首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Pharmacokinetic parameters for the beta 2-adrenergic agonist, cimaterol (CIM), were determined in growing Holstein steers. Compartmental analysis was used after measurement of CIM in body fluids by affinity chromatography and HPLC using UV detection. Recoveries from spiked plasma and urine standards were 70 +/- 1.2% and 68 +/- 1.1%, respectively. The minimum detection level in plasma was 1 ng/mL and the average CV was 5.1% for concentrations that ranged from 1 to 30 ng/mL. Four steers (276 +/- 24 kg) received 15 mg of CIM by bolus intravenous injection. Plasma CIM levels declined in a biphasic manner with half-lives of 2.5 min for the distribution phase and 54 min for the elimination phase. A two-compartment open model was used to describe the disappearance of CIM and the following pharmacokinetic parameters were obtained: central compartment volume (Vc) = .76 L/kg, apparent volume of distribution (Vd) = 4.1 L/kg, and transfer rate constants from the central to peripheral compartment (k12) = .177/min, from the peripheral to central compartment (k21) = .054/min and elimination from the central compartment (kel) = .074/min. After 8 h, total urinary CIM accounted for only 18.3% of the administered dose. Results suggest that circulating concentrations of CIM in growing steers are influenced by its accumulation in an unidentified peripheral pool and its conversion into unknown metabolite(s) before elimination.  相似文献   

2.
Tramadol is an analgesic agent and is used in dogs and cats. Tramadol exerts its action through interactions with opioid, serotonin and adrenergic receptors. The opioid effect of tramadol is believed to be, at least in part, related to its metabolite, O-desmethyl-tramadol. The pharmacokinetics of tramadol and O-desmethyl-tramadol were examined after intravenous (i.v.) and oral administration of tramadol to six cats. A two-compartment model (with first-order absorption in the central compartment for the oral administration) with elimination from the central compartment best described the disposition of tramadol in cats. After i.v. administration, the apparent volume of distribution of the central compartment, the apparent volume of distribution at steady-state, the clearance, and the terminal half-life (mean +/- SEM) were 1553+/-118 mL/kg, 3103+/-132 mL/kg, 20.8+/-3.2 mL/min/kg, and 134+/-18 min, respectively. Systemic availability and terminal half-life after oral administration were 93+/-7% and 204+/-8 min, respectively. O-desmethyl-tramadol rapidly appeared in plasma following tramadol administration and had terminal half-lives of 261+/-28 and 289+/-19 min after i.v. and oral tramadol administration, respectively. The rate of formation of O-desmethyl-tramadol estimated from a model including both tramadol and O-desmethyl-tramadol was 0.014+/-0.003/min and 0.004+/-0.0008/min after i.v. and oral tramadol administration, respectively.  相似文献   

3.
The pharmacokinetics of theophylline were determined after an intravenous (i.v.) dose of 2.36 mg/kg in six camels and 4.72 mg/kg body weight in three camels. The data obtained (median and range) for the low and high dose, respectively, were as follows: the distribution half-lives (t1/2 alpha) were 1.37 (0.64-3.25) and 2.66 (0.83-3.5) h, the elimination half-lives (t1/2 beta) were 11.8 (8.25-14.9) and 10.4 (10.0-13.5) h, the steady state volumes of distribution (Vss) were 0.88 (0.62-1.54) and 0.76 (0.63-0.76) L/kg, volumes of the central compartment (Vc) were 0.41 (0.35-0.63) and 0.51 (0.36-0.52) L/kg, total body clearances (Clt) were 62.3 (39.4-97.0) and 50.2 (47.7-67.4) mL/h.kg body weight and renal clearance (Vr) for the low dose was 0.6 (0.42-0.96) mL/h.kg body weight. There was no significant difference in the pharmacokinetic parameters between the two doses. Theophylline protein binding at a concentration of 5 micrograms/mL was 32.2 +/- 3.3%. Caffeine was identified as a theophylline metabolite but its concentration in serum and urine was small. Based on the pharmacokinetic values obtained in this study, a dosage of 7.5 mg/kg body weight administered by i.v. injection at 12 h intervals can be recommended. This dosing regimen should achieve an average steady state serum concentration of 10 micrograms/mL with peak serum concentration not exceeding 15 micrograms/mL.  相似文献   

4.
Tetracycline hydrochloride was administered to domestic rabbits using a single bolus by the intravenous and oral routes. Pharmacokinetic parameters were determined for intravenous (10 mg/kg) and oral (150 mg/kg) administration. The effect of fasting for 12 h on the drug elimination kinetics after oral administration was evaluated. Tetracycline was added to the drinking water at 800 mg/L or 1600 mg/L. Drug and water intake and serum levels were monitored. Mean serum pharmacokinetic parameters following intravenous administration were; 0 intercept beta curve B (microgram/mL) = 7.5, rate of elimination from body -b (min-1) = 0.0058, half life elimination from body -t 1/2 b (min) = 120.0, wt(kg) = 3.2 determined using combined male and female data. Mean serum pharmacokinetic parameters after oral administration (single bolus) were -B (microgram/mL) = 1.54 (full stomach) and 2.71 (empty stomach), b(min-1) = 0.0037 (full stomach) and 0.0035 (empty stomach), t 1/2 b (min) = 190.3 (full stomach) and 216.2 (empty stomach). Administration of tetracycline in the drinking water produced very low to nondetectable levels of drug in the serum, even at high dosage, and the 1600 mg/L drug concentration was accompanied by a significant drop in water intake. Thus, it is evident that concentrations of tetracycline of up to 1600 mg/L drinking water will not produce levels of antibiotic consistently detectable in the serum.  相似文献   

5.
Biological availability and pharmacokinetic properties of tylosin were determined in broiler chickens after oral (p.o.) and intravenous (i.v.) administration at a dose of 10 mg/kg. The calculated bioavailability--F%, by comparing AUC values--p.o. and AUC--i.v., ranged from 30%-34%. After intravenous injection tylosin was rapidly distributed in the organism, showing elimination half-life (t1/2 beta) values of 0.52 h and distribution volume (Vd) of 0.69 L/kg, at a clearance rate (Cl) of 5.30 +/- 0.59 ml/min/kg. After oral administration, tylosin has a similar distribution volume (Vd = 0.85 L/kg), while the elimination half-life t1/2 beta of 2.07 h was four times bigger than after i.v. administration at Cl = 4.40 +/- 0.27 ml/min/kg. The obtained value tmax = 1.5 h for tylosin after oral administration indicates that using this antibiotic with drinking water in broiler chickens is the method of choice. However, a relatively low value Cmax = 1.2 micrograms/ml after oral administration of tylosin shows that dosing of this antibiotic in broiler chickens should be higher than in other food producing animals.  相似文献   

6.
The plasma and salivary disposition of closantel and rafoxanide were examined following intravenous administration in adult sheep. Two studies were conducted with rafoxanide at 7.5 mg/kg and 1 with closantel using 2 doses (5 and 15 mg/kg). The pharmacokinetic profile of both drugs in plasma were best described by a 2-compartmental model with 1st-order rate constants. Plasma disposition of closantel and rafoxanide were characterised by a rapid distribution (t1/2(alpha)) of <30 min), long elimination half-life (t1/2(beta)) of 17.0 +/- 4.0 days for closantel and 7.2 +/- 0.6 days for rafoxanide), small apparent volume of distribution (V(SS) of <0.15 l/kg) and a slow rate of total body clearance (Cl of <0.01 ml/min/kg). The area under the drug plasma concentration curve (AUC) of closantel at 5 mg/kg was nearly twice as large as that of rafoxanide at 7.5 mg/kg resulting from the slower t1/2(beta) observed with closantel compared to rafoxanide. Large individual differences were observed in the rate measurements of distribution (k12, k21 and t1/2(alpha)), whereas the parameters of elimination (k10, t1/2(beta) and Cl), were more consistent between animals. A dose proportional increase in AUC was observed for closantel administered at 5 and 15 mg/kg. A low, constant salivary concentration of closantel (mean of 0.04 +/- 0.05 microg/mL) and rafoxanide (mean of 0.07 +/- 0.04 microg/mL) was observed during the 24-h examination period after dosing.  相似文献   

7.
A pharmacokinetic and bioavailability study of spectinomycin was conducted in healthy broiler chickens following administration of a single (50 mg/kg bw) intravenous (i.v.), intramuscular (i.m.) and subcutaneous (s.c.) dose and oral doses of 50 and 100 mg/kg bw. Following i.v. administration, the elimination half-life (t1/2beta), mean residence time (MRT), volume of distribution at steady-state (Vd(ss)), volume of distribution based on the terminal phase (Vd(z)) and total body clearance (ClB) were 1.46+/-1.10 h, 1.61+/-1.05 h, 0.26+/-0.009 L/kg, 0.34 (0.30-0.38) L/kg and 2.68+/-0.017 mL/min/kg respectively. After i.m. and s.c. dosing, the Cmax was 152.76+/-1.08 and 99.77+/-1.04 microg/mL, achieved at 0.25 (0.25-0.50) and 0.25 (0.25-1.00) h, the t1/2beta was 1.65+/-1.07 and 2.03+/-1.06 h and the absolute bioavailability (F) was 136.1% and 128.8% respectively. A significant difference in Cmax (5.13+/-0.10, 14.26+/-1.12 microg/mL), t1/2beta (3.74+/-1.07, 8.93+/-1.13 h) and ClB/F (22.69+/-0.018, 10.14+/-0.018 mL/min/kg) were found between the two oral doses (50 and 100 mg/kg bw respectively), but there were no differences in the tmax [2.00 (2.00-4.00), 2.00 (2.00-2.00) h] and Vd(z)/F [6.95 (6.34-9.06), 7.98 (4.75-10.62) L/kg). The absolute bioavailability (F) of spectinomycin was 11.8% and 26.4% after oral administration of 50 and 100 mg/kg bw respectively.  相似文献   

8.
Serum, tissue and peritoneal fluid concentrations of ceftazidime were studied in ewes after intravenous, intramuscular and subcutaneous administration at 50 mg kg-1 bodyweight. Tissue and peritoneal cages were implanted in the animals studied. After intravenous bolus administration, the mean serum concentration versus time profile was best described by a two-compartment open model. The distribution rate constant (alpha) was 3.5 +/- 1.1 h-1 and the half-life (t 1/2 alpha) 0.22 +/- 0.09 hour. The elimination rate constant (beta) was 0.43 +/- 0.04 h-1 and half-life (t 1/2 beta) 1.6 +/- 0.2 hours. The area under the curve was 275.7 +/- 84.0 micrograms.ml-1 h. The volume of distribution as steady state was 356.1 +/- 208.0 ml kg-1. The penetration ratio into tissue fluid was 62.6 +/- 15.1 per cent and into peritoneal fluid 61.1 +/- 16.5 per cent. After intramuscular injection, the elimination half-life was 1.7 +/- 0.2 hours, the area under the curve was 228.7 +/- 43.3 micrograms.ml-1 h. and the elimination rate constant was 0.42 +/- 0.05 h-1. The penetration ratio into tissue fluid was 68.5 +/- 37.3 per cent and into peritoneal fluid 73.3 +/- 34.4 per cent. After subcutaneous injection, the elimination half-life was 1.8 +/- 0.5 hours, the area under the curve was 231.8 +/- 65.6 micrograms.ml-1 h. and the elimination constant was 0.41 +/- 0.10 h-1. The penetration ratio into tissue fluid was 47.2 +/- 3.5 per cent and into peritoneal fluid 58.1 +/- 15.6 per cent.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The pharmacokinetics of selamectin were evaluated in cats and dogs, following intravenous (0.05, 0.1 and 0.2 mg/kg), topical (24 mg/kg) and oral (24 mg/kg) administration. Following selamectin administration, serial blood samples were collected and plasma concentrations were determined by high performance liquid chromatography (HPLC). After intravenous administration of selamectin to cats and dogs, the mean maximum plasma concentrations and area under the concentration-time curve (AUC) were linearly related to the dose, and mean systemic clearance (Clb) and steady-state volume of distribution (Vd(ss)) were independent of dose. Plasma concentrations after intravenous administration declined polyexponentially in cats and biphasically in dogs, with mean terminal phase half-lives (t(1/2)) of approximately 69 h in cats and 14 h in dogs. In cats, overall Clb was 0.470 +/- 0.039 mL/min/kg (+/-SD) and overall Vd(ss) was 2.19 +/- 0.05 L/kg, compared with values of 1.18 +/- 0.31 mL/min/kg and 1.24 +/- 0.26 L/kg, respectively, in dogs. After topical administration, the mean C(max) in cats was 5513 +/- 2173 ng/mL reached at a time (T(max)) of 15 +/- 12 h postadministration; in dogs, C(max) was 86.5 +/- 34.0 ng/mL at T(max) of 72 +/- 48 h. Bioavailability was 74% in cats and 4.4% in dogs. Following oral administration to cats, mean C(max) was 11,929 +/- 5922 ng/mL at T(max) of 7 +/- 6 h and bioavailability was 109%. In dogs, mean C(max) was 7630 +/- 3140 ng/mL at T(max) of 8 +/- 5 h and bioavailability was 62%. There were no selamectin-related adverse effects and no sex differences in pharmacokinetic parameters. Linearity was established in cats and dogs for plasma concentrations up to 874 and 636 ng/mL, respectively. Pharmacokinetic evaluations for selamectin following intravenous administration indicated a slower elimination from the central compartment in cats than in dogs. This was reflected in slower clearance and longer t(1/2) in cats, probably as a result of species-related differences in metabolism and excretion. Inter-species differences in pharmacokinetic profiles were also observed following topical administration where differences in transdermal flux rates may have contributed to the overall differences in systemic bioavailability.  相似文献   

10.
The pharmacokinetics and the influence of food on the kinetic profile and bioavailability of doxycycline was studied after a single intravenous (i.v.) and oral dose of 10.0 mg/kg body weight in 7-week-old broiler chickens. Following i.v. administration the drug was rapidly distributed in the body with a distribution half-life of 0.21 +/- 0.01 h. The elimination half-life of 6.78 +/- 0.06 h was relatively long and resulted from both a low total body clearance of 0.139 +/- 0.007 L/h.kg and a large volume of distribution of 1.36 +/- 0.06 L/kg. After oral administration to fasted chickens, the absorption of doxycycline was quite fast and substantial as shown by the absorption half-life of 0.39 +/- 0.03 h, the maximal plasma concentration of 4.47 +/- 0.16 micrograms/mL and the time to reach the Cmax of 1.73 +/- 0.06 h. The distribution and the final elimination of the drug were slower than after i.v. administration. The absolute bioavailability was 73.4 +/- 2.5%. The presence of food in the intestinal tract reduced and extended the absorption (t1/2a = 1.23 +/- 0.21 h; Cmax = 3.07 +/- 0.23 micrograms/mL; tmax = 3.34 +/- 0.21 h). The absolute bioavailability was reduced to 61.1% +/- 4.4%.  相似文献   

11.
Thiopentone pharmacokinetics and electrocorticogram patterns were studied in a group of six sheep given thiopentone intravenously (20 mg/kg). Plasma concentrations were determined using a high-performance liquid chromatography method. A three-compartment open model was selected to describe the disposition kinetics of thiopentone. The drug had an apparent volume of distribution of 1005 ± 196 ml/kg; body clearance was 3.5 ± 0.8 ml/minkg and the half-life, based on the slope of the terminal portion of the curve, was 196 ± 64 min. From the electrocorticogram pattern, it seems likely that the highest concentrations in brain occurred between 47 and 217 sec after commencing administration and a brain penetration half-time of 26.5 ± 2.87 sec was calculated. At the time of awakening (36.6 ± 6.36 min) 24.1 ± 6.3% of the dose was located in the central compartment, 12.6 ± 8.2 was in the shallow peripheral compartment, 38.8 ± 14.1 was in the deep peripheral compartment and 24.6 ± 10.3 had been eliminated. Using simulated curves, it appeared that suppression of the shallow peripheral compartment (muscle) did not change the time of awakening; in contrast when elimination-rate constant was decreased, awakening was delayed. It was suggested that the relatively short duration of thiopentone anaesthesia in sheep should be attributed mainly to elimination of the drug by hepatic metabolism and uptake by body fat. This hypothesis, which differs from the widely accepted view that the duration of thiopentone anaesthesia is independent of the rate of hepatic metabolism, is discussed in terms of differences in regional blood flow between sheep and monogastric species.  相似文献   

12.
The distribution and elimination kinetics of erythromycin and tylosin, which are macrolide antibiotics, were studied in healthy cows. A single dose (12-5 mg/kg) of drug was administered as an intravenous bolus, and blood samples were collected at precisely timed intervals. The standard cylinder plate bioassay method using Sarcina lutea as test organism was employed to determine antibiotic activity in the serum. The results suggested that these drugs are distributed in at least two kinetically distinct body compartments. By use of established mathematical techniques, values were assigned to the individual rate constants controlling distribution between the central and peripheral compartments and to the rate constant controlling overall elimination (beta) of each drug from the body. The calculated overall tissue to serum drug level ratios (k12/k21) after apparent distribution equilibrium was attained were 2-28 and 2-05 for erythromycin and tylosin, respectively. The half-life (mean+/-SD) of erythromycin was 3-16 h+/-0-44, while that of tylosin was 1-62 h+/-0-17. The total body clearance (ml/kg/min) values were 2-88+/-0-47 for erythromycin and 7-8+/-2-95 for tylosin. Analogue computer simulated curves of the antibiotic levels in the central and tissue compartments as wel as an elimination curve were generated. The tissue level of erythromycin reached a peak of 43 per cent of the dose at 67 min. At 6 h, the percentages of the dose of erythromycin in the central and tissue compartments and eliminated were 6, 19 and 75, respectively. The peak level of tylosin in the tissue compartment (26-5 per cent of the dose) was present at 30 min. At 4 h, 1 and 5 per cent of the dose were contained in the central and peripheral compartments, respectively, while 94 per cent had been eliminated. This single dose study provides information which is essential for the design of a satisfactory dosage regimen.  相似文献   

13.
We investigated the disposition kinetics and urinary excretion of cefpirome in buffalo calves after a single intravenous administration of 10 mg/kg. Also, an appropriate dosage regimen was calculated. At 1 min after injection, the concentration of cefpirome in the plasma was 57.4 ± 0.72 µg/ml, which declined to 0.22 ± 0.01 µg/ml at 24 h. The cefpirome was rapidly distributed from the blood to the tissue compartment as shown by the high distribution coefficient values (8.67 ± 0.46/h), and by the drug''s rate of transfer constant from the central to the peripheral compartment, K12 (4.94 ± 0.31/h). The elimination halflife and the volume of distribution were 2.14 ± 0.02 h and 0.42 ± 0.005 l/kg, respectively. Once the distribution equilibrium was reached between the tissues and plasma, the total body clearance (ClB) and the ratio of the drug present in the peripheral to the central compartment (T/P ratio) were 0.14 ± 0.002 l/kg/h and 1.73 ± 0.06, respectively. Based on the pharmacokinetic parameters we obtained, an appropriate intravenous cefpirome dosage regimen for treating cefpiromesensitive bacteria in buffalo calves would be 8.0 mg/kg repeated at 12 h intervals for 5 days, or until persistence of the bacterial infection occurred.  相似文献   

14.
Siao, K. T., Pypendop, B. H., Stanley, S. D., Ilkiw, J. E. Pharmacokinetics of oxymorphone in cats. J. vet. Pharmacol. Therap. 34 , 594–598. This study reports the pharmacokinetics of oxymorphone in spayed female cats after intravenous administration. Six healthy adult domestic shorthair spayed female cats were used. Oxymorphone (0.1 mg/kg) was administered intravenously as a bolus. Blood samples were collected immediately prior to oxymorphone administration and at various times up to 480 min following administration. Plasma oxymorphone concentrations were determined by liquid chromatography–mass spectrometry, and plasma oxymorphone concentration–time data were fitted to compartmental models. A three‐compartment model, with input in and elimination from the central compartment, best described the disposition of oxymorphone following intravenous administration. The apparent volume of distribution of the central compartment and apparent volume of distribution at steady state [mean ± SEM (range)] and the clearance and terminal half‐life [harmonic mean ± jackknife pseudo‐SD (range)] were 1.1 ± 0.2 (0.4–1.7) L/kg, 2.5 ± 0.4 (2.4–4.4) L/kg, 26 ± 7 (18–38) mL/min.kg, and 96 ± 49 (62–277) min, respectively. The disposition of oxymorphone in cats is characterized by a moderate volume of distribution and a short terminal half‐life.  相似文献   

15.
The pharmacokinetics and intramuscular (i.m.) bioavailability of cefoperazone and cefamandole (20mg/kg) were investigated in dogs and the findings related to minimal inhibitory concentrations (MICs) for 90 bacterial strains isolated clinically from dogs. The MICs of cefamandole for Staphylococcus intermedius (MIC(90) 0.125 microg/mL) were lower than those of cefoperazone (MIC(90) 0.5 micro/mL) although the latter was more effective against Escherichia coli strains (MIC(90) 2.0 microg/mL vs. 4.0 microg/mL). The pharmacokinetics of the drugs after intravenous administrations were similar: a rapid distribution phase was followed by a slower elimination phase (t((1/2)lambda2) 84.0+/-21.3 min for cefoperazone and 81.4+/-9.7 min for cefamandole). The apparent volume of distribution and body clearance were 0.233 L/kg and 1.96 mL/kg/min for cefoperazone, 0.190 L/kg and 1.76 mL/kg/min for cefamandole. After i.m. administration the bioavailability and peak serum concentration of cefamandole (85.1+/-13.5% and 35.9+/-5.4 microg/mL) were significantly higher than cefoperazone (41.4+/-7.1% and 24.5+/-3.0 micog/mL), but not the serum half-lives (t(1/2el) 134.3+/-12.6 min for cefoperazone and 145.4+/-12.3 min for cefamandole). The time above MIC(90) indicated that cefamandole can be administered once daily to dogs for the treatment of staphylococcal infections (T>MIC for S. intermedius 23.8+/-0.3 and for Staphylococcus aureus 21.6+/-0.6h).  相似文献   

16.
Pharmacokinetics and renal clearance of ampicillin were investigated in 13 sheep, following one single oral dose of 750 mg. A peak concentration in plasma 0.38 +/- 0.04 microgram/ml (mean +/- SEM) was achieved 95.3 +/- 5.95 min after drug administration. Absorption half-life was 44.4 +/- 4.4 min. The area under the plasma concentration curve was 94.6 +/- 4.5 micrograms.hour.ml-1, while in the case of urine it was 370.5 +/- 28.3 micrograms.hour.ml-1. Biological half-life of ampicillin was 110 +/- 3 min, with an elimination rate constant of 0.0064 +/- 0.0002 min-1. The values for volume of distribution and total body clearance were 8.2 +/- 0.71/kg or 52.0 +/- 4.2 ml/kg/min, respectively. The priming and maintenance doses, using MIC as 0.05 microgram/ml, were suggested to be 8.8 or 8.4 mg/kg, respectively, at an 8-h interval. For MIC of 0.5 microgram/ml, this dose should be 10 times higher. Renal clearance of ampicillin seemed to involve active tubular secretion. Renal excretion indicated either extensive metabolism or excretion through routes other than kidneys.  相似文献   

17.
The correlation between pharmacokinetics and dynamics of furosemide was investigated in anaesthetized dogs. After intravenous administration (i.v.) of furosemide (5 mg/kg), the plasma concentration declined rapidly with bioexponential decay. The half-life (t1/2 beta) of the late phase of elimination was 0.931 +/- 0.187 h and the apparent volume of distribution at steady state was 0.25 +/- 0.043 l/Kg. The total clearance (Cltot) was 0.435 +/- 0.031 l/h/kg, in which the renal clearance was 0.260 +/- 0.020 (about 60% of Cltot). The change in rate of urinary excretion of furosemide was similar to the plasma concentration decay curve. The diuretic effect of furosemide was accompanied by an extreme increase in the excretion rate of sodium and chloride, but not potassium. The relationships between the diuretic response and the plasma concentration or the urinary excretion rate of furosemide was depicted by sigmoidal dose-response curves in both cases. The half-maximum effect was obtained at 1.5 micrograms/ml of plasma concentration or at 80 micrograms/min of excretion rate of furosemide.  相似文献   

18.
OBJECTIVE: To investigate the pharmacokinetics and behavioral effects of aminorex administered IV and PO in horses. ANIMALS: 7 Thoroughbreds. PROCEDURES: In a cross-over design, aminorex (0.03 mg/kg) was administered IV or PO. Plasma and urinary aminorex concentrations were determined via liquid chromatography- mass spectrometry. RESULTS: Decrease of aminorex from plasma following IV administration was described by a 3-compartment pharmacokinetic model. Median (range) values of alpha, beta, and gamma half-lives were 0.04 (0.01 to 0.28), 2.30 (1.23 to 3.09), and 18.82 (8.13 to 46.64) hours, respectively. Total body and renal clearance, the area under the plasma time curve, and initial volume of distribution were 37.26 (28.61 to 56.24) mL x min/kg, 1.25 (0.85 to 2.05) mL x min/kg, 13.39 (8.82 to 17.37) ng x h/mL, and 1.44 (0.10 to 3.64) L/kg, respectively. Oral administration was described by a 2-compartment model with first-order absorption, elimination from the central compartment, and distribution into peripheral compartments. The absorption half-life was 0.29 (0.12 to 1.07) hours, whereas the beta and gamma elimination phases were 1.93 (1.01 to 3.17) and 23.57 (15.16 to 47.45) hours, respectively. The area under the curve for PO administration was 10.38 (4.85 to 13.40) ng.h/mL and the fractional absorption was 81.8% (33.8% to 86.9%). CONCLUSIONS AND CLINICAL RELEVANCE: Aminorex administered IV had a large volume of distribution, initial rapid decrease, and an extended terminal elimination. Following PO administration, there was rapid absorption, rapid initial decrease, and an extended terminal elimination. At a dose of 0.03 mg/kg, the only effects detected were transient and central in origin and were observed only following IV administration.  相似文献   

19.
The pharmacokinetic properties of difloxacin following intravenous (i.v.) and intramuscular (i.m.) administration in goats were investigated. Difloxacin was administered in a single dose of 5 mg/kg body weight for both routes and was assayed in biological fluids (serum and urine) to determine its concentrations, kinetic behaviour and systemic availability. Following a single i.v. injection, the serum difloxacin level was best approximated to follow a two-compartment open model using weighted non-linear regression analysis. The elimination half-life (t1/2 beta) was 6.3 +/- 0.11 h. The volume of distribution at steady-state (Vdss) was 1.1 +/- 0.012 L/kg and the total body clearance (Cltot) was 0.13 +/- 0.001 L/kg/h. Following a single i.m. administration, difloxacin was rapidly absorbed and the mean peak serum concentration (4.1 +/- 0.23 micrograms/ml) was achieved 1 h post administration. The extent of serum protein binding of difloxacin in goats was 13.79 +/- 1.02% and the systemic availability was 95.4 +/- 1.17%. Following i.m. injection of difloxacin at a dose rate of 5 mg/kg b.wt for 5 consecutive days, the drug could not be detected in serum and urine at 4th day from the last injection.  相似文献   

20.
Pharmacokinetic variables of amikacin in cows were determined after administration of amikacin sulphate either intravenously (IV) or intramuscularly (IM) at a dose of 25 mg/kg per day for three days. Amikacin concentrations at time zero and maximum serum concentrations were 240.8 microg/mL and 122.53 microg/mL, respectively. The elimination half-life remained unchanged during the three days of administration (T1/2beta = 1.33 +/- 0.029 h for the IV route and T1/2beta = 2.75 +/- 0.38 h for the IM route). Apparent volumes of distribution suggest limited distribution out of the central compartment (VdAUC = 0.154 +/- 0.005 L/kg; Vdc = 36.50 +/- 2.35 L; Vdss = 0.092 +/- 0.004 L/kg). Bioavailability after IM administration was 95%. Serum profiles of urea, creatinine, albumin, electrolytes and pH after 5-day treatment with amikacin at a dose of 25 mg/kg per day IM revealed no changes. Assessment of diffusion of amikacin to milk by a commercially available screening method to detect antibiotic residues revealed that amikacin could not be detected by the fifth milking period after the last treatment. These results suggest that it would be rational to use a large single-daily dose of amikacin for future clinical trials in cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号