首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polysaccharides are widely used in the food industry to modify the stability of protein-based drinks. However, an in depth knowledge of the interactions occurring in the system is still lacking. In this study, the interactions between sodium caseinate and high methoxyl pectin under acidification conditions were studied nondestructively and without dilution using transmission diffusing wave spectroscopy. Oil-in-water emulsions were prepared with 10% soybean oil and 0.5% sodium caseinate. Various concentrations of pectin (ranging from 0 to 0.2%) were added, and the emulsions were acidified with glucono-delta-lactone. With acidification, a "sol-gel" transition occurred and emulsions containing pectin were more stable at lower pH than those without pectin. Furthermore, the sol-gel transition of the mixtures was more sudden for control emulsions without pectin. While in control samples the final solidlike emulsion after gelation tended to be more inhomogeneous and more dissimilar to the starting emulsion, emulsions with pectin in solution gelled later under acidification. With a sufficient amount of pectin, the emulsions showed no aggregation and the destabilization pH varied depending on the amount of pectin present in the emulsions. At intermediate pH values (pH > 5.5), the emulsions displayed a decrease in particle size, more pronounced in samples containing pectin. The results collected using light scattering in concentrated systems, 10% (v/v) in our case, suggested that pectin stabilizes the emulsion oil droplets forming a network of oil droplets loosely connected by strands of pectin.  相似文献   

2.
The stability of emulsions prepared with soy protein isolates was investigated as a function of pH in the presence of two negatively charged polysaccharides: high methoxyl pectin (HMP) and soy soluble polysaccharide (SSPS). Both polysaccharides are composed of a backbone which contains galacturonic acid but, when added to soy protein isolate-stabilized emulsions, SSPS showed a different behavior than that of HMP. At neutral pH and above a critical concentration of stabilizer (0.05%), HMP caused flocculation of the emulsion droplets via a depletion mechanism. On the other hand, the emulsions containing a similar amount of SSPS did not show creaming or flocculation. At acidic pH (<4.0) the addition of pectin caused extensive droplet aggregation, while no aggregation was observed with the addition of SSPS. The differences in the stabilization behavior between the two polysaccharides can be attributed to their differences in charge, neutral sugars side chains, and molecular weight.  相似文献   

3.
The interactions of proteins during the heat treatment of whey-protein-isolate (WPI)-based oil-in-water emulsions with and without added hydroxylated lecithin were studied by examining the changes in droplet size distribution and the quantity and type of adsorbed and unadsorbed proteins. Heat treatment at 90 degrees C of WPI emulsions resulted in an increase in total adsorbed protein; unadsorbed beta-lactoglobulin (beta-lg) was the main protein interacting with the adsorbed proteins during the first 10 min of heating, but after this time, unadsorbed alpha-lactalbumin (alpha-la) also associated with the adsorbed protein. In emulsions containing hydroxylated lecithin, the increase in total adsorbed protein during heat treatment was much lower and the unadsorbed beta-lg did not appear to interact with the adsorbed proteins during heating. However, the behavior of alpha-la during heat treatment of these emulsions was similar to that observed in the emulsions containing no hydroxylated lecithin. In the presence of NaCl, the particle size of the emulsion droplets and the quantities of adsorbed protein increased markedly during heating. Emulsions containing hydroxylated lecithin were less sensitive to the addition of NaCl. These results suggest that the binding of hydroxylated lecithin to unfolded monomers or intermediate products of beta-lg reduces the extent of heat-induced aggregation of beta-lg and consequently decreases the interactions between unadsorbed beta-lg and adsorbed protein. This was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of heated whey protein and hydroxylated lecithin solutions.  相似文献   

4.
Water soluble plasma proteins were fractionated from hen's egg yolk, and the molecular weight and pI of the most abundant protein species were characterized with gel electrophoresis. The proteins were identified by mass spectrometry. The protein fraction was used to produce oil-in-water emulsions, both at various protein concentrations and at various pH values, and the surface load was determined through serum depletion. The competitive adsorption was studied through the determination of nonadsorbing species with gel electrophoresis. The results show that it was possible to form an oil-in-water emulsion for which droplet size and maximum surface load depended on the protein concentration and pH. Serum albumin and YGP40 adsorbed selectively at the oil/water interface throughout the pH range investigated, and for albumin the selectivity increased close to its pI. It is suggested that this selective adsorption is due to long hydrophobic stretches in the polypeptide chain, which are present in the selectively adsorbing species but absent in less adsorbing species.  相似文献   

5.
A protein-binding technique was employed to visualize, using scanning electron microscopy, the soy protein as well as the association between HMP and soy protein fractions. Image analysis indicated that at pH 7.5 and 3.5 soy protein isolate showed a bimodal distribution of sizes with an average [ d(0.5)] of about 0.05 microm, but at pH 3.8 the proteins formed larger aggregates than at high pH. Addition of HMP at pH 3.8 changed the surface charge of the particles from +20 to -15 mV. A small addition of HMP caused bridging of the pectin between soy protein aggregates and destabilization. With sufficient HMP, the suspensions showed improved stability to precipitation. The microscopy images are the first direct evidence of the interactions between soy proteins with high-methoxyl pectin (HMP).  相似文献   

6.
Effect of pH on the thermal denaturation of whey proteins in milk   总被引:5,自引:0,他引:5  
The effect of pH on thermal denaturation of four main whey protein fractions in skim milk was examined by gel permeation FPLC. On heating skim milk at 80 degrees C for 0.5-20.0 min over the pH range 5.2-8.8, the extent of denaturation, based on loss of solubility at pH 4.6, increased with heating time and was usually in the order immunoglobulins > serum albumin/lactoferrin > beta-lactoglobulin > alpha-lactalbumin. Rates of denaturation of the immunoglobulins and the serum albumin/lactoferrin fraction were highest at the lower end of this pH range, whereas those of beta-lactoglobulin and alpha-lactalbumin increased over most of the pH range. The effects of pH, addition of Ca, and reduction of disulfide bonds on the rates of the unfolding and aggregation stages of denaturation are discussed.  相似文献   

7.
Complexation of whey proteins with carrageenan   总被引:1,自引:0,他引:1  
The formation of electrostatic complexes of whey protein (WP) and a nongelling carrageenan (CG) was investigated as a function of pH, ionic strength, temperature, and protein-to-polysaccharide (Pr:Ps) ratio. On lowering the pH, the formation of soluble WP/CG complexes was initiated at pH(c) and insoluble complexes at pH(phi), below which precipitation occurred. The values of the transition pH varied as a function of the ionic strength. It was shown that at [NaCl] = 45 mM, the value of pH(phi) was the highest, showing that the presence of monovalent ions was favorable to the formation of complexes by screening the residual negative charges of the CG. When CaCl(2) was added to the mixtures, complexes of WP/CG were formed up to pH 8 via calcium bridging. The electrostatic nature of the primary interaction was confirmed from the slight effect of temperature on the pH(phi). Increasing the Pr:Ps ratio led to an increase of the pH(phi) until a ratio of 30:1 (w/w), at which saturation of the CG chain seemed to be reached. The behavior of WP/CG complexes was investigated at a low Pr:Ps ratio, when the biopolymers were mixed directly at low pH. It resulted in an increase of the pH of the mixture, as compared to the initial pH of the separate WP and CG solutions. The pH increase was accompanied by a decrease in conductivity. The trapping of protons inside the complex probably resulted from a residual negative charge on the CG. If NaCl was present in the mixture, the complex took up the Na(+) ions instead of the H(+) ions.  相似文献   

8.
During processing and storage, phenolic compounds (PCs) may react with food protein bound amino acids (AAs). Such reactions have been reported to change physicochemical and to decrease in vitro digestion properties of proteins. A rat growth and nitrogen (N) balance study was conducted to prove whether derivatization with chlorogenic acid (CA) affects the nutritional quality of beta-lactoglobulin (beta-LG). Test diets (10% protein level) contained nonderivatized beta-LG (LG, treated under omission of CA), low derivatization level beta-LG (LGL), high derivatization level beta-LG (LGH), or casein supplemented with l-methionine (0.3% of diet; C+met) as an internal standard. An additional group received untreated beta-LG supplemented with pure CA (1.03% of diet; LG+CA). The AA composition of test proteins, plasma AAs, and liver glutathione (GSH) concentrations were determined. Protein digestibility-corrected amino acid score (PDCAAS) was calculated using human or rat AA requirement patterns and rat fecal digestibility values. N excretion was significantly higher in feces and lower in urine of rats fed with LGH as compared to LG and LGL. Consequently, true N digestibility (TND) was significantly lower with LGH as compared to LG and LGL. The lower content of methionine, cysteine, lysine, and tryptophan in LGH corresponded to a reduced TND. Net protein utilization (NPU) was not different between treated beta-LG fed diet groups but was lower than in LG+CA and C+met fed groups. Only at a relatively high level of derivatization with CA, the otherwise good nutritional quality of beta-LG is affected so that TND is reduced, while NPU still remains unaffected. Derivatization of beta-LG with CA does not seem to lead to an additional deficiency in a specific indispensable AA in growing rats fed with 10% protein.  相似文献   

9.
Skim milk was adjusted to pH values between 6.5 and 6.7 and heated (80, 90, and 100 degrees C) for up to 60 min. Changes in casein micelle size, level of whey protein denaturation, and level of whey protein association with the micelles were monitored for each milk sample. Changes in casein micelle size were markedly affected by the pH at heating. At low pH (6.5-6.55), the casein micelle size increased markedly during the early stages of heating, and the size plateaued on prolonged heating. The maximum increase in size was approximately 30-35 nm. In contrast, at high pH (6.7), much smaller changes in size were observed on heating and the maximum increase in size was only approximately 10 nm. An intermediate behavior was observed at pH values between these two extremes. The rate of denaturation of the major whey proteins, alpha-lactalbumin and beta-lactoglobulin, was essentially unaffected by the pH at heating for the small pH changes involved in this study, and the changes in casein micelle size were poorly related to the level of whey protein denaturation. In contrast, the level of denatured whey proteins associating with the micelles was markedly dependent on the pH at heating, with high levels of association at pH 6.5-6.55 and low levels of association at pH 6.7. Changes in casein micelle size were related to the levels of denatured whey proteins that were associated with the casein micelles, although there was a small deviation from linearity at low levels of association (<15%). Further studies on reconstituted and fresh milk samples at smaller pH steps confirmed that the association of whey proteins with the casein micelles was markedly affected by the pH at heating. These results indicate that the changes in casein micelle size induced by the heat treatment of skim milk were a consequence of the whey proteins associating with the casein micelles and that the level of association was markedly influenced by small pH changes of the milk. It was not possible to determine whether the association itself influenced the casein micelle size or whether parallel reactions involving micellar aggregation caused the increase in micelle size as whey protein association progressed.  相似文献   

10.
The conformational changes of whey proteins upon adsorption at the soy oil/water interface were investigated using Fourier transform infrared (FT-IR) spectroscopy. Significant changes were observed in the bands assigned to beta-sheets and alpha-helix structures following the adsorption of proteins at the oil/water interface. The remaining interfacial proteins after Tween 20 desorption revealed small changes in beta-sheet and alpha-helical structures, whereas in the desorbed whey proteins the unordered structures largely increased, and beta-sheet structures almost disappeared. These FT-IR results provide important knowledge about the conformational modifications in whey proteins occurring upon adsorption at the oil/water interface. Finally, specific conformational changes are necessary to stabilize emulsions: adsorption-induced unfolding, increase in alpha-helical structures to establish interactions with the oil phase, and aggregation between adsorbed whey proteins to form protein membranes. Moreover, the structural changes in whey protein adsorbed at the oil/water interface under high-pressure homogenization are irreversible.  相似文献   

11.
The antioxidant activity of pectic enzyme treated pectin (PET-pectin) prepared from citrus pectin by enzymatic hydrolysis and its potential use as a stabilizer and an antioxidant for soy protein isolate (SPI)-stabilized oil in water (O/W) emulsion were investigated. Trolox equivalent antioxidant capacity (TEAC) was found to be positively associated with molecular weight (M(w)) of PET-pectin and negatively associated with degree of esterification (DE) of PET-pectin. PET-pectin (1 kDa and 11.6% DE) prepared from citrus pectin after 24 h of hydrolysis by commercial pectic enzyme produced by Aspergillus niger expressed higher α,α-diphenyl-β-picrylhydrazyl (DPPH) radical scavenging activity, TEAC, and reducing power than untreated citrus pectin (353 kDa and 60% DE). The addition of PET-pectin could increase both emulsifying activity (EA) and emulsion stability (ES) of SPI-stabilized O/W emulsion. When the SPI-stabilized lipid droplet was coated with the mixture of PET-pectin and pectin, the EA and ES of the emulsion were improved more than they were when the lipid droplet was coated with either pectin or PET-pectin alone. The amount of secondary oxidation products (thiobarbituric acid reactive substances) produced in the emulsion prepared with the mixture of SPI and PET-pectin was less than the amount produced in the emulsion prepared with either SPI or SPI/pectin. These results suggest that PET-pectin has an emulsion-stabilizing effect and lipid oxidation inhibition ability on SPI-stabilized emulsion. Therefore, PET-pectin can be used as a stabilizer as well as an antioxidant in plant origin in SPI-stabilized O/W emulsion and thus prolong the shelf life of food emulsion.  相似文献   

12.
The purpose of this study was to create water-in-oil (W/O) and water-in-oil-in-water (W/O/W) emulsions containing gelled internal water droplets. Twenty weight percent W/O emulsions stabilized by a nonionic surfactant (6.4 wt % polyglycerol polyricinoleate, PGPR) were prepared that contained either 0 or 15 wt % whey protein isolate (WPI) in the aqueous phase, with the WPI-containing emulsions being either unheated or heated (80 degrees C for 20 min) to gel the protein. Optical microscopy and sedimentation tests did not indicate any significant changes in droplet characteristics of the W/O emulsions depending on WPI content (0 or 15%), shearing (0-7 min at constant shear), thermal processing (30-90 degrees C for 30 min), or storage at room temperature (up to 3 weeks). W/O/W emulsions were produced by homogenizing the W/O emulsions with an aqueous Tween 20 solution using either a membrane homogenizer (MH) or a high-pressure valve homogenizer (HPVH). For the MH the mean oil droplet size decreased with increasing number of passes, whereas for the HPVH it decreased with increasing number of passes and increasing homogenization pressure. The HPVH produced smaller droplets than the MH, but the MH produced a narrower particle size distribution. All W/O/W emulsions had a high retention of water droplets (>95%) within the larger oil droplets after homogenization. This study shows that W/O/W emulsions containing oil droplets with gelled water droplets inside can be produced by using MH or HPVH.  相似文献   

13.
Dynamic and steady shear rheology is used to examine the synthesis of low-pH (approximately 4) whey protein gels obtained through a two-step process. The first step involves cross-linking of whey proteins at pH 8 and 50 degrees C using transglutaminase enzyme, while the second step entails cold-set acidification of the resulting solution using glucono-delta-lactone (GDL) acid. During the first step, the sample undergoes enzyme-catalyzed epsilon-(gamma-glutamyl)lysine bond formation with a substantial increase in viscosity. Acidification in the second step using GDL acid leads to a rapid decrease in pH with a concomitant increase in the elastic (G') and viscous (G' ') moduli and formation of a gelled network. We examine the large strain behavior of the gel samples using a relatively new approach that entails plotting the product of elastic modulus and strain (G'gamma) as a function of increasing dynamic strain and looking for a maximum, which corresponds to the yield or fracture point. We find the enzyme-catalyzed gels to have significantly higher yield/fracture stress and strain compared to cold-set gels prepared without enzyme or conventional heat-set gels. In addition, the elastic modulus of the enzyme-catalyzed gel is also higher than its non-enzyme-treated counterpart. These results are discussed in terms of the gel microstructure and the role played by the enzyme-induced cross-links.  相似文献   

14.
Highly esterified citrus pectin was de-esterified at pH 4.5 and 8.0 by a fungal pectin methyl esterase (PME) that was shown to have an acidic isoelectric pH (pI) and an acidic pH optimum and by a plant PME that was characterized by an alkaline pI and an alkaline pH optimum. Interchain and intrachain de-esterification patterns were studied by digestion of the pectin products with endo-polygalacturonase and subsequent analysis using size exclusion and anion-exchange chromatography. No effect of pH was observed on the de-esterification mode of either of the two enzymes. Acidic, fungal PME converted pectin according to a multiple-chain mechanism, with a limited degree of multiple attack at the intrachain level, both at pH 4.5 and at pH 8.0. A multiple-attack mechanism, with a high degree of multiple attack, was more appropriate to describe the action mode of alkaline, plant PME, both at pH 4.5 and at pH 8.0.  相似文献   

15.
为了得到高得率、高品质的苹果果胶,该文利用不同pH值的盐酸溶液对苹果渣中果胶进行微波辅助提取(Microwave-assisted extraction, MAE),之后对果胶提取液进行大孔树脂XAD-16HP脱色,研究了pH值与脱色对果胶得率和品质的影响。结果表明:微波辅助提取工艺中随着pH值的升高,果胶得率、半乳糖醛酸质量分数和总离子含量减少,酯化度、黏均分子量和总多酚增加,褐变度无显著变化;大孔树脂吸附脱色后果胶褐变度、总多酚、彩度C*值显著下降,色调角H°值显著增加,半乳糖醛酸质量分数和酯化度没有  相似文献   

16.
Prions, are proteinaceous particles recognized as the agents of a class of neurodegenerative disorders, called transmissible spongiform encephalopathies (TSE), or prion diseases. Epidemiological data suggest that TSE-contaminated environments may serve as source of infectivity, but there is no information about adsorption of prions onto soil. We carried out experiments by mixing, healthy, or scrapie-infected hamster brains homogenates with three types of soil suspended in different buffers: (i) two saline buffers, i.e., phosphate buffer solution (PBS) and CaCl2 solution; (ii) a mix of nondenaturing detergents, i.e., Triton X-100 and sodium deoxycholate (DOC) solution; (iii) a non-ionic detergent, i.e., lauryl maltoside; (iv) two anionic detergents, i.e., Sarkosyl or sodium dodecyl sulphate (SDS); and (v) a chaotropic agent, i.e., urea. The unbound prion proteins were detected in the supernatants (after centrifugation of soil suspension) by Western blotting. Results clearly demonstrate that both the no infectious (PrPC) and infectious (PrPSc) forms are adsorbed by all soils. Only 1% sodium dodecylsulphate (SDS) partially impeded the association of PrPC, but not that of PrPSc with the sandy loam soil. Agents with different interacting properties towards hydrophilic and/or hydrophobic domains failed to extract PrPSc from sediments of soil-brain homogenate mixtures. The strong interaction of PrPSc with soil favors the accumulation of prions in soils, especially if amended with prion-containing organic fertilizers and/or whenever TSE-affected animal carcasses, placenta, and excreta in general are buried or laid at the soil surface.  相似文献   

17.
The interactions of high-methoxyl pectin (HMP) and soybean-soluble polysaccharide (SSPS) with sodium caseinate-stabilized emulsions were investigated using a multitechnique approach, including dynamic light scattering (DLS), electrophoretic mobility measurements, transmission diffusing wave spectroscopy (DWS), and ultrasonic spectroscopy (US). At pH 6.8, both polysaccharides are negatively charged and did not adsorb onto caseinate-coated droplets due to electrostatic repulsion; however, SSPS showed a different behavior compared to HMP in the turbidity parameter 1/l* and sound attenuation parameters measured by DWS and US, respectively. The present study brought the first evidence of the stabilization effect of SSPS in acidified sodium caseinate-emulsions. While destabilization occurred at low polysaccharide concentrations, probably via bridging flocculation, acid-induced aggregation of the oil droplet was completely prevented by 0.2% SSPS or HMP. However, the interaction behavior of SSPS during acidification was different from that of HMP. This was demonstrated by the different development of the parameter 1/l*, droplet sizes, sound attenuation, and velocity.  相似文献   

18.
Heat-induced aggregation of whey proteins in solutions made from two commercial whey protein concentrates (WPCs), one derived from mineral acid whey (acid WPC) and the other from cheese whey (cheese WPC), was studied using polyacrylamide gel electrophoresis (PAGE), size exclusion chromatography (SEC), and transmission electron microscopy (TEM). Heat treatment (75 degrees C) of acid WPC solutions (12.0%, w/w, pH 6.9) resulted in formation of relatively small "soluble" aggregates that were predominantly disulfide-linked. By contrast, heat treatment of the cheese WPC solutions (under the same conditions) caused formation of relatively large aggregates, containing high proportions of aggregates linked by noncovalent associations. The rate of aggregation of both beta-lactoglobulin and alpha-lactalbumin at 75 degrees C, measured as the loss of native proteins by PAGE, was higher in the cheese WPC solution than in the acid WPC solution. Cross dialysis of the two WPC solutions resulted in alteration of the mineral composition of each WPC solution and reversing their heat-induced aggregation behavior. The results demonstrated that the mineral composition is very important in controlling the aggregation behavior of WPC products.  相似文献   

19.
Moisture-induced protein aggregation in a dry or intermediate-moisture food matrix can contribute to the loss of product acceptability. The present study evaluated the molecular mechanisms and controlling factors for moisture-induced whey protein aggregation in a premixed protein/buffer model system. Insoluble aggregates rapidly formed during the first 3 days of storage at 35 degrees C with a slower rate afterward. Evaluation of the insoluble aggregates by solubility tests in solutions containing SDS/urea/guanidine HCl/dithiothreitol and gel electrophoresis showed that the formation of intermolecular disulfide bonds was the main mechanism for protein aggregation, and all major whey proteins were involved in the formation of insoluble aggregates. Effects of various factors on aggregation were also investigated, including moisture content, medium pH, and the addition of NaCl. The dependence of aggregation on moisture content was bell-shaped, and the maximal extent of aggregation was achieved at a moisture content of around 70-80% on a dry weight basis.  相似文献   

20.
Thermal behavior of lyophilized soy whey (LSW) and whey soy proteins (WSP) at different water contents (WC) was studied by DSC. In anhydrous condition, Kunitz trypsin inhibitor (KTI) and lectin (L) were more heat stable for WSP with respect to LSW sample. The increase of WC destabilized both proteins but differently depending on the sample analyzed. Thermal stability inversion of KTI and L was observed for WSP and LSW at 50.0% and 17.0% WC, respectively, which correspond to the same water-protein content mass ratio (W/P ≈ 1.9). At W/P < 1.9, KTI was more heat stable than L. Before the inversion point, WC strongly modified the peak temperatures (T(p)) of KTI and L for WSP, whereas this behavior was not observed for LSW. The high sugar content was responsible for the thermal behavior of KTI and L in LSW under anhydrous condition and low WC. These results have important implications for the soy whey processing and inactivation of antinutritional factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号