首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A geographic information system (GIS) is being developed to study the spread of pseudorabies virus (PRV) among swine herds in the state of Minnesota. This GIS features an interface with a database management system that stores and manages pertinent data. These data include herd size, type of production system, degree of confinement, topographical features surrounding the farm, density of swine herds and distance to the closest quarantined herd. A pilot study was conducted in one Minnesota county with 280 swine herds, of which the PRV status was known in 115. Cox regression analysis was used to determine factors associated with herd PRV status. Relative risks (RR) and 95% confidence intervals (CI) were calculated. No association was detected between the PRV status of the herd and distance to the nearest county road, highway or quarantined herd. However, the following factors were significant: located within 1 km of a river or lake (RR, 0.524; CI, 0.328–0.828); farrow to finish (RR, 2.120; CI, 1.194–3.791); complete confinement (RR, 3.423; CI, 1.639–7.139); density of swine herds within a 5 km radius (RR, 1.036 per herd; CI, 0.996–1.064).  相似文献   

2.
Data were collected from 39 Minnesota swine farms quarantined for pseudorabies virus (PRV) infection. Each herd was serologically evaluated for antibodies to PRV in the sows, boars, and finishing pigs. To identify PRV-seropositive swine herds, the Kappa statistic was used to estimate the effectiveness of evaluating the PRV serostatus of boars or of finishing pigs. Using the serostatus of all herd boars, the sensitivity (with 95% confidence interval) of identifying PRV-infected herds was 58 +/- 22%, and the specificity was 100 +/- 0%; Kappa statistic was 0.55. Using the serostatus of a representative sample of finishing pigs, the sensitivity of identifying PRV-infected herds (with 95% confidence interval) was 63 +/- 22%, and specificity was 87 +/- 23%; Kappa statistic was 0.40. The PRV serostatus of herd boars or of a representative sample of finishing pigs did not accurately reflect the PRV serostatus of the herd.  相似文献   

3.
In theory, pseudorabies virus (PRV) may be eliminated from any size of breeding herd by phased test and removal if replacement gilts are not infected with PRV, culling decisions are partially based on PRV status, and the cull rate is higher than the incidence rate of PRV. Annual cull rates are commonly at least 50%, but little information exists on the incidence of PRV within enzootically infected swine herds. The purpose of this study was to develop a method by which spread of PRV could be detected among breeding swine within enzootically infected herds and to determine the incidence of PRV infection in these herds. Data were collected from 17 herds that were quarantined for PRV and ranged in size from 120 to 1,100 sows. At each herd, within the first 5 days of introduction, a group of approximately 30 replacement gilts was identified, vaccinated with a glycoprotein X-deleted PRV vaccine, and blood sample was collected. The owner of 1 herd had a nonvaccinated breeding herd and elected to leave incoming gilts nonvaccinated. After vaccination, blood samples were collected every 1 to 2 months for an average of 13.6 months. Serum samples from vaccinated gilts were tested for antiglycoprotein X antibodies by a specific differential ELISA. Samples from nonvaccinated gilts were evaluated by serum neutralization test. Product-limit method was used to estimate the probability of not becoming infected with PRV. Spread was detected in 7 of 8 herds that had more than 400 sows and in 2 of 9 herds that had less than 400 sows.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Strategies for the elimination of pseudorabies virus (PRV) from swine herds include test and removal, offspring segregation, and depopulation/repopulation. The prevalence of PRV in a herd is a major factor in selection of the most appropriate strategy. The purpose of the study reported here was to describe the prevalence of PRV in adult swine in PRV quarantined herds in Minnesota, and to determine herd factors associated with the seroprevalence. Questionnaires describing the health history of the herd, management practices, and design of the swine facilities were obtained from the owners of 142 quarantined herds. Blood was collected from 29 finishing pigs over the age of 4 months, up to 29 adult females, and all herd boars. Factors considered to be significant in a bivariate analysis were combined in a stepwise multiple logistic regression analysis. The prevalence of PRV-seropositive adults in each herd was bimodally distributed among the 142 herds. In 42 (30%) of the herds, none of the females tested was seropositive, which represented the lower mode. At least 90% of the adults tested were seropositive in 30 (21%) of the herds and represented the higher mode. The odds of the breeding swine of a given herd having a PRV seroprevalence of greater than or equal to 20% as compared with having a seroprevalence of less than 20% was 1.654 times higher per 50 adults in the herd, 13.550 times higher if the finishing pigs were seropositive, 2.378 times higher if sows were housed inside during gestation, and 1.481 times lower per number of years since the imposition of quarantine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Summary

In the European Union, vaccination campaigns against Pseudorabies virus (PRV) in swine have been started to eradicate PRV. Specific sampling designs are needed to monitor PRV seroprevalence at a regional level. This paper demonstrates how sampling theory can be applied to design a disease seroprevalence survey, using PRV as an example. In the spring of 1994, the four regions in the Netherlands covered by the regional Animal Health Services were monitored with respect to PRV seroprevalence. Per region, blood samples from approximately 1400 herds, with two animals per herd, were collected. The sampling design accounted for stratification by fattening pig and sow population within each region. The regional PRV seroprevalence of swine in the Southern region was the highest (24.9%), closely followed by the PRV seroprevalence of swine in the Eastern region (20.5%). These regions have the highest density of swine in the Netherlands. The PRV seroprevalence in the Western and Central region (11.7%) was about half of the seroprevalence in the Southern and Eastern regions; the lowest regional PRV seroprevalence was observed in the Northern region (3.5%). The Northern part also has the lowest pig density. The PRV seroprevalence was approximately two times higher in sows than in fattening pigs.  相似文献   

6.
Knowledge of the factors that place susceptible gilts at highest risk of pseudorabies virus (PRV) infection in a quarantined herd is crucial to reduce spread of PRV within the herd. Cohorts of PRV seronegative gilts were monitored in 17 herds that were endemically infected with PRV to determine the location of breeding females at the time of infection with PRV and identify herd characteristics and management and housing factors that may influence spread of PRV in the breeding section of swine herds endemically infected with PRV. Blood samples were collected every 1 to 2 months for an average of 13.6 months. In addition, blood was collected from a representative sample of finishing pigs (greater than or equal to 20 weeks old) 3 times per year to determine their serologic PRV status. Incidence rates and relative risks of PRV infection were estimated for 4 areas of the breeding section: gestation barn, gilt pool, farrowing room, and breeding area. Overall, 28, 11, 8, and 2 females became infected with PRV in each of these areas, respectively. The greater number of females infected in the gestation barns, compared with the number of females infected in other locations, is probably a consequence of being at risk for a longer period rather than of a higher incidence rate. Herd size, common housing for gilts in the gilt pool and sows, and serologic pattern of PRV infection in finishing pigs were associated with the detection of spread of PRV in the breeding section of the 17 herds.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The association of herd characteristics and intervention strategies with time under quarantine was evaluated for 163 farrow-to-finish swine herds enrolled in the voluntary phase (1986–1987) of the pseudorabies virus (PRV) eradication program in the state of Illinois (USA). Vaccination was the intervention strategy used most widely (69% of herds), particularly in larger herds. Depopulation was used primarily when PRV seroprevalence was high, and test-and-removal when seroprevalence was low. Approximately 50% of the herds were released from quarantine within 3 years of developing a herd clean-up plan.

Multiple regression analysis using the Cox proportional hazards model indicated the following. Vaccination had a strong association with a longer time until release from quarantine (P<0.001). This is attributed to the lack of a vaccine differential test during this time, which made diagnosis of natural infection more difficult. Offspring segragation was associated with a longer time under quarantine (all herds: P=0.05; non-vaccinated herds: P=0.004). Delay in implementation of a herd clean-up plan was also associated with longer time under quarantine (all herds: P=0.012; non-vaccinated herds: P<0.001). Herds with higher seroprevalence at the time of agreement to a herd plan required a longer time under quarantine (all herds: P<0.001). This result was apparent for non-vaccinated herds (P=0.001), and thus is not merely a consequence of vaccination. Herds in areas with a high geographic density of quarantined herds required a longer time before release from quarantine (all herds: P=0.003), although this trend was not apparent for non-vaccinated herds (P=0.39). After taking PRV seroprevalence into account, there was no apparent association of time under quarantine with sow herd size (all herds: P=0.057; non-vaccinated herds: P=0.81) or confinement housing (all herds: P=0.19; non-vaccinated herds: P=0.91).  相似文献   


8.
In Belgium, pseudorabies in swine has been the subject of a mandatory eradication programme since 1993. From December 1995 to February 1996, a survey was conducted in the five provinces of northern Belgium to estimate the provincial pseudorabies virus (PRV) herd seroprevalence. Seven hundred and twenty randomly selected herds were included in this survey. To detect recently infected animals, only young sows were sampled. The results show that 44% of these herds had an important number of PRV-seropositive young sows. The highest herd seroprevalence was observed in West Flanders (68%), followed by Antwerp (60%), East Flanders (43%), Limburg (18%), and Flemish Brabant (8%). Assuming a diagnostic test sensitivity and specificity of 95% and 99%, respectively, and a true PRV within-herd prevalence of 43%, the overall true PRV herd prevalence was estimated to be 35%. A logistic multiple-regression revealed that the presence of finishing pigs was associated with a two-fold increase in odds of a herd being seropositive (odds ratio (OR)=2.07, 95% confidence interval (CI)=1.31–3.26); a breeding herd size ≥70 sows was associated with a four-fold increase in odds of a herd being seropositive (OR=4.09, 95% CI=2.18–7.67); a pig density in the municipality of ≥455 pigs/km2 was associated with a 10-fold increase in odds of a herd being seropositive (OR=9.68, 95% CI=5.17–18.12). No association was detected between the PRV herd seroprevalence and purchase policy of breeding pigs (purchased gilts, or use of homebred gilts only).  相似文献   

9.
This approach maximizes sensitivity of serology-based monitoring systems by considering spatial clustering of herds classified as false positive by herd testing, allowing outbreaks to be detected in an early phase. The primary objective of this study was to determine whether swine herds infected with influenza viruses cluster in space, and if so, where they cluster. The secondary objective was to investigate the combining of a multivariate spatial scan statistic with herd test results to maximize the sensitivity of the surveillance system for swine influenza. We tested for spatial clustering of swine influenza using the Cuzick–Edwards test as a global test. The location of the most likely spatial clusters of cases for each subtype and strain in a sample of 65 sow and 72 finisher herds in 2001 (Ontario, Canada), and 76 sow herds in 2003 (Ontario, Canada) was determined by a spatial scan statistic in a purely spatial Bernoulli model based on single and multiple datasets.

A case herd was defined by true herd-disease status for sow or finisher herds tested for H1N1, and by apparent herd-disease status for sow herds tested for two H3N2 strains (A/Swine/Colorado/1/77 (Sw/Col/77) and A/Swine/Texas/4199-2/98 (Sw/Tex/98)). In sow herds, there was no statistically significant clustering of H1N1 influenza after adjustment for pig-farm density. Similarly, spatial clustering was not found in finisher herds. In contrast, clustering of H3N2 Sw/Col/77 (prevalence ratio = 12.5) and H3N2 Sw/Tex/98 (prevalence ratio = 15) was identified in an area close to a region with documented isolation of avian influenza isolates from pigs.

For the H1N1 subtype tested by ELISA, we used an approach that minimized overall misclassification at the herd level. This could be more applicable for detecting clusters of positive farms when herd prevalence is moderate to high than when herd prevalence is low. For the H3N2 strains we used an approach that maximized herd-level sensitivity by minimizing the herd cut-off. This is useful in situations where prevalence of the pathogen is low. The results of applying a multivariate spatial scan statistic approach, led us to generate the hypothesis that an unknown variant of influenza of avian origin was circulating in swine herds close to an area where avian strains had previously been isolated from swine. Maximizing herd sensitivity and linking it with the spatial information can be of use for monitoring of pathogens that exhibit the potential for rapid antigenic change, which, consequently, might then lead to diminished cross-reactivity of routinely used assays and lower test sensitivity for the newly emerged variants. Veterinary authorities might incorporate this approach into animal disease surveillance programs that either substantiate freedom from disease, or are aimed at detecting early incursion of a pathogen, such as influenza virus, or both.  相似文献   


10.
A study based on bulk tank milk samples from 120 randomly selected dairy cattle herds was conducted to estimate the prevalence of Coxiella burnetii seropositive dairy herds, to describe the geographical distribution, and to identify risk factors. Using the CHEKIT Q-fever Antibody ELISA Test Kit (IDEXX), the study revealed a prevalence of 79.2% seropositive herds, 18.3% seronegative herds, and 2.5% serointermediate herds based on the instructions provided by the manufacturer. Multifactorial logistic regression showed statistically significant associations (P < 0.01) between C. burnetii seropositivity and increasing herd size (OR = 1.02 per cow increment) and increasing regional average number of cattle per dairy herd (OR = 1.02 per animal increment). Herds >150 cows had 17.9 times higher odds of testing positive compared to herds <80 cows. The regional average number of cattle herds per square kilometer was borderline significantly related to the occurrence of seropositive dairy herds (P = 0.06). The results indicate an increased prevalence of seropositive dairy herds since the previous survey in 2008 and an adverse impact of increasing herd size and cattle density on the risk of seropositivity.  相似文献   

11.
Of swine from 104 herds, 2,616 were tested for antibodies against Toxoplasma gondii, using an ELISA. Data were analyzed according to swine type, herd size, facility type, and season. The true prevalence of toxoplasmosis was estimated as 5.4% among finishing swine and 11.4% among sows and gilts. Herds with less than 100 breeding swine were significantly (P less than 0.05) more likely to be infected than were herds with greater than or equal to 100 breeding swine. The rate of seropositivity in breeding swine was approximately the same in infected herds, regardless of herd size. Herds with finishing swine maintained in total confinement were as likely to become infected as were herds maintained in other types of facilities, but infected herds with finishing swine maintained in confinement appeared to have a lower in-herd prevalence than did herds maintained in other types of facilities (P = 0.09). Seasonal effects were not observed, and prevalence remained relatively constant throughout the year.  相似文献   

12.
OBJECTIVE: To estimate direct and indirect contact rates on livestock facilities and distance traveled between herd contacts. SAMPLE POPULATION: 320 beef, dairy, goat, sheep, and swine herds, 7 artificial insemination technicians, 6 hoof trimmers, 15 veterinarians, 4 sales yard owners, and 7 managers of livestock-related companies within a 3-county region of California. PROCEDURE: A questionnaire was mailed to livestock producers, and personal and telephone interviews were conducted with individuals. RESULTS: Mean monthly direct contact rates were 2.6, 1.6, and 2.0 for dairies with < 1,000, 1,000 to 1,999, and > or = 2,000 cattle, respectively. Mean indirect contact rates on dairies ranged from 234 to 743 contacts/mo and increased by 1 contact/mo as herd size increased by 4.3. Mean direct monthly contact rate for beef herds was 0.4. Distance traveled by personnel and vehicles during a 3-day period ranged from 58.4 to 210.4 km. Of livestock arriving at sales yards, 7% (500/7,072) came from > or = 60 km away, and of those sold, 32% (1,180/3,721) were destined for a location > or = 60 km away. Fifty-five percent (16/29) of owners of large beef herds observed deer or elk within 150 m of livestock at least once per month. CONCLUSIONS AND CLINICAL RELEVANCE: Direct and indirect contacts occur on livestock facilities located over a wide geographic area and at a higher frequency on larger facilities. Knowledge of contact rates may be useful for planning biosecurity programs at the herd, state, and national levels and for modeling transmission potential for foot-and-mouth disease virus.  相似文献   

13.
The use of an ELISA that can differentiate between swine infected with pseudorabies virus (PRV) and swine vaccinated with a specific PRV vaccine was evaluated on an individual and herd basis, and a system for interpreting ELISA results on a herd basis was developed. In 17 herds, recently introduced replacement gilts, seronegative for PRV, were vaccinated with a thymidine kinase- and glycoprotein X (gpX)-deleted vaccine. After vaccination, blood samples were collected from these gilts approximately every 1 to 2 months for up to 19 months. Serum samples were analyzed for antibodies to gpX antigen, using a commercially available ELISA kit according to the manufacturer's protocol. Herd status was determined as positive, suspect, or negative, according to the serum sample:negative control (S:N) values of the samples collected from the herd. From the 17 herds, 130 evaluations were performed. On 49 (38%) of the 130 herd evaluations, 1 or more gilts had suspect test results. Additional testing was required in 19 (39%) of these 49 herd evaluations to determine the PRV infection status of the herd. Status of herds having gilts with suspect results and no positive results was usually negative after retesting. Herds having gilts with positive results were unlikely to have negative status after retesting.  相似文献   

14.
Data were collected from 104 Minnesota swine farms quarantined for pseudorabies virus (PRV) infection. Each herd was serologically evaluated for the presence of antibodies to PRV in finishing pigs. Herd management practices, swine housing design, and disease profiles were described for each farm. Multiple logistic regression analysis was used to determine which factors were associated with circulation of PRV in the finishing pigs of farrow-to-finish farms. Sixty-seven (64%) of the herds had no serologic evidence of PRV circulation in the finishing section, whereas 37 herds (36%) contained at least one PRV seropositive finishing pig. The odds of a given finishing herd being seropositive for PRV were 2.85 times higher if the finishing pigs were housed in confinement (P = 0.01), 2 times higher if Actinobacillus (Haemophilus) pleuropneumoniae was a clinical problem in the herd (P = 0.03), 1.36 times less for each year that passed since the herd quarantine was issued (P = 0.01), 1.74 times higher if clinical signs of PRV were reported (P = 0.04), and 1.52 times higher if animal protein was included in at least one of the rations (P = 0.08).  相似文献   

15.
Embryo transfer was used to conserve genetic material from 2 swine herds seropositive for pseudorabies virus (PRV). Embryos (n = 805) were recovered from 38 PRV-seropositive Duroc sows in Iowa and, after 4 to 10 hours' culture and shipment to Illinois, were transferred to 34 recipients from a herd seronegative for PRV. All recipients remained seronegative for PRV, and 22 of the recipients farrowed 208 pigs (189 alive) that also were seronegative for PRV. There was no evidence of PRV in the embryo recovery medium or in the uterine and oviductal cells recovered with the embryos. Transfer of morulae resulted in higher (P less than 0.02) farrowing rates than did transfer of 4- to 8-cell embryos, but litter size was not affected.  相似文献   

16.
Vaccination programs to eradicate pseudorabies virus (PRV) are being considered in several countries. Knowledge of factors that influence PRV transmission within vaccinated breeding herds may contribute to the success of these programs. A multivariate analysis of variance of the PRV-seroprevalence in sows in 209 herds (average seroprevalence 67.0% per herd) in the southern Netherlands revealed the following risk indicators: (1) presence of finishing pigs; (2) production type (producers of finishing piglets had a higher seroprevalence than producers of breeding stock); (3) vaccination of the sows during nursing (in comparison with vaccinating all sows simultaneously at 5 month intervals, or vaccination during the second half of gestation); (4) pig density in the municipality where the herd was located (seroprevalence increased with higher pig density); (5) herd size less than 100 sows; (6) average within-herd parity (seroprevalence increased with higher withinherd parity); (7) replacement pigs raised on the premises; (8) vaccine strain administered to the sows. Purchase policy (breeding pigs purchased between 10 weeks and 7 months of age, or use of home-bred gilts only) did not significantly contribute to the multivariate model.  相似文献   

17.
Sera were collected from 6 large farrow-to-finish swine herds infected with pseudorabies virus (PRV) in Illinois. All herds were participating in the Large Herd Cleanup Study, a USDA-initiated project to evaluate the feasibility of eradicating pseudorabies from large farms (greater than 400 sows) by use of a combination of vaccination and management changes. Herd size ranged between 425 and 1,500 breeding females. Between April and July 1990, sera for measurement of PRV antibodies were obtained from 113 to 156 sows and 112 to 162 finishing pigs (body weight greater than 70 kg)/herd. Duplicate sera from 30 sows and 30 market-weight pigs/herd were obtained for measurement of serum antibodies to the following associated organisms: swine influenza virus, transmissible gastroenteritis virus, encephalomyocarditis virus, Actinobacillus pleuropneumoniae, Eperythrozoon suis, and 6 serovars of Leptospira interrogans. Prevalence of PRV antibodies attributable to field virus infection ranged between 53.8 and 100% for sows and between 0.7 and 97.3% for finishing pigs, as determined by the appropriate differential test for the vaccine being used on each farm. In only 1 herd, PRV seroprevalence was increased with higher sow parity. For associated infections, the risk of seropositivity attributable to PRV was not significant (for most infections) on all farms and varied among farms. Thus, pseudorabies did not appear, in general, to increase susceptibility to infection with other disease agents.  相似文献   

18.
The spatial distribution of endemic bovine tuberculosis (TB) in Argentine cattle herds was described using recorded information on the detection of TB-like lesions in cattle slaughtered between March 1995 and 1997 at 126 slaughterhouses with federal inspection. Approximately, 47% (9472396 cattle) of the estimated total number of cattle slaughtered in Argentina during this period was included in the study. Information on the number of cattle per source herd consigned to slaughter, number of cattle with TB-like lesions per herd and the geographical location of counties from which cattle originated was used to investigate spatial clustering of TB. Overall, no evidence of clustering of TB prevalence by county was detected (Moran's autocorrelation statistic I=0.009, P=0.089). However, first- (Cuzick and Edwards' test statistic, T(k)=87, P=0.036) and second-order (T(k)=170, P=0.038) nearest-neighbor case-counties (TB prevalence>median prevalence of all counties, 6.7%) were clustered. Using the spatial scan test based on a Bernoulli model, the most-likely cluster (P=0.001) identified during the study period included 5793 cases of TB (5.2 per 1000 km(2)) in five counties. This cluster coincided with Santa Fe Province, which contains 21% of all dairy cows in Argentina and accounts for 34% of the country's milk production. Several secondary clusters of TB-also located in dairy districts-were identified. Study results demonstrate that bovine TB is clustered in Argentina, and these clusters coincide with dairy cattle production. Identification of clustering can assist efforts to eradicate bovine TB from Argentina. Further spatial investigations need to focus on the reasons why TB is clustered in Argentina. In particular, the relationship between TB clustering and management practices-such as grazing density and production systems-need to be described to assist in the development of disease-control programs. The use of spatial statistics and geographical information systems could meet these needs.  相似文献   

19.
Risk factors for high sow mortality in French swine herds   总被引:1,自引:0,他引:1  
Episodes of high sow mortality rates affect profitability of swine farms. However, relevant control actions are difficult to implement. The objective of this study was to identify the risk factors for high levels of sow mortality rate (HM) in French swine herds. A case-control study was carried out in 102 swine herds located in Brittany (western France). Level of sow mortality of a herd was quantified by the annual mortality rate using sow-days as denominator. Fifty-five (53.9%) herds which experienced a sow mortality rate over 5% were classified as HM herds. Logistic regression was used to assess associations of managerial practices and disease prevalence with the odds of HM. High prevalence of urinary tract infections, metritis or lameness were significantly associated with a HM herd status (P < 0.10, OR ranging from 3.4 to 5.2). Multiplying herds were herds at higher risk for sow mortality than commercial farrow-to-finish herds. Providing three meals per day instead of two to dry sows decreased the odds of HM. Feeding plans where the maximum daily amount of feed provided to lactating sows was lower than 8 kg and was reached before 15 d in lactation were related to lower odds of HM (P < 0.10). Average age at weaning of 28 d or more and/or small average litter size at birth (12 piglets or less) were associated with higher odds of experiencing HM.  相似文献   

20.
Pseudorabies virus (PRV) is endemic in some regions of Japan. We investigated the effects of PRV infection status on herd productivity. Serum samples were obtained from 48 swine herds in Japan. Within each herd, three serum samples were obtained from growing pigs at four different ages, as well as from sows in low and high parity groups. Sera were tested for antibodies against wild-type PRV via competitive ELISA. Herds were classified into PRV positive and negative groups based on serological results. Herds infected with PRV exhibited postweaning mortalities (6.84%) that were significantly (P=0.0018) higher than those in unaffected herds (4.73%). Because of the reduced productivity in PRV positive herds, the current PRV eradication program must be strengthened.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号