歇尔槽局部水头损失最小。巴歇尔槽测流精度相对误差随着来流流量的增大而减小;当来流流量为0.01 m3/s时,4种设计方案测流误差分别为:16.3、15.9、15.4、17.7;当来流流量为0.2 m3/s时,4种设计方案测流误差分别为:6、5.9、5.2、5.5。4种设计方案中,直面过渡段形式巴歇尔槽测流精度最高;巴歇尔槽纵剖面速度、压强云图变化梯度明显,流速最大处位于喉道段、静水压强最大处位于上游雍水段。湍动能云图数值最大处位于气相所分布的区域,气相相较于液相具有更强的流动性,分子间的能量交换更加剧烈,内能消耗更大。【结论】测流工作应该在来流流量较大时完成、进口连接段加以衬砌,防止因静水压强导致巴歇尔槽形变而产生测流误差。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号