首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
【目的】通过研究黄淮平原潮土区两年不同轮耕模式下土壤微生物量碳氮、酶活性的差异和变化特征,为该地区选择适宜的耕作制度提供理论依据。【方法】2016-2018年采用裂区设计进行田间小麦–玉米轮作系统下的轮耕试验。主处理为小麦季旋耕(RT)和深耕(DT),3个副处理为玉米季免耕(NT)、行间深松(SBR)、行内深松(SIR),共6个处理。2017、2018年玉米收获后,每10 cm一个层次,测定了0-50 cm土层土壤有机质、全氮、速效养分、微生物量碳(SMBC)、微生物量氮(SMBN)和脲酶、蔗糖酶、中性磷酸酶活性。【结果】各处理土壤有机质、全氮、速效养分、SMBC、SMBN及酶活性均随土层深度的增加而降低,40-50cm土层不受耕作方式的影响。小麦季深耕和玉米季深松对表层土壤有机质和全氮影响不明显,但显著提高了深层土壤有机质和全氮含量。小麦季旋耕显著增加了玉米季0-10 cm土层中速效养分含量,而小麦季深耕条件下的DT-SBR和DT-SIR处理则显著增加了20-40 cm土层中的速效养分含量。在0-20 cm土层,小麦季旋耕条件下的RT-NT、RT-SBR和RT-SIR处理的SMBC明显高于小麦季深耕条件下的DT-NT、DT-SBR和DT-SIR处理,但在20-40 cm土层,SMBC和SMBN均表现为小麦季深耕处理显著高于旋耕处理,且以DT-SIR处理SMBC (67.99 mg/kg)和SMBN (45.96 mg/kg)最高。小麦季深耕处理提高了深层(30-40 cm)土壤微生物量氮/全氮值,但降低了表层(0-20 cm)土壤中的微生物熵。玉米季深松处理(RT-SBR、RT-SIR、DT-SBR和DT-SIR)较免耕处理(RT-NT和DT-NT)均提高了土壤酶活性,其中,在0-20 cm土层,RT-SBR和RT-SIR处理土壤脲酶活、蔗糖酶和中性磷酸酶活性较高;而DT-SBR和DT-SIR处理则提高了深层(20-40 cm)土壤中这三种酶的活性。【结论】在本试验期内,小麦季旋耕–玉米季深松处理(RT-SBR和RT-SIR)能明显提高0-10 cm土壤速效养分含量、0-20 cm土壤微生物量碳含量,而小麦季深耕–玉米季深松处理(DT-SBR和DT-SIR)则提升了20-40 cm土层土壤有机质、全氮、速效养分、微生物量碳和氮含量;小麦季深耕处理提高了深层(30-40 cm)微生物量氮/全氮比,但降低了表层(0-20 cm)土壤微生物熵。  相似文献   

2.
免耕和秸秆还田对潮土酶活性及微生物量碳氮的影响   总被引:9,自引:0,他引:9  
利用中国科学院封丘农业生态实验站玉米-小麦轮作保护性耕作定位试验平台,研究了全翻耕((T)、免耕((NT)、全翻耕+秸秆还田((TS)以及免耕+秸秆还田((NTS)处理分别对田间0 ~ 10、10 ~ 20和20 ~ 30 cm土层酶活性及土壤微生物量碳、氮的影响。结果表明:①在0 ~ 10和10 ~ 20 cm土层内,土壤碱性磷酸酶、转化酶、脲酶、脱氢酶活性为免耕处理大于全翻耕处理,有秸秆还田处理大于无秸秆还田处理,以NTS处理最高,T处理最低;在20 ~ 30 cm土层中,土壤碱性磷酸酶、转化酶、脱氢酶活性免耕处理大于全翻耕处理,土壤碱性磷酸酶、转化酶、脲酶活性有秸秆还田处理大于无秸秆还田处理。②在0 ~10和10 ~ 20 cm土层内,土壤微生物量碳、氮均为免耕处理大于全翻耕处理,有秸秆还田处理大于无秸秆还田处理;在20 ~ 30 cm土层中,微生物量碳以NTS处理最高,微生物量氮以TS处理最高;③4种处理下的土壤酶活性和微生物量碳、氮均随着土层的加深而减少,且在各土层中差异达显著水平。  相似文献   

3.
通过对山西省寿阳长期定位试验田0—20 cm和20—40 cm的土壤测定和分析,探讨了长期有机无机肥配施下褐土微生物生物量碳、氮和酶活性的变化以及相关性。结果表明,褐土微生物生物量碳、氮变化基本一致。褐土微生物生物量碳、氮从0—20 cm到20—40 cm土层均呈减少趋势;长期单施高量有机肥、有机无机肥合理配施都能提高褐土微生物生物量碳、氮;不同用量的长期单施化肥处理不能使微生物生物量碳、氮显著增加。脲酶和碱性磷酸酶活性从0—20 cm到20—40 cm土层呈减少趋势;长期单施高量有机肥和有机无机肥合理配施可使褐土脲酶及碱性磷酸酶活性增加。脲酶活性随单施化肥量的增加有增加趋势,而碱性磷酸酶活性则呈减小趋势。土壤微生物量碳、氮、土壤酶活性及土壤养分之间的显著相关性表明,微生物生物量碳、氮和土壤酶活性可以判断褐土土壤有机质和N素状况,可作为评价褐土肥力水平和土壤培肥效果的生物学指标,同时也为提高褐土肥力水平和土壤培肥效果提供依据。  相似文献   

4.
通过对山西省寿阳长期定位试验田0―20 cm和20―40 cm的土壤测定和分析,探讨了长期有机无机肥配施下褐土微生物生物量碳、氮和酶活性的变化以及相关性。结果表明,褐土微生物生物量C、N变化基本一致。褐土微生物生物量碳、氮从0―20 cm到20―40 cm土层均呈减少趋势;长期单施高量有机肥、有机无机肥合理配施都能提高褐土微生物生物量碳、氮;不同用量的长期单施化肥处理不能使微生物生物量C、N显著增加。脲酶和碱性磷酸酶活性从0―20 cm到20―40 cm土层呈减少趋势;长期单施高量有机肥和有机无机肥合理配施可使褐土脲酶及碱性磷酸酶活性增加。脲酶活性随单施化肥量的增加有变大趋势,而碱性磷酸酶活性则呈变小趋势。土壤微生物量碳氮、土壤酶活性及土壤养分之间的显著相关性表明,微生物生物量C、N和土壤酶活性可以判断褐土土壤有机质和N素状况,可作为评价褐土土壤肥力水平和土壤培肥效果的生物学指标,同时也可为提高褐土土壤肥力水平和土壤培肥效果提供依据。  相似文献   

5.
土体重构对旱田土壤微生物及养分的影响   总被引:1,自引:0,他引:1  
以旱田土壤为研究对象,探讨常规耕作(CK),0-10cm与10-20cm土层置换(TC1),0-20cm与20-40cm土层置换(TC2),0-30cm与30-60cm土层置换(TC3),0-10cm土层混合(GF1),0-20cm土层混合(GF2),0-30cm土层混合(GF3)对不同层次土壤微生物量、酶活性及土壤养分含量的影响。结果表明,与CK处理相比,土体重构处理能够显著提高土壤微生物量碳氮含量和土壤酶活性,不同层次土壤酶活性与对照处理差异显著;耕翻处理的土壤酶活性明显高于对照处理,但除土壤脲酶含量和GF2处理均未达到显著水平;土层置换处理土壤养分含量随土层深度增加表现出不同的变化趋势,与对照处理相比各层次差异显著,土层置换处理有利于土壤养分含量在不同土层中的均匀分布;土层置换处理对土壤改良效果明显,可提高土壤微生物量碳氮含量,增加土壤酶活性,活化土壤养分。  相似文献   

6.
长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响   总被引:264,自引:7,他引:264  
通过设置在江苏省句容农科所的田间定位试验研究长期免耕及施用有机肥料对土壤微生物生物量碳、氮、磷的影响。结果表明 :经过 1 6年 32茬稻—麦水旱轮作后 ,表土层 ( 0~ 5cm)土壤微生物生物量碳、氮、磷含量比亚表层 ( 5~ 1 0cm)分别高 2 7.5 %、43.6%和1 1 %。与常规耕翻相比长期免耕处理表土层土壤微生物生物量碳、氮含量分别增加了2 5 .4%和 45 .4% ,而微生物生物量磷无明显变化规律 ;亚表层的土壤微生物生物量碳、氮、磷免耕与耕翻两种耕作方式间的差异不显著。尽管各施肥处理施用的氮、磷、钾数量完全相等 ,但土壤微生物生物量碳、氮、磷的含量却因肥料种类的不同而异。综合 0~ 5和 5~ 1 0cm土层 ,微生物生物量碳、磷为 :猪粪 化肥 >秸秆 化肥 >绿肥 化肥 >化肥 >不施肥 ,微生物生物量氮则为 :猪粪 化肥 >绿肥 化肥 >秸秆 化肥 >化肥 >不施肥。相关分析结果显示 ,土壤微生物生物量碳、氮与土壤有机碳、土壤全氮和土壤碱解氮之间均呈极显著的正相关 ,表明其与土壤肥力关系密切 ,可作为评价土壤肥力性状的生物学指标  相似文献   

7.
为探讨耕作及轮作方式对农田土壤理化性质和碳组分的影响,设置免耕、传统耕作2种耕作方式,以及小麦-玉米轮作、小麦/玉米间作、小麦-冬油菜-玉米轮作3种种植模式,共形成6个处理,研究结果表明:与传统耕作相比,免耕增加了0~5 cm、5~20 cm土层全氮、全磷、速效磷和含水量,而降低了的土壤pH和土壤容重。免耕小麦/玉米间作(NT.W1/NT.WM.1)处理的土壤容重、含水量、全氮、全磷含量高于NT.WRM3和NT.WM5处理,在不同土层间,土壤全氮、全磷和速效磷含量随着土层深度的增加而降低。土壤碳组分含量总体表现为免耕处理高于传统耕作处理,免耕处理0~5 cm土层土壤有机碳、颗粒有机碳、可溶性有机碳、微生物量碳含量较相应传统耕作分别增加了1.31%~36.57%、2.07%~35.22%、2.38%~4.78%、2.08%~11.68%,在5~20 cm土层,免耕处理土壤有机碳和微生物量碳含量高于传统耕作。在不同免耕处理下,土壤有机碳,颗粒有机碳和微生物量碳含量在0~5 cm、5~20 cm土层总体表现为NT.WM5高于其他免耕处理,相关性分析表明,有机碳、微生物量碳和速效磷呈极显著正相关,容重和有机碳呈极显著负相关。综上所述,免耕小麦/玉米间作利于改善土壤理化性质,小麦-玉米轮作有利于提高土壤有机碳,颗粒有机碳和微生物量碳含量。  相似文献   

8.
免耕和稻草还田对稻田土壤氮素转化强度的影响   总被引:1,自引:0,他引:1  
为了明确土壤氮素转化对免耕和稻草还田的响应,研究了不同耕作对土壤(0~5 cm、5~12 cm和12~20 cm土层)氮素转化强度和铵态氮含量的影响。结果表明,免耕显著提高0~5 cm土层土壤氨化强度和铵态氮含量,但对于5~12 cm和12~20 cm土层趋势则相反;各土层土壤硝化势、反硝化强度免耕明显低于常耕,表明免耕促进0~5 cm土层有机氮的氨化作用和降低5~20 cm土层有机氮的氨化及0~20 cm土层土壤硝化-反硝化损失。稻草还田对土壤氮素转化强度的影响因耕作而异,免耕下,稻草还田促进5~20 cm土层土壤氨化强度及各土层反硝化强度和铵态氮含量,对0~5 cm土层土壤氨化强度和各土层土壤硝化势影响不大;常耕下,稻草还田降低5~20 cm土层铵态氮含量和硝化势,提高各土层氨化强度和反硝化强度。因而,免耕结合稻草还田更有利于土壤氮素的释放、供应,但需注意防止反硝化损失。  相似文献   

9.
地膜覆盖对杨树林下土壤生物学特征的影响   总被引:2,自引:0,他引:2  
在大田条件下,研究了地膜覆盖对杨树林下0-20cm和20-40cm土层的土壤理化性质、土壤微生物数量、酶活性、微生物量碳及活跃微生物量的影响。结果表明,在0-20cm土层,覆膜处理可显著增加土壤含水量和碱解氮含量,而有机质、全氮、速效磷和pH值却明显降低土壤细菌数和真菌数分别增加了44.89%和42.58%,放线菌数变化不明显土壤过氧化氢酶、蔗糖酶和多酚氧化酶活性分别提高了29.25%,83.66%和28.95%,而脲酶活性却降低了13.02%土壤微生物量碳和活跃微生物量分别增加了27.44%和31.87%,有利于土壤养分的分解和有效化。20-40cm土层与0-20cm土层土壤表现出基本一致的变化规律,但覆膜与对照之间的差异变小,表明随着土层深度的增加,覆膜的影响作用减小。综合分析认为,地膜覆盖对杨树林下土壤,尤其是表层土壤的生态环境具有明显的改善作用。  相似文献   

10.
土壤酶对森林生态系统生物化学过程有重要作用,能快速反映土壤环境(如养分含量和有效性)的变化。采伐剩余物是林地土壤养分的重要来源,其处理方式会对森林土壤的养分含量和有效性产生影响。为探讨采伐剩余物不同处理方式对杉木幼林土壤酶活性的影响,在福建省三明市格氏栲自然保护区40年生的杉木成熟林采伐迹地上对采伐剩余物进行不同处理(保留RR、火烧RB、去除R)并种植杉木幼林,通过采集0-10,10-20 cm土层土壤,对6种胞外酶活性进行研究。结果表明:(1)采伐剩余物处理4年后,相比保留处理,火烧和清除处理的土壤可溶性有机碳、可溶性有机氮、无机氮、硝态氮含量均显著下降。其中火烧处理下硝态氮下降幅度显著高于清除处理,2个土层下降幅度平均分别为88%和51%;(2)相比保留处理,火烧和清除处理土壤微生物生物量碳和微生物生物量磷含量以及6种土壤酶活性,即酸性磷酸酶、β-葡萄糖苷酶、纤维素水解酶、β-N-乙酰氨基葡萄糖苷酶、过氧化酶、酚氧化酶均明显更低,而且火烧处理两土层微生物生物量碳和微生物生物量磷含量显著低于清除处理;(3)冗余分析表明,0-10 cm土层土壤酶活性与微生物生物量磷、微生物生物量碳含量显著相关,而可溶性有机氮、硝态氮、微生物生物量碳是影响10-20 cm土层土壤酶活性变化的关键因子。保留采伐剩余物有利于提高土壤养分和酶活性,是土壤肥力维持和森林生产力提高的有效经营管理措施。  相似文献   

11.
Long-term influence of N fertilizer, tillage and straw on crop production and soil properties are not well known in central Alberta. Field experiments were established in autumn 1979, on a Black Chernozemic soil and on a Gray Luvisolic soil in north-central Alberta to determine the long-term effect of tillage, straw and N fertilizer on yield and N uptake of barley (Hordeum vulgare L.). Fertilizer N was applied annually at 56 kg ha−1. The 11 year averages of barley yields and N uptake under zero tillage were lower than under conventional tillage. Retention rather than removal of straw tended to reduce barley yield for the initial 6 years and 2 year at Site 1 and Site 2, respectively. A simple mathematical model of average annual plant N uptake and grain yield could account for most of the variation in the data observed at both sites (R2 = 0.907; P < 0.01). Final values of soil N, calculated using a mass balance approach, agree closely with values measured at the end of the eleventh year. Conventional tillage and zero tillage, with addition of fertilizer N and retention of straw, were the only treatments with apparent but small net addition of N to soil at Site 1 (40 kg ha−1 and 117 kg ha−1, respectively). At Site 2, only the zero tillage treatment with addition of fertilizer and retention of straw gained soil N (29 kg ha−1). In conclusion, soil ecosystems functioning in subhumid environments with slight to moderate heat limitations such as those in central Alberta can adapt, within a few years, to zero tillage practices with full retention of straw.  相似文献   

12.
Field experiments (established in autumn 1979, with monoculture barley from 1980 to 1990 and barley/wheat–canola–triticale–pea rotation from 1991 to 2008) were conducted on two contrasting soil types (Gray Luvisol [Typic Haplocryalf] loam soil at Breton; Black Chernozem [Albic Agricryoll] silty clay loam soil at Ellerslie) in north-central Alberta, Canada, to determine the influence of tillage (zero tillage and conventional tillage), straw management (straw removed [SRem] and straw retained [SRet]), and N fertilizer rate (0, 50 and 100 kg N ha?1in SRet, and only 0 kg N ha?1in SRem plots) on seed yield, straw yield, total N uptake in seed + straw (1991–2008), and N balance sheet (1980–2008). The N fertilizer urea was midrow-banded under both tillage systems in the 1991 to 2008 period. There was a considerable increase in seed yield, straw yield, and total N uptake in seed + straw with increasing N rate up to 100 kg N ha?1 under both tillage systems. On the average, conventional tillage produced greater seed yield (by 279 kg ha?1), straw yield (by 252 kg ha?1), and total N uptake in seed + straw (by 6.0 kg N ha?1) than zero tillage, but the differences were greater at Breton than Ellerslie. Compared to straw removal treatment, seed yield, straw yield, and total N uptake in seed + straw tended to be greater with straw retained at the zero-N rate used in the study. The amounts of applied N unaccounted for over the 1980 to 2008 period ranged from 1114 to 1846 kg N ha?1 at Breton and 845 to 1665 kg N ha?1 at Ellerslie, suggesting a great potential for N loss from the soil-plant system through denitrification, and N immobilization from the soil mineral N pool. In conclusion, crop yield and N uptake were lower under zero tillage than conventional, and long-term retention of straw suggests some gradual improvement in soil productivity.  相似文献   

13.
On the Canadian prairies there has been a steady increase in no-till seeding coupled with more frequent cropping, facilitated by the greater use of snow management to increase stored soil water. Although no-till seeding can gradually improve soil conservation and soil quality, it may also increase the incidence of grassy weed infestations and thus cause more frequent use of costly herbicides, such as glyphosate. Our objective was to determine if no-till producers experiencing grassy weed problems could introduce pre-seeding tillage for a few years to more economically control perennial weeds, without adversely affecting grain yield and quality, and soil quality. An experiment in which spring wheat (Triticum aestivum L.) was grown for 9 years with no-tillage management on an Orthic Brown Chernozem (Typic Haplobroll) with treatments involving snow management and N rate, placement and timing, was converted to a study of pre-seeding shallow (5–7.5 cm) tillage with a cultivator, versus no-tillage, by replacing the N timing treatment in the tenth year. The experiment was then continued for three more years, during which we assessed the effect of tillage on weed populations, grain yield and N content, and on soil quality. Soil quality was also assessed following one more year during which the entire study site was summerfallowed and subjected to four tillage operations. Weed populations generally were not affected by tillage or snow management treatments, but differed among N rate and placement treatments, though not in a way that could be easily interpreted. Tillage had no effect on yield or grain N content. It increased the erodible fraction of soil (dry sieving), but did not affect wet aggregate stability. Neither microbial biomass C, nor C and N mineralization were affected by the change in tillage method. We conclude that the judicious use of shallow pre-seeding tillage in an otherwise no-till cropping system can be tolerated to manage persistent grassy weed problems without deleteriously influencing soil quality, grain yield or protein.  相似文献   

14.
Farmers are increasingly using zero tillage in Central Argentina to replace other tillage systems. Intensive tillage decreases soil organic matter content and causes physical degradation. The objective of this work was to evaluate changes in some soil biological properties induced by different tillage systems. A 6 year experiment in which continuous maize (Zea mays L.) was grown using three tillage systems (conventional tillage, reduced tillage and zero tillage) was carried out at Córdoba Province, Argentina, on a Typic Argiudoll. Variations in total organic C content, microbial biomass C, metabolic quotient (qCO2) and the proportion of the organic C present in the microbial biomass were evaluated at two sampling depths (0–5 and 5–15 cm). Additional samples from a nearby site (undisturbed grassland) were also taken and considered as a control. Concentrations of soil organic C and microbial biomass C were higher under zero tillage as compared with conventional tillage, at the 0–5 cm soil depth. Differences were not evident among tillage systems at the 5–15 cm soil depth. An analysis of the microbial biomass C content, in relation to the organic C, revealed higher values at the 0–5 cm soil depth only for those systems which provoke less disturbance of the soil (i.e. reduced tillage and zero tillage). Significantly greater amounts of CO2---C were released from zero tillage and reduced tillage soils than from conventionally tilled soils. This release was positively correlated with microbial biomass C. qCO2 values were not significantly different between tillage systems. Zero tillage proved to be more efficient in the conservation of organic C and microbial biomass C. The tillage system's impact on respiration was due to its effect on the microbial biomass.  相似文献   

15.
Tillage practices can influence content and dynamics of soil N and P. A field study was conducted on a loam soil (Typic Udifluvent) in Italy, to determine mineral and organic N and P concentrations at the end of 6 years of different tillage systems. Maize (Zea mays L.) was cropped since 1970, and managed since 1994 with deep ploughing (DP) to 40 cm, ripper subsoiling (RS) to 40 cm, shallow ploughing (SP) to 20 cm and minimum tillage with harrow disk (MT) to 10 cm. At the end of the sixth year, soil was collected in 10 cm increments to a total depth of 40 cm. Surface concentration of total N was higher with MT than with RS, SP and DP, but differences disappeared at lower depths. Soil water content was lower under DP and SP treatments than under MT and RS. Residual NO3-N in the soil profile was not different among tillage treatments. During 6 years, MT increased soil quality, by enrichment of organic N and improvement of soil water content at the surface. Moldboard ploughing was a less sustainable tillage system in this environment.  相似文献   

16.
The impact of conservation tillage practices on carbon sequestration has been of great interest in recent years. Changes in the soil organic carbon (SOC) as influenced by tillage, is more noticeable under long-term rather than short-term tillage practices. This experiment analyzed the organic carbon status of soils sampled at depth increments from 0 to 60 cm after 25 years of five tillage treatments in a silt loam soil. Zero tillage (ZT) treatment was compared to conventional tillage practices of mouldboard and chisel plow operations conducted either during the fall or spring season in a randomized complete block design with four replications. The SOC was calculated on depth and equivalent soil mass bases. Contrast analysis showed a significantly (5%) higher soil bulk density for zero versus fall and zero versus chisel tillage operations at 5–10 cm soil depth. The SOC concentration was dependent on the depth of tillage operation and followed the trend of higher SOC for zero, chisel, and mouldboard tillage at 0–5, 5–10, and 20–40 cm depth, respectively. There were more significant differences in the SOC storage when expressed on depth compared to an equivalent soil mass basis. SOC storage was significantly higher for ZT at the 0–5 cm soil depth compared to conventional tillage practices. Contrast analysis on an equivalent mass basis showed that SOC storage was significantly higher for spring tillage compared to fall tillage at 0–60 cm depth. In conclusion, ZT practices increased SOC concentration and storage compared to conventional tillage operations only for the surface layer but not for the entire soil profile.  相似文献   

17.
【目的】 农田固碳保水性能是影响作物产量的关键因素,研究耕作方式对耕层 (0—20 cm) 土壤碳、水含量和产量的影响,为选择适宜该地区的最佳耕作措施提供参考。 【方法】 保护性耕作长期定位试验始于2002年,种植制度为冬小麦–夏玉米一年两熟,两季秸秆全量粉碎 (3~5 cm) 还田,试验设传统翻耕、深松、旋耕和免耕4种耕作方式。对2015—2016年作物生长各时期土壤有机碳含量、土壤含水量、碳水储量、产量和等价产量等进行了测定。 【结果】 不同处理麦–玉轮作农田0—20 cm土层有机碳含量有所不同。耕作措施对土壤有机碳含量有显著 (P < 0.05) 影响,表现为深松和免耕能显著增加0—10 cm土层有机碳含量,且以深松效果最为显著 ( P < 0.05)。与传统翻耕相比,免耕和旋耕降低了10—20 cm土层土壤有机碳含量;深松比传统翻耕显著 ( P < 0.05) 增加了小麦季土壤有机碳含量,玉米季没有显著性差异 ( P < 0.05)。0—10 cm土层,玉米季旋耕和免耕处理的土壤含水量高于深松和传统翻耕;在10—20 cm土层小麦季免耕处理土壤含水量高于其他三种耕作方式。产量结果表明,深松能有效增加作物的有效穗数、穗粒数和千粒重,进而增加籽粒产量和周年等价产量;免耕显著 ( P < 0.05) 降低了亚表层 (10—20 cm) 有机碳含量,降低穗粒数和千粒重,不利于作物增产。两年小麦玉米单作产量和周年等价产量均表现为深松 > 传统翻耕 > 旋耕 > 免耕。 【结论】 深松能有效促进耕层土壤有机碳积累和保水性能提高,增加作物的有效穗数、穗粒数和千粒重,从而增加产量;免耕显著 (P < 0.05) 提高了表土层 (0—10 cm) 碳储量,有助于增强耕层土壤的保水性能。   相似文献   

18.
Field experiments were conducted over 5 years (2000–2004) at two sites (Star City and Birch Hills) in the Saskatchewan Parkland region to determine the effects of tillage and crop residue burning on soil total organic C (TOC), total organic N (TON), light fraction organic matter (LFOM), light fraction organic C (LFOC), light fraction organic N (LFON) and dry aggregation. Two tillage (ZT, zero tillage; CT, conventional tillage, with one tillage in autumn and another in spring) and two burning (B, residue burnt in autumn; NB, residue not burnt and returned to the soil) treatments were combined in a barley (Hordeum vulgare L.)–canola (Brassica napus L.) rotation. After five crop seasons, the mass of TOC and TON in the 0–15 cm soil tended to be greater, whereas mass of LFOM, LFOC and LFON was significantly greater in NB than B treatments at both sites. Zero tillage resulted in greater TOC, TON, LFOM, LFOC and LFON in soil than CT, in both B and NB treatments. The mass of TOC, TON, LFOM, LFOC and LFON in soil was the highest in the ZT–NB treatment, and lowest in the CT–B treatment. Zero tillage had a lower proportion of fine aggregates (<0.83 mm diameter) and a greater proportion of large aggregates (>6.4 mm diameter) at both sites, but the mean weight diameter (MWD) was greater under ZT than CT only at Birch Hills. Although the tillage × burning interaction was not significant in most cases, the ZT–NB treatment usually had the lowest proportion (22.6%) of fine aggregates and the greatest proportion (47.1%) of large aggregates, compared to the highest (34.9%) and the lowest proportion (35.6%) of these aggregates, respectively, in CT–B treatment. This indicated reduced potential for wind erosion when tillage was omitted (ZT) and crop residues were returned to the soil (NB). Returning crop residue to soil rather than burning usually increased soil organic C and N, and aggregation, but the differences between treatments were of greater magnitude between tillage treatments (ZT versus CT) than between burning treatments (B versus NB). Overall, returning crop residues along with ZT improved soil organic C and N, and aggregation, while burning in combination with CT resulted in the deterioration of these soil properties.  相似文献   

19.
A better understanding of tillage effects on soil organic matter is vital for development of effective soil conservation practices. The objective of this research is to determine the effect of tillage and crop sequence on soil organic carbon (OC) and total nitrogen (TN) content in an irrigated southern Alberta soil. A field experiment was conducted using a split–split plot design from 1994 to 1998 in Alberta, Canada. There were two crop sequences (Sequence 1: spring wheat (Triticum aestivum L.)–sugar beet (Beta vulgaris L.)–spring wheat–annual legume; and Sequence 2: spring wheat–spring wheat–annual legume–sugar beet) and two tillage practices (CT: conventional tillage and MT: minimum tillage). Surface soil under MT had significantly higher OC (30.1 Mg ha−1) content than under CT (28.3 Mg ha−1) after 4 years of treatment. The MT treatment retains crop residue at the soil surface, reduces soil erosion and slows organic matter decomposition, which are key factors in enhancing the soil fertility status of southern Alberta irrigated soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号