首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
White spot syndrome virus (WSSV) infection was induced in tiger shrimp, Penaeus monodon, under laboratory conditions, and histopathological changes in subcuticular epithelial cells of the eye stalk and pleopod were studied sequentially at different time post-challenge. Routine histological techniques using paraffin embedded tissues, as well as frozen tissues, were used to document WSSV infection. Histological manifestations such as cellular hypertrophy in the subcuticular epithelial cells of the eyestalk and pleopod could be detected as early as 18 h post-infection (p.i.) before the manifestation of clinical signs of the disease. However, no histopathological changes could be detected before 18 h p.i.. Hypertrophy of the nuclei in the epithelial cells was pronounced after 24 h p.i. Marked necrosis, and eosinophilic intranuclear inclusions, characteristic of early stages of WSSV infection were observed between 24–36 h p.i. Clinical signs of the disease appeared at 48 h p.i. The presence of WSSV at early asymptomatic stages of p.i. has been tested in parallel samples using polymerase chain reaction, for further confirmation of WSSV. This paper discusses the potential of a non-lethal and rapid histopathological diagnostic method to document WSSV infection, using the eyestalk or pleopod, when expensive DNA based diagnostics are not available or affordable.  相似文献   

2.
Experimental studies were conducted by injecting or feeding white spot syndrome virus (WSSV) derived from infected shrimp, Penaeus monodon (Fabricius), collected from the south-east coast of India, to five species of shrimp, two species of freshwater prawns, four species of crabs and three species of lobsters. All species examined were susceptible to the virus. Experimental infections in the shrimp had the same clinical symptoms and histopathological characteristics as in naturally infected P. monodon . A cumulative mortality of 100% was observed within 5–7 days in shrimp injected with WSSV and 7–9 days in shrimp fed with infected tissue. Two species of mud crab, Scylla sp., survived the infection for 30 days without any clinical symptoms. All three species of lobsters, Panulirus sp., and the freshwater prawn, Macrobrachium rosenbergii (De Man), survived the infection for 70 days without clinical symptoms. However, bioassay and histology using healthy P. monodon revealed that crabs, prawns and lobsters may act as asymptomatic carriers/reservoir hosts of WSSV. This is the first report to suggest the carrier/reservoir capacity of these hosts through histological and bioassay evidences. Ultrastructural details of the virus in experimentally infected shrimp, P. vannamei , (Boone), were also studied.  相似文献   

3.
At present the most common and most devastating disease of shrimp is caused by the white spot syndrome virus (WSSV), which has spread throughout the world mainly by different species of crustaceans carrying the virus. After experimental injection of Penaeus monodon with a known copy number of WSSV in the abdominal muscle, the rate of viral progression in different tissues at 12, 24, 36 and 48 hpi (hours post infection) was assessed using quantitative real‐time PCR. At 12 hpi the viral load was highest in haemocytes followed by pleopod, muscle and gills whereas at 48 hpi, the gills, the main target of WSSV, showed the highest viral load followed by pleopod, muscle and haemocytes. Viral copy number in the haemocytes was the lowest beyond 12 hpi indicating a remarkable reduction in the rate of viral replication in haemocytes compared with other tissues. The viral load in haemocytes, though increased again beyond 36 hpi, never surpassed the load in the other tissues. The real‐time PCR assay with its high sensitivity and wide dynamic range make it ideal for detecting low‐level WSSV infections that can occur in apparently healthy P. monodon.  相似文献   

4.
Quantitative real time PCR, recently developed in molecular biology, is applied in this paper to quantify the white spot syndrome virus (WSSV) in infected shrimp tissue. The WSSV content in moribund shrimp of all species tested ( Penaeus stylirostris, P. monodon, P. vannamei ) ranged from 2.0 × 104 to 9.0 × 1010 WSSV copies μg–1 of total DNA ( n =26). In whole moribund post-larvae, 4.3 × 109 WSSV copies μg–1 of DNA were detected which is equivalent to 5.7 × 1010 WSSV copies g–1 of post-larvae. The comparison of WSSV content between different tissues showed that muscle and hepatopancreas tissues contained 10 times less virus than gills, pleopods and haemolymph. With inocula of known virus content, bioassays by immersion challenge showed that a minimum of five logs of WSSV copies was necessary to establish disease in the challenged shrimp. In contrast, five logs of WSSV copies injected into shrimp muscle produced a LT-50 of 52 h. This real time polymerase chain reaction (PCR) technique is sensitive (four copies), specific (negative with DNA from shrimp baculoviruses and parvoviruses), dynamic (seven logs) and easy to perform (96 tests in <4 h).  相似文献   

5.
The VP28 gene of white spot syndrome virus (WSSV) was cloned into pRSET B expression vector. The VP28 protein was expressed as a protein with a 6-histidine taq in Escherichia coli GJ1158 with NaCl induction. Antiserum was raised against this recombinant-VP28 protein in rabbits and it recognized VP28 protein in naturally and experimentally WSSV-infected shrimp, marine crabs, freshwater prawns and freshwater crabs. The antiserum did not recognize any of the other known WSSV structural proteins. Various organs such as eyestalks, head muscle, gill tissue, heart tissue, haemolymph, tail tissue and appendages were found to be good materials for detection of WSSV using the antiserum and detection of WSSV was successful in experimentally infected Penaeus monodon and P. indicus at 12 and 24 h post-infection (p.i.), respectively. The antiserum was capable of detecting WSSV in 5 ng of total haemolymph protein from WSSV-infected shrimp.  相似文献   

6.
The giant fresh water prawn Macrobrachium rosenbergii is known to be highly tolerant to white spot syndrome virus (WSSV) infections when compared to the widely cultured marine tiger shrimp Penaeus monodon. At present, the exact mechanism of tolerance by M. rosenbergii to WSSV is not known. In this study, we attempt to study the effect of WSSV injections on the hemagglutination activity of the hemolymph serum of both P. monodon and M. rosenbergii and look for changes if any, on their hemolymph serum protein electrophoretic patterns. Our results show that M. rosenbergii had significantly (p < 0.05) higher hemagglutinating activity against mouse erythrocytes when compared to P. monodon. As the infection progressed to 48 h there was a further increase (p < 0.05) in the hemagglutination activity in M. rosenbergii, while it decreased in P. monodon. 12% SDS-PAGE analysis of the hemolymph serum of M. rosenbergii infected with WSSV did not show any new protein bands, whereas few bands with decreased intensity was observed in moribund P. monodon where the hemagglutinating activity was also observed to be decreased. The results indicate that hemolymph hemagglutinin levels are modulated in crustaceans as a response to viral infections.  相似文献   

7.
Studies were conducted by injecting/feeding white spot syndrome virus (WSSV) derived from infected shrimp, Penaeus monodon (Fabricius), to different life-stages, namely post-larvae, juveniles, sub-adults and adults of Macrobrachium rosenbergii (de Man). The disease was also induced in brood stock, and the eggs and larvae derived from these animals were subsequently tested for WSSV infection. All the stages except egg used for the experiment were found WSSV positive in histopathology, cross infection bioassay and polymerase chain reaction (PCR) analysis. Experimentally infected post-larvae and juveniles showed a high percentage of mortality and an increased rate of cannibalism. The cumulative mortality in post-larvae was up to 28%; with 28–40% cannibalism resulting in a maximum loss of up to 68%. In juveniles, observed mortality and cannibalism were 10–20% and 6.7–30.0%, respectively, and the maximum loss recorded was 50%. In sub-adults, mortality ranged from 2.8 to 6.7%, cannibalism was up to 20% and the total loss was up to 26.7%. Sub-adults and adults were found to be more tolerant to the infection as evidenced by the mortality pattern. A nested (two-step) PCR resulted in a 570-bp product specific to WSSV in all stages, except the eggs.  相似文献   

8.
The pathogenicity of white spot syndrome virus (WSSV) was tested with different developmental stages of Penaeus monodon, i.e. nauplius, protozoeae, mysis, early post-larvae (PL1-10), late post-larvae (PL11-20) and juveniles. WSSV challenge was done by immersion and oral routes. No disease occurred in the larvae and early post-larvae but they were positive for WSSV by nested polymerase chain reaction (PCR) assay. Significant mortality was observed in late post-larvae and juveniles and both single and nested PCR assays gave positive results with these samples. The results demonstrated that WSSV virulence in P. monodon increases with advancing stages of development and that WSSV infection does not result in disease for larvae and post-larvae younger than PL10.  相似文献   

9.
用含3×103拷贝·g^-1、6×1062拷贝·g^-1和2×10^2拷贝·g^-1的对虾白斑综合征病毒(white spot syndrome virus,WSSV)粗提液和PBS液(对照)注射感染病毒携带量约1×10^5拷贝·g^-1的斑节对虾(Penaeusmonodon),分别于第15分钟、第30分钟、第1小时、第3小时、第6小时、第12小时、第24小时、第48小时、第72小时取样,研究了WSSV感染对斑节对虾血清内酸性磷酸酶(acidphosphatase,ACP)、碱性磷酸酶(alkalinephospha—tase,AKP)、酚氧化酶(phenoloxidase,PO)、过氧化物酶(peroxidase,POD)和超氧化物歧化酶(superoxide dismutase,SOD)活性的影响。结果表明,在3种感染浓度下ACP、AKP、SOD活性总体呈现先上升后下降随后上升的趋势,其中SOD活性后期水平显著高于初期;PO、POD活性总体呈现先下降后上升随后下降最后上升的趋势,但PO后期活性水平与初期相当,而POD后期活性水平显著高于初期。各免疫相关酶的反应强度与WSSV的感染浓度存在一定关系,除ACP外其余4种酶的活性变化均以6×10^2拷贝·mL^-1浓度组最为敏感。PBS组5种免疫酶活性变化幅度均显著小于3种WSSV浓度感染组。  相似文献   

10.
White spot syndrome virus (WSSV) is the most severe viral pathogen to the crustacean aquaculture industry worldwide. Recently, serious WSSV outbreaks caused catastrophic losses in the Chinese mitten crab, Eriocheir sinensis in Jiangsu Province, Eastern China. However, to date, little is known about its infection mechanism in the new natural host. This study aimed to reveal the temporal and spatial dynamics of WSSV in E. sinensis. The slow viral growth in the early stage of infection was the light infection stage (from 0 to 24 hpi), and the exponential growth stage that followed was the logarithmic phase (from 24 to 72 hpi). The viral growth curve ended with the plateau phase (from 72 to 144 hpi) which demonstrated a consistent high level of viral load and accompanied heavy crab mortality. The viral load increased as time progressed with similar growth curves, however, at different degrees. The viral copy numbers of tissues at different time intervals, analysed using one‐way analysis of variance (anova ), showed significant differences between tissues at all time points (< 0.05). Infection was detectable as early as 6 hpi in all the tissues screened. The severity of infection was found to be maximum in gill and pleopods, which could be recommended for diagnostic testing. This study might provide important data to analyse theoretically the interaction between WSSV and the host.  相似文献   

11.
12.
Bantam能够调控细胞增殖、细胞凋亡等过程,影响生物的免疫过程。本研究利用实时荧光定量PCR(qRT-PCR)技术对感染WSSV的中国明对虾(Fenneropenaeus chinensis)肝胰腺和鳃组织内bantam表达水平进行检测,发现感染WSSV后6、12、24和48 h,中国明对虾肝胰腺中的bantam表达水平分别是对照组的(0.16±0.03)(P<0.05)、(0.63±0.26)、(0.32±0.06)(P<0.05)和(0.41±0.13)倍;中国明对虾鳃中的bantam表达水平分别是对照组的(0.30±0.17)(P<0.05)、(1.88±0.26)(P<0.01)、(0.84±0.36)和(0.51±0.25)倍。利用miRanda软件进一步对中国明对虾bantam靶基因进行预测分析,评分最高的靶基因是泛素缀合酶E2。中国明对虾泛素缀合酶E2包含UBCc功能域。多序列比对显示,UBCc功能域氨基酸残基序列在不同物种间保守性较高。进化树分析显示,分类学地位相近的物种的泛素缀合酶E2聚为一类。qRT-PCR检测感染WSSV的中国明对虾肝胰腺和鳃中的泛素缀合酶E2表达水平,结果显示,在感染WSSV后6、12、24和48 h,中国明对虾肝胰腺中泛素缀合酶E2的表达水平分别是对照组的(0.54±0.10)、(1.19±0.62)、(3.69±0.51) (P<0.01)和(1.94±0.07)(P<0.05)倍;中国明对虾鳃中泛素缀合酶E2的表达水平分别是对照组的(0.22±0.05)、(1.34±0.38)、(4.29±0.52)(P<0.01)和(1.28±0.79)倍。研究表明,bantam和泛素缀合酶E2的表达都受WSSV侵染的影响,可能与中国明对虾和WSSV之间的互作相关。但bantam和泛素缀合酶E2表达水平的变化是对虾抵抗WSSV侵染过程的免疫反应,还是宿主基因被病毒胁迫后的结果,需要进一步验证。  相似文献   

13.
ABSTRACT: The present study examined the changes in texture and protein components during cold storage of different squid varieties. Raw oval squid, Japanese common squid and arrow squid were sliced fresh and the muscles were stored at 4°C for 0, 4, 8, 12, 18, 24, 48 and 120 h. The rheological measurements, protein components and amounts of collagen were examined. The adhesiveness of each squid increased significantly in the early stage of cold storage. In all varieties, penetration decreased at 4 h, which is considered to be rigor mortis, then increased. The amounts of total collagen, 20°C water-soluble collagen and 70°C water-soluble collagen did not change significantly in each variety during cold storage. Sodium dodecylsulfate–polyacrylamide gel electrophoresis (SDS-PAGE) pattern showed that the 580 kDa component gradually disappeared up to 48 h. The correlations between the amounts of 580 kDa component and adhesiveness or firmness were high. Models of fit based on chemical kinetics accurately expressed the behavior of adhesiveness, firmness and penetration showing that 63.2% of adhesiveness changes occurred in 13–19 h and that 63.2% of firmness changes occurred in 18–24 h.  相似文献   

14.
Five different Vibrio parahaemolyticus strains (SH8, SH108, SH58, AH5 and GD10) isolated from the hepatopancreas of moribund shrimp in farms of mainland China were identified and capable of inducing massive mortality of Penaeus (Litopenaeus) vannamei. The immersion challenge results with five isolates indicated variance of virulence, while only GD10 caused massive sloughing of tubule epithelial cells which was recognized as the most significant symptom of AHPND. Differences in immune responses were detected of P. vannamei during 48 h post‐infection (p.i.) by injection or immersion challenge with V. parahaemolyticus (SH8, SH108 and GD10) isolates. When injected SH8 and SH108 isolates, the expression of lysozyme (LSZ) showing statistically significant upregulation at 16 and 48 h p.i. and that of Toll‐like receptors (TLR) showed statistically significant upregulation at 48 h p.i. When immersion challenge with the GD10 isolate, TLR were upregulated after 8 h p.i. challenge with 104 cfu mL?1; however, LSZ was downregulated when challenged with 103 cfu mL?1. The results suggested that LSZ and TLR serve as crucial molecular markers of innate immunity in shrimp against V. parahaemolyticus infection. LSZ is a vital marker for acute bacterial infection, while TLR serves as a crucial marker for chronic infection.  相似文献   

15.
This study evaluated the effect of low water temperature (10 ± 1 °C) on viral infection and replication of white spot syndrome virus (WSSV) in crayfish, Procambarus clarkii, under standardized conditions. Crayfish were (i) maintained at 24 ± 1 °C before challenge and 10 ± 1 °C afterwards, or (ii) maintained at 10 ± 1 °C before challenge and 24 ± 1 °C afterwards. No mortality was observed when crayfish were held at 10 ± 1 °C after challenge, but mortality reached 100% when they were transferred to 24 ± 1 °C. Competitive PCR showed that viral levels at 10 ± 1 °C rose from 106 to 108 copies/mg of gill tissues, while at 24 ± 1 °C levels increased from 106 to 1010 copies/mg of gill tissues during the same time interval. These results showed that a low water temperature of 10 ± 1 °C could reduce viral replication when compared to 24 ± 1 °C but could not prevent it.  相似文献   

16.
Abstract. Yellow head baculo-like virus infection and disease were demonstrated experimentally in the two main species of penaeid shrimp cultured in Hawaii and the Western hemisphere. Viral infection was induced by intramuscular inoculation of a 10% suspension of cephalothorax tissue filtrate prepared from two tiger shrimp, Penaeus monodon Fabricius, infected with yellow head disease, into sub-adult (3–10g) P. stylirostris (Stimpson) and P. vannamei (Boone). Signs of disease appeared as early as 2 days post infection (p.i.), and in most cases mortality reached 100% within 5–7 days p.i. Histopathological examination of the infected animals revealed extensive cellular necrosis in ectodermal and some mesenchymal tissues. Electron microscopical examination of thin sections of the gill and hepatopancreas from the infected shrimp revealed non-occluded rod-shaped baculo-like virus particles measuring 130–197 & 45–58 nm which were primarily localized within the cytoplasm of infected cells. The virus particles were contained within cytoplasmic vacuoles, and occurred singly or in small groups of two or more particles.  相似文献   

17.
Abstract –  To address the dearth of information on tagging effects and long-term survivorship of tagged fish in native and introduced species, laboratory and field investigations were undertaken on three non-native fish species (pumpkinseed Lepomis gibbosus ; topmouth gudgeon Pseudorasbora parva ; pikeperch Sander lucioperca ) tagged with coded-wire (CW), passive integrated transponder (PIT), radio (RT) telemetry and/or acoustic tags (AT), with survivorship of native brown trout ( Salmo trutta ) examined in the field. Laboratory results revealed high survivorship following tag attachment/insertion and resumption of feeding within 24–48 h of tagging (all mortalities could be attributed to an unrelated outbreak of fungal infection), with retention rates being high in both pumpkinseed and pikeperch but low in topmouth gudgeon (excluded from field studies). In the field, short-term post-operation survival was high in pikeperch, pumpkinseed and brown trout. In pumpkinseed and trout, 100% of RT fish survived a 24–30 day tracking study, with 60% and 80%, respectively, recaptured alive at least 3 months post-tagging. Of PIT tagged pumpkinseed, 44% were recaptured (after 6–18 months), with small-sized, CW-tagged fish (0.38 g weight) captured up to 1 year after tagging. In pikeperch, all AT fish except one (the smallest specimen) survived their full expected tracking period (i.e. tag life) – the single lost specimen survived at least half of its expected tracking period (i.e. 6 month battery life). Overall, the tagging methods used were highly effective in pumpkinseed and pikeperch, showing good retention and survival, but PIT tagging of topmouth gudgeon was plagued by low survivorship and tag rejection.  相似文献   

18.
Determination of differentially expressed protein profile is necessary to understand the host response to viral infection. Proteomics can be applied as a tool to examine white shrimp Litopenaeus vannamei molecular responses against white spot syndrome virus (WSSV) infection, thus enabling development of effective strategies to reduce their impact on farms. In the present study, specific pathogen-free shrimp was tested against WSSV infection under several time intervals. Shrimps were submitted to a viral load of with 5.5 × 106 viral copies in 100 μL/shrimp. The monitoring of infection was performed in intervals of 6, 12, 24, 48 and 72 h after infection. The analysis was realized using 2-DE, and differentially expressed proteins were identified by MALDI-TOF mass spectrometry (MS) peptide mass fingerprint (PMF). Between the differentially expressed proteins found in the infected animals, the most important were identified as caspase-2, ubiquitin and F1-ATP synthase. They are interesting candidates for biomarkers because could be related to the beginning of apoptosis process. The differentially expressed protein profile creates a new paradigm in the analysis of L. vannamei shrimp molecular response to WSSV infection and in virus–host relationship. Furthermore, it proposes potential biomarkers that allow strategies both selecting less susceptible individuals and reducing the impact of viruses on farms.  相似文献   

19.
The present study describes a simple method of extraction of white spot syndrome viral DNA (WSSV) from infected shrimp for the polymerase chain reaction (PCR) detection of WSSV. The DNA preparation using this method was found to be free from the host DNA, RNA and protein, and is suitable for different PCR protocols such as single‐step PCR, nested PCR and single‐tube semi‐nested PCR. This method of extraction has worked successfully for extracting the WSSV‐DNA from different organs (haemolymph, eyestalk, carapace, head muscle, heart, gills, appendages, heptopancreas, stomach, intestine, abdominal muscle and tail muscle) of WSSV‐infected adult shrimp, and WSSV‐infected larvae and postlarvae.  相似文献   

20.
Larvae and post-larvae of Penaeus vannamei (Boone) were submitted to primary challenge with infectious hypodermal and haematopoietic necrosis virus (IHHNV) or formalin-inactivated white spot syndrome virus (WSSV). Survival rate and viral load were evaluated after secondary per os challenge with WSSV at post-larval stage 45 (PL45). Only shrimp treated with inactivated WSSV at PL35 or with IHHNV infection at nauplius 5, zoea 1 and PL22 were alive (4.7% and 4%, respectively) at 10 days post-infection (p.i.). Moreover, at 9 days p.i. there was 100% mortality in all remaining treatments, while there was 94% mortality in shrimp treated with inactivated WSSV at PL35 and 95% mortality in shrimp previously treated with IHHNV at N5, Z1 and PL22. Based on viral genome copy quantification by real-time PCR, surviving shrimp previously challenged with IHHNV at PL22 contained the lowest load of WSSV (0-1x10(3) copies microg-1 of DNA). In addition, surviving shrimp previously exposed to inactivated WSSV at PL35 also contained few WSSV (0-2x10(3) copies microg-1 of DNA). Consequently, pre-exposure to either IHHNV or inactivated WSSV resulted in slower WSSV replication and delayed mortality. This evidence suggests a protective role of IHHNV as an interfering virus, while protection obtained by inactivated WSSV might result from non-specific antiviral immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号