首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
上海市土壤中持久性毒害污染物和盐分含量特征研究   总被引:2,自引:0,他引:2  
Some farmland soils in Shanghai had high salinity levels, suggesting secondary salinization of the soils. The soil problems in Shanghai were studied, including the salinity and nitrate nitrogen (NO3--N) concentrations, heavy metal pollution characteristics, and organochlorine pesticide (OCP) residual levels and polycyclic aromatic hydrocarbon (PAH) contents. Accumulation of NO3--N in vegetable soils was the most significant among different functional soils. Heavy metal pollution was significant in the samples collected from the sewage-irrigated land and roadside. The identification of the metal sources through multivariate statistical analysis indicated that Pb, Zn, Cu and Cr in urban soils were from the traffic pollutants; excessive application of fertilizer and irrigation were the main reasons for the metal pollution in agricultural soils; Ni in the observed soils was controlled by parent soils. OCPs could still be detected in farmland soils but degraded greatly in last 20 years after prohibition of their usage. PAHs with 2-3 rings were the main components in industrial soils. The concentrated PAHs in the investigated soils were likely from petroleum and coal combustion.  相似文献   

2.
新疆土壤盐碱化问题严重影响农田水盐运移和作物产量。为探究钠吸附比(Sodium Adsorption Ratio,SAR)和盐分浓度对当地典型砂壤土物理性质的影响,该研究测定了4个SAR水平(40,30,20,15,10,5 (mmol/L)1/2)和8个盐分浓度水平(200,150,100,50,20,10,5,2 mmol/L)下土壤团聚体快速湿润过程中的团聚体水稳性;并测定了4个SAR水平(40,30,20,5 (mmol/L)1/2)和3个盐分浓度水平(200,100,20 mmol/L)溶液处理后的土壤水分特征曲线(Soil Water Characteristic Curve,SWCC),量化了土壤脱水过程中土体压缩量与溶液SAR和盐分浓度的关系。结果表明:1)土壤团聚体水稳性与SAR和盐分浓度均呈显著负相关关系,SAR高于30 (mmol/L)1/2时,土壤团聚体水稳性才会显著下降;2)SAR对新疆典型砂壤土的SWCC有影响,且这种影响与盐分浓度有关;3)盐分浓度和SAR对土壤压缩量的影响存在交互作用。研究结果可为合理选用不同盐分组成和浓度微咸水灌溉以最大程度保护农田土壤结构和土壤水环境提供理论依据。  相似文献   

3.
吴东辉  尹文英  陈鹏 《土壤学报》2008,45(5):1007-1014
应用类群属数、个体密度、多样性指数和MI指数等多个群落参数,研究刈割活动对松嫩平原碱化羊草草地土壤螨类群落特征的影响。本研究共捕获土壤螨类1 515只,分别隶属于3亚目61属。研究结果表明,刈割活动影响土壤螨类群落组成,其中主要是减少了隐气门亚目的个体数量;与围栏封育相比,刈割活动样地土壤螨类个体密度、群落多样性H′指数和丰富度SR指数显著下降,刈割活动明显降低土壤螨类群落结构的复杂程度和稳定性;土壤中气门亚目螨类群落结构样地间相比,刈割活动样地MI指数也显著减少,刈割活动限制了土壤捕食性螨类k选择类群比例的增长;此外,土壤甲螨群落MGP分析表明,两类处理样地间甲螨结构同样存在差异,其中刈割活动明显影响大孔低等甲螨的存在。  相似文献   

4.
  目的  黄河三角洲是极具特色的滨海盐生湿地,为探究该区域关键木本植物柽柳周围土壤钠吸附的特征及其影响因素。  方法  运用同心圆布点采样和相关分析等方法,对黄河三角洲柽柳周边土壤盐分离子、钠吸附比的空间分布及离子相互关系进行了分析。  结果  Cl?和Na+是柽柳周边土壤盐分构成的主要离子。Na+、Cl?和Mg2+在距离柽柳较近的表层土壤中含量较少,其含量随土壤深度增加而上升,呈现底聚现象,在距离柽柳较远的土壤中呈现表聚现象。Ca2+、SO42?和K+的表聚现象不受距离柽柳远近的影响。相关分析表明,柽柳周边土壤钠吸附比与Cl?、Na+、K+和Mg2+离子关系密切,与Na+的相关性最强。在0 ~ 40 cm土层中,距离柽柳100 cm以内的钠吸附比远低于150 cm以外区域。钠吸附比的变异系数随土层加深而减小,深层土壤钠吸附比与盐离子的相关性均不显著。  结论  柽柳对钠吸附比的影响在100 cm以内的0 ~ 40 cm土层中更为显著。土壤盐分与钠吸附比的空间分布受柽柳冠幅范围、植物根系吸收、凋落物堆积和降水淋溶等作用的影响。  相似文献   

5.
干旱区柽柳灌丛下土壤有机质、盐分的富集效应研究   总被引:3,自引:0,他引:3  
柽柳(Tamarix spp)是一种多年生泌盐盐生植物,是西北干旱区尤其是新疆主要的防风固沙灌木[1].其根系能寄生名贵药用植物--肉苁蓉(Cistanche spp.),因而被作为一种高附加值的经济植物进行大面积种植[2],这使柽柳成为西北地区盐土农业发展中的重要资源.但在强调对柽柳等盐生植物资源经济利用的同时,植物本身对环境的作用常常被忽视.  相似文献   

6.
电磁感应仪用于土壤盐分空间分布的协同克立格估值研究   总被引:1,自引:0,他引:1  
以黄河三角洲地区典型地块为研究对象,应用地统计学的半方差函数理论,分析了0~40 cm和40~80 cm土壤盐分的空间变异特征.在对协同区域化变量进行交互半方差分析的基础上,采用协同克立格法,以电磁感应仪EM38测得的土壤表观电导率作为协同变量,对各层次的土壤盐分进行估值.结果表明:受结构性因素和随机性因素共同作用,各层次土壤盐分均表现中等强度的变异和空间相关性;随机性因素是引起土壤盐分空间异质性的关键原因;协同区域化变量间均表现为正相关,且协同区域化变量的空间结构优于单一变量.同普通克立格法相比,协同克立格法估值产生的均方误差减小13.1%~17.8%,平均标准误差减小5.83%~17.6%,预测值和实测值间的决定系数提高37.6%~42.6%.该研究结果为黄河三角洲地区土壤盐渍化的精准定量化、科学管理与合理改良提供了一定的理论基础和实践依据.  相似文献   

7.
Abstract. The saline–sodic soils of the dryland Songnen Plain in northeast China are only slowly permeable to fresh water because of their large content of montmorillinite clay and sodium bicarbonate. Use of slightly saline groundwater containing adequate dissolved calcium and magnesium for leaching and reclamation can potentially prevent dispersion of the clay soil particles during treatment. Amelioration was evaluated using shallow, mildly saline groundwater to irrigate sorghum–corn rotations in a two-year field experiment. After two growing seasons during which a total of 400 mm of leaching water was applied, in addition to some supplemental irrigation water, the average electrical conductivity (ECe) of the top 1.2 m of the soil profile decreased from 14.5±3.5 to 2.7±0.2 dS m−1, and the sodium absorption ratio (SARe) decreased from 35.3±4.1 to 10.1±2.5 (meq L−1)0.5. The soil physical properties were improved: infiltration rate with mildly saline groundwater increased from 12.1 to 42 mm h−1. Salinity changes in the top 1.2 m of soil layers after 700 mm of leaching produced no further improvement. Crop yields produced on plots undergoing amelioration increased by 64–562% compared with the rainfed control. The improved soil conditions after leaching resulted in 59–548% greater crop yields.  相似文献   

8.
ESP值和黏粒含量对土壤表面封闭作用的影响   总被引:2,自引:2,他引:2  
降雨导致土壤表面结皮形成封闭是自然现象,它能降低土壤入渗,增加土表径流,导致土壤侵蚀。该文系统地研究了不同性质土壤表面的封闭作用过程,分别确定封闭过程中的物理机械作用和化学作用。试验采用了具有不同土壤交换性钠百分率(ESP)值(2、5、10、20)和黏粒含量(10%、20%、40%、60%)的4种土壤进行降雨模拟试验,通过土壤表面播撒磷石膏(PG)(2000 kg/hm2)和PG与聚丙烯酰胺(PAM)(PG 2000 kg/hm2+PAM 20 kg/hm2)混合物的处理,分别抑制了土壤的化学封闭和物理封闭,论述了ESP值和黏粒含量对土壤化学封闭和物理封闭作用的影响,结果表明:在高ESP值土壤中,化学封闭作用占土壤封闭的主导作用;低ESP值土壤中,土壤的物理封闭作用增大。当黏粒含量较低时,土壤物理封闭作用较低;当黏粒含量较大时,土壤物理封闭作用显著增大。  相似文献   

9.
Since 1954, the electrical conductivity of the saturated paste extract (ECe) has been the preferred index for soil salinity. Based on this value, remediation strategies were developed and widely used but this approach is time consuming and not routinely offered by many soil testing facilities. However, many laboratories determine the EC1:1 value of a 1:1 soil to solution ratio extract. The objective of this study was to identify the relationship between ECe and EC1:1 and determine if EC1:1 can be used as a proxy in the northern Great Plains for ECe. Samples were collected across five studies and from AGVISE Laboratory. The samples were analyzed for EC1:1 and ECe. The relationship between the ECe and EC1:1 showed that soil parent materials need to be considered in the conversion of EC1:1 values to ECe values. A failure to consider parent materials in this conversion may have short and long-term sustainability ramifications.  相似文献   

10.
Extensive use of chemical fertilizers in agriculture can induce high concentration of ammonium nitrogen(NH4+-N) in soil. Desorption and leaching of NH4+-N has led to pollution of natural waters. The adsorption of NH4+-N in soil plays an important role in the fate of the NH4+-N. Understanding the adsorption characteristics of NH4+-N is necessary to ascertain and predict its fate in the soil-water environment, and pedotransfer functions(PTFs) could be a convenient method for quantification of the adsorption parameters. Ammonium nitrogen adsorption capacity, isotherms, and their influencing factors were investigated for various soils in an irrigation district of the North China Plain. Fourteen agricultural soils with three types of texture(silt, silty loam, and sandy loam) were collected from topsoil to perform batch experiments. Silt and silty loam soils had higher NH4+-N adsorption capacity than sandy loam soils.Clay and silt contents significantly affected the adsorption capacity of NH4+-N in the different soils. The adsorption isotherms of NH4+-N in the 14 soils fit well using the Freundlich, Langmuir, and Temkin models. The models’ adsorption parameters were significantly related to soil properties including clay,silt, and organic carbon contents and Fe2+ and Fe3+ ion concentrations in the groundwater. The PTFs that relate soil and groundwater properties to soil NH4+-N adsorption isotherms were derived using multiple regressions where the coefficients were predicted using the Bayesian method. The PTFs of the three adsorption isotherm models were successfully verified and could be useful tools to help predict NH4+-N adsorption at a regional scale in irrigation districts.  相似文献   

11.
ABSTRACT

We estimate the electrical conductivity of saturated soil paste extract (ECe) from electrical conductivity of a 1:5 soil-water dilution ratio (EC1:5) in Northeastern Thailand. Soil samples of various textures and salinity collected from Sakhon Nakhon basin were used to develop multiple regression models, from which the linear model was chosen and was validated on soil samples from the Khorat basin. Comparison with previous models indicated that most linear models gave a good fit, but the non-linear models either over or underestimated the measured values. The models performed very well for low values of ECe (<5 dS m?1), while the prediction errors increased significantly for ECe levels >35 dS m?1. The present model performed well at various ECe levels and can be used to predict salinity levels for soils weathered from salt deposits in sedimentary rocks with similar rock formation in countries like Malaysia, Vietnam, Cambodia, and Laos.  相似文献   

12.
甲烷(CH4)是一种强效温室气体,准确认识特定类型土壤CH4源汇特征及影响因子调控作用,对于提升土壤CH4吸收潜力以减缓全球气候变化具有重要意义。该研究以盐渍土为研究对象,在土壤室内培养试验中,设置了3个土壤含水率处理,分别为田间持水率(Field Capacity,FC)的50%(50%FC),75% FC和100% FC,并在每个含水率下设置了6个含盐量处理,电导率分别为0.3、1.0、2.0、3.2、4.9和6.2 dS/m,研究不同土壤含水率和含盐量条件下盐渍土CH4吸收特征。在田间测坑试验中,观测了0.3、1.0和5.0 dS/m 3种含盐量土壤的CH4吸收特征及其对水分动态的响应。室内土壤培养试验结果表明,100%FC下6种盐分水平土壤CH4累积吸收量分别是75%FC下的1.08~1.39倍和50%FC的1.27~1.72倍,表明在田间持水率范围内,含水率升高促进了土壤CH4吸收;在3种含水率下,土壤CH4累积吸收量均随着处理含盐量升高而降低,6.2 dS/m最高含盐量处理的CH4累积吸收量相比0.3 dS/m最低含盐量处理显著降低了42.6%、52.3%和55.1%(P<0.05);相比50%FC,100%FC含水率下高含盐量对土壤CH4吸收具有更强的抑制作用,土壤含水率和含盐量对CH4吸收的影响存在显著的交互作用。田间测坑试验在野外田间条件下进一步验证了室内培养试验的结果,试验观测期内所有含盐量处理土壤CH4吸收速率均与土壤含水率呈显著正相关关系(P<0.01);1.0和5.0 dS/m含盐量处理的累积CH4吸收量分别为0.3 dS/m非盐渍土处理的82.6%和59.8%,高含盐量抑制了土壤对CH4的吸收。研究结果表明盐渍土是CH4的汇,并受到土壤含水率和含盐量显著影响,在盐渍土开发利用中应考虑通过合理的水盐调控以提高土壤CH4汇的能力。  相似文献   

13.
松嫩平原盐渍化水田土壤表观电导率空间变异研究   总被引:2,自引:0,他引:2  
运用电磁感应仪EM38结合GPS定位,以盐渍化水田为研究对象,通过经典统计学和地统计学相结合的方法研究了盐渍土区新开水田表观电导率的空间变异特征,分析了土壤表观电导率与土壤盐碱指标关系。结果表明,经典统计分析土壤水平方向表观电导率(ECh)与垂直方向表观电导率(ECv)均为中度空间变异强度,且符合正态分布。地统计分析表明,ECh和ECv均具有强空间相关性,其变异特征主要是由结构性因素引起的,半方差拟合最优模型为指数模型。且ECh和ECv空间分布在一定范围内存在相似性,均表现为不同表观电导率的土壤呈斑块和条带状镶嵌分布。Pearson分析显示,土壤表观电导率与盐碱化指标土壤电导率(EC1︰5)和碱化度(ESP)呈正相关关系(P0.05),相关系数大于0.8。回归分析表明,土壤表观电导率与EC1︰5和ESP均为指数函数关系,决定系数大于0.76。ECh与土壤盐碱化指标相关系数和决定系数均大于ECv,因此可以用水平方向土壤表观电导率ECh来反映土壤的盐碱化程度。该研究可以为土壤盐分空间变异理论与盐碱地改良实践相结合的研究思路提供理论基础,为盐碱地实施定位、定区清除或消减土壤盐碱的均质化改良技术提供数据支持。  相似文献   

14.
Zhou  Meng  Liu  Xiaobing  Meng  Qingfeng  Zeng  Xiannan  Zhang  Jizhou  Li  Dawei  Wang  Jie  Du  Weiling  Ma  Xianfa 《Journal of Soils and Sediments》2019,19(10):3521-3533
Purpose

Serious soil salinization, including excessive exchangeable sodium and high pH, significantly decreases land productivity. Reducing salinity and preventing alkalization in saline-sodic soils by comprehensive improvement practices are urgently required. The combinations of aluminum sulfate with different types of fertilizer at different rates were applied on rice paddy with saline-sodic soils of the Songnen Plain in Northeast China to improve soil quality and its future utilization.

Materials and methods

Experiments were carried out in a completely randomized block design. Twelve treatments with aluminum sulfate at the rates of 0, 250, 500, and 750 kg hm?2 with inorganic, bio-organic, and organic-inorganic compound fertilizers were performed. Soil pH, electronic conductivity (EC), cation exchangeable capacity (CEC), exchangeable sodium percentage (ESP), total alkalinity, sodium adsorption ratio (SAR), soil organic carbon (SOC), available nutrients, soluble ions, rice growth, and yield in the saline-sodic soils were measured across all treatments. The relationships among the measured soil attributes were determined using one-way analysis of variance, correlation analysis, and systematic cluster analysis.

Results and discussion

The pH, EC, ESP, total alkalinity, SAR, Na+, CO32?, and HCO3? in saline-sodic soil were significantly decreased, while CEC, SOC, available nitrogen (AN), available phosphorus (AP), available potassium (AK), K+, and SO42? were significantly increased due to the combined application of aluminum sulfate with fertilizer compared with the fertilizer alone. The most effective treatment in reducing salinity and preventing alkalization was aluminum sulfate at a rate of 500 kg hm?2 with organic-inorganic compound fertilizer. This treatment significantly decreased the soil pH, EC, ESP, total alkalinity, SAR, Na+, and HCO3? by 5.3%, 28.9%, 41.1%, 39.3%, 22.4%, 23.5%, and 35.9%, but increased CEC, SOC, AN, AP, AK, K+, SO42?, rice height, seed setting rate, 1000-grain weight, and yield by 77.5%, 115.5%, 106.3%, 47.1%, 43.3%, 200%, 40%, 6.2%, 43.9%, 20.3%, and 42.2%, respectively, compared with CK treatment in the leaching layer.

Conclusions

The combined application by aluminum sulfate at a rate of 500 kg hm?2 with organic-inorganic compound fertilizer is an effective amendment of saline-sodic soils in Songnen Plain, Northeast China. These results are likely related to the leaching of Na+ from the soil leaching layer to the salt accumulation layer and desalination in the surface soil, and the increase of SOC improved the colloidal properties and increased fertilizer retention in soil. In addition, the environmental impact of aluminum sulfate applied to soil needs to be further studied.

  相似文献   

15.
To study the seasonal variability of soil inorganic nitrogen (N) across borders at the woodland-farmland ecotone and potential mechanisms, contents of soil inorganic N were measured during the dry season (May 20 and June 30) and the rainy season (August 10 and September 20) of 2006 in the Songnen Plain of Northeast China. The borders between farmland and woodland were determined by a border-and-ecotone detection analysis (BEDA). The ecotone limits, often referred to as the depth-of-edge influence (DEI), are critical for determining the scale at which edge effect operates. The results showed that the soil inorganic N border between the woodland and farmland was located further toward the woodland interior during the rainy season (DEI = 53.4 ± 8.7 m, August 10) than during the dry season (DEI = 35.0 ± 12.6 m, May 20). The seasonal variability in the soil inorganic N border was found to be associated with seasonal changes of deposition flux of N (the correlation coefficients between them for the dry season and rainy season were 0.61 and 0.67, respectively), which resulted from foliation patterns of trees and crops. Accordingly, the leaf area index at woodland edges was lower than that in the woodland interior, so woodland edges captured large amounts of atmosphere nitrogen deposition. The average DEI was 44.1 m, which was in accordance with the values of other temperate forest boundaries in literatures; therefore, BEDA was an appropriate method to estimate the borders of ecotones.  相似文献   

16.
基于EPO-PLS回归模型的盐渍化土壤含水率高光谱反演   总被引:5,自引:1,他引:4  
表层土壤含水率对于指导农业灌溉有重要的作用。研究表明,土壤光谱受到土壤水分和盐分的共同影响,但对于盐渍化地区的土壤含水率高光谱反演却很少涉及。该文通过对11组不同含盐量土壤室内蒸发过程连续监测,获取相关反射率光谱和水分、盐分的变化数据,利用外部参数正交化方法(external parameter orthogonalisation,EPO)预处理土壤光谱,滤除盐分(质量比0.1%~5.0%)的影响,建立经过EPO预处理后的偏最小二乘(partial least squares regression after EPO pre-processing,EPO-PLS)土壤水分预测模型。与偏最小二乘(partial least square model,PLS)模型相比,验证样本的决定系数R2和对分析误差RPD(residual predictive deviation)分别从0.722、1.976上升到0.898、3.145;均方根误差RMSE从5.087 g/(100 g)减少到3.237 g/(100 g)。通过EPO算法预处理后的模型性能提升显著,利用该方法能够有效的消除土壤盐分的影响,很好地实现盐渍化地区的水分含量估测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号