首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Two commonly used methods of dissolution of heavy metals in soils and sediments for atomic absorption spectrophotomety (AAS) determination were compared. Dry ashing and subsequent dissolution with 3 N HCl in a block digestor was shown to give a better estimate of the aqua regia‐soluble fraction than wet ash digestion with a mixture of HNO3 and HClO4 acids using reference materials. But both methods extracted significantly less than the certified total contents of most metals.

In soils and sediments from SW Spain, the amounts extracted by the block heater method were generally greater than those obtained by wet ash digestion. In agricultural soils, highly significant differences were found between the amounts of Fe, Cu, and Zn extracted by both methods, but the significance decreases if both methods are used on soils or sediments from mining areas where metal contents are likely to be from recent deposits.  相似文献   

2.

Purpose

To understand the bioleaching of metals from sludge by Acidithiobacillus thiooxidans, the aims of this study were to evaluate the experimental conditions affecting the efficiency of removal of the metals, including solids concentration, initial pH, sulfur concentration and inoculum level were examined, and following the bioleaching mechanism was proposed.

Materials and methods

A. thiooxidans were isolated from collected sludge samples containing bacteria from Fuzhou Jingshan sewage treatment plant, and identification of bacteria by sequencing the 16?s rDNA gene sequences. Conditions affecting the bioleaching and application were conducted by batch experiments. The analysis of Cr, Cu, Pb, and Zn was carried out using an atomic absorption spectrophotometer, and the pH and oxidation?Creduction potential (ORP) were measured using a pH meter and an ORP meter.

Results and discussion

The results show that a high metal leaching efficiency was achieved at low solid concentrations due to decreases in buffering capacity. In addition, the best conditions of the bioleaching included 2?% (w/v) solid concentration, 5.0 gL?1 sulfur concentration, and 10?% (v/v) inoculum concentration, where the removal efficiencies of Cr, Cu, Pb, and Zn in sewage sludge was 43.6?%, 96.2?%, 41.6?%, and 96.5?%, respectively.

Conclusions

We found that the bioleaching of Zn was governed by direct and indirect mechanisms, while the bioleaching of Cu, Pb, and Cr was mainly dominated by the bioleaching indirect mechanism. After processing with the proposed techniques, the heavy metals in the sewage sludge did meet the requirement of the national standards.  相似文献   

3.

Purpose

The aim of this work was to select and assess the efficiency of different amendments applied to ordinary chernozems artificially contaminated with heavy metals (Zn and Pb).

Materials and methods

The effect of different amendments on ordinary chernozem contaminated with Zn and Pb acetate salts was studied in a long-term 3-year field experiment. Glauconite, chalk, manure, and their combinations were chosen as ameliorating agents. Spring barley (Hordeum sativum) was used as test culture for three successive years. The heavy metal concentration in all the soil samples decomposed by HF?+?HClO4 was determined by atomic absorption spectrophotometry (AAS). One normal concentration of CH3COONH4 at pH 4.8 was used to estimate the actual mobility of metals. The compounds of heavy metals extracted by 1 N HCl are regarded as mobile compounds. The concentration of metals in the plants was determined using the dry combustion in a mixture of HNO3 and HCl at 450 °C. The content of heavy metals in extracts from soil and plant samples was determined by AAS.

Results and discussion

The content of weakly bound metal compounds increased upon the contamination of the soil with Pb and Zn salts, which led to a low quality of barley grown in these soils. Metal concentrations in the barley grain exceeded the maximum permissible concentrations (MPCs). The content of Zn and Pb in grains was higher than the MPC for at least 3 years after the soil pollution. The application of amendments significantly decreased the mobility of metals, and the simultaneous application of chalk and manure was most significant. The share of weakly bound metal compounds in the contaminated soils decreased to the level typical for the clean soils or even below.

Conclusions

The combined application of chalk and manure to Zn- and Pb-contaminated ordinary chernozems decreased the content of weakly bound metal compounds in the soil and lowered their concentrations in barley plants. The polyfunctional properties of the soil components with respect to their capacity for metal fixation were established. The decrease in the intensity of Zn accumulation in grains of barley shows the presence of a barrier at the root–stalk and stalk–grain interfaces.
  相似文献   

4.

Purpose  

The objective of this research was to study heavy metal mobility and availability in sediment samples. A rapid diagnosis about metal behaviour was performed using the combination of several single-step extraction procedures and multi-way chemometric tools.  相似文献   

5.

Purpose

Surface sediments contaminated with high levels of multiple heavy metal(loid) species are very common environmental problems. Especially, the labile and bioaccessible fractions of heavy metal(loid)s in the sediments are posing serious risks to the biota and the overlaying water quality. This study aimed at developing a potential method to manage the activity of the labile fractions of heavy metal(loid)s in surface sediments.

Materials and methods

This study assessed the feasibility of adding iron powder, a low-cost industrial by-product, to sediments containing high levels of Pb, As, and Cd to adsorb labile fractions of heavy metal(loid)s onto the sorbent surfaces and to retrieve the heavy metal(loid) laden powders by applying external magnetic field. In addition, the redistribution of Pb, Cd, and As in different sediment fractions, the dissolved fraction and the sorbent-adsorbed fraction, was also investigated and characterized.

Results and discussion

The results indicate that the bioactive labile fractions (exchangeable and carbonate-bound fractions) of heavy metal(loid)s are prone to concentrating onto iron powders and can be selectively removed from the sediments by magnetic retrieval. In addition, iron addition induces conversion of labile fractions of heavy metal(loid)s into more stabilized fractions.

Conclusions

Overall, the process can effectively minimize the activity of labile fractions of heavy metal(loid)s in surface sediments.
  相似文献   

6.
For the purpose of studying the contamination, bioaccumulation and transfer of heavy metals and understanding the effects of soil properties on these, the work was carried out on a regional scale. A total of 30 sets of soil and pairing rice tissues samples (root, straw and grain) were collected in Xiangzhou of Guangxi, China; soil properties and Cd, Cu, Pb and Zn of different rice tissues were analyzed. The mobility and bioaccumulation of Cd, Cu, Pb and Zn were assessed by transfer coefficients and bioaccumulation factors of them. The results indicated that the excess proportions of Cd and Pb were 50%, 3.33% and 30%, 6.67% in soil and rice grain, respectively, according to Chinese maximum permitted concentrations of heavy metals. Cd and Zn showed stronger bioaccumulation and mobility capability; the bioaccumulation and transfer of Cu were slightly lower than Cd and Zn; Pb had the weakest mobility. The bioaccumulation and mobility of heavy metals from soil to rice were restrained by soil pH, CaO, SOC, Fe oxides and Mn.  相似文献   

7.
Background, aim and scope  Although many recent studies have focused on sediment potential toxicity, few of them were performed in tropical shallow aquatic environments. Those places can suffer short-time variations, especially due to water column circulations generated by changes in temperature and wind. Rio Grande reservoir is such an example; aside from that, it suffers various anthropogenic impacts, despite its multiple uses. Materials and methods  This work presents the first screening step for understanding sediment quality from Rio Grande reservoir by comparing metal content using three different sediment quality guidelines. We also aimed at verifying any possible spatial heterogeneity. Results and discussion  We found spatial heterogeneity varying according to the specific metal. Results showed a tendency for metals to remain as insoluble as metal sulfide (potentially not bioavailable), since sulfide was in excess and sediment physical–chemical characteristics contribute to sulfide maintenance (low redox potential, neutral pH, low dissolved oxygen, and high organic matter content). On the other hand, metal concentrations were much higher than suggested by Canadian guidelines and regional background values, especially Cu, which raises the risk of metal remobilization in cases of water circulation. Further study steps include the temporal evaluation of AVS/SEM, a battery of bioassays and the characterization of organic compounds.  相似文献   

8.
Abstract

In a field experiment conducted during three years in a sandy‐loam, calcareous soil, one aerobically digested sewage sludge (ASL) and another anaerobically digested sewage sludge (ANSL) were applied at rates of 400, 800, and 1,200 kg N/ha/year, and compared with mineral nitrogen fertilizer at rates of 0, 200, 400, and 600 kg N/ha/year in a cropping sequence of potato‐corn, potato‐lettuce, and potato, the first, second, and third year, respectively. Results showed that the highest values of soil extractable metals were obtained with aqua regia, whereas the lowest levels with DTPA. All metal (Zn, Cu, Cd, Ni, Pb, and Cr) gave significant correlations between metal extracted with the different extractants and metal loading applied with the sludges. The metal extractable ion increased over the control for Zn, Cu, Cd, Ni, Pb, and Cr extracted with DTPA, EDTA (pH 8.6) and 0.1 N HC1, for Zn, Cd, Ni, Pb, and Cr extracted with EDTA (pH 4.65) and AB‐DTPA, and for Zn, Cd, Ni, and Cr extracted with aqua regia. The level of metal‐DTPA extractable resulted highly correlated with that obtained by the other methods, except the Ni‐aqua regia extractable. The soil extractable elements which showed significant correlations with metals in plant were: Zn, Cu, Cd, and Ni in potato leaves, Cd, Ni, and Pb in corn grain, and Zn and Cd for lettuce wrapper leaves. In general, all the chelate based extractants (DTPA, EDTA pH 4.6, EDTA pH 8.6, AB‐DTPA) were equally useful as indicator of plant available metals in the soil amended with sludge.  相似文献   

9.
Purpose

The pollution of marine sediments by heavy metals is still a major concern, especially in zones affected by industry or mariculture. Toxicity of sediment heavy metal contents may be assessed using sequential extraction (SE) procedures, minding inherent constraints of such approaches. In this study, we investigated heavy metal speciation and toxicity in anoxic marine sediments in Zhelin Bay, a mariculture bay in Southern China, using an SE and acid volatile sulfur-simultaneously extracted metals (AVS-SEM) approach.

Materials and methods

Speciation of Cd, Cu, Ni, Pb, and Zn were studied by a modified SE of five fractions, adapted to separate organic and sulfidic metal fractions in anoxic sediments: F1 weak acid soluble (readily available), F2 reducible fraction, F3 organic matter-bound fraction, F4 sulfide-bound fraction, and F5 residually bound fraction. Toxicity predictions based on the sum of non-residual (NR) metal fractions from sequential extraction were compared to predictions based on AVS-SEM.

Results and discussion

Results showed that Cd, Ni, and Pb predominantly occurred in the weak acid soluble fraction (F1), residual fraction (F5), and sulfide-bound fraction (F4), respectively; Cu and Zn were mainly obtained in F4 and F5. Based on the distribution of indicator elements for metal fractions, the SEM from AVS extraction included different yields of non-residual and residual fractions besides the sulfidic fraction. Estimates for potential heavy metal toxicity based on NR metals of the SE procedure were thus based on a better-defined speciation compared to the simplistic approach of the AVS-SEM method.

Conclusions

Based on the contents of NR metals and normalizing them by organic matter content, toxic effects are not expected for any of the sampling sites, irrespective of the presence or absence of mariculture. Using Pearson correlation analysis to identify predominant fractions influencing toxicity, we conclude that toxicity of heavy metals in anoxic sediments can be well predicted by their non-residual heavy metal contents.

  相似文献   

10.

Purpose  

Risks associated to “heavy metals” (HM) soil contamination depend not only on their total content but, mostly, on their mobility. Many extraction procedures have been developed to evaluate HM mobility in contaminated soils, but they are generally time consuming (especially the sequential extraction procedures (SEPs)) and consequently applicable on a limited number of samples. For this reason, a simple screening method, applicable even “in field”, has been proposed in order to obtain a rapid evaluation of HM mobility in polluted soils, mainly focused on the fraction associated to Fe and Mn oxide/hydroxides.  相似文献   

11.
This paper deals with the development of a sequential extraction method to separate the Ca-bound and Fe-and Al-bound humus from soils.First,comparative analyses were carried out on dissolution of synthetic organo-mineral complexes by different extractants,i.e.0.1M Na4P2O7,0.1M NaOH 0.1M Na4P2O7 mixture,0.1M NaOH,0.5M (NaPO3)6 and 0.5M neutral Na2SO4.Among the five extractants,0.1M NaOH 0.1M Na4P2O7 mixture was the most efficient in extracting humus from various complexes.0.5M Na2SO4 had a better specificity to Ca than 0.5M (NaPO3)6,by only extracting Ca-bound humus without destorying Fe-and Al-bound organo-mineral complexes.Then sequential extractions first with 0.5M Na2SO4 and then with 0.1M NaOH 0.1M Na4P2O7 mixture were applied to a series of soil samples with different degrees of base saturation.The cations were dominated by Ca in the 0.5M Na2SO4 extract and by Al in the 0.1M NaOH 0.1M Na4P2O7 mixture.The sequential extraction method can efficiently separate or isolate Ca-bound and Fe-and Al-bound humus from each other.  相似文献   

12.
Abstract

The purposes for this research were: to examine the long‐term residual effects of farmland applications of municipal sludges from four treatment technologies on the total and extractable Zn, Cu, Mn, Fe, Pb, Ni and Cd concentrations in Coastal Plain soils; to investigate the effects of sludge sources and rates on the effectiveness of soil extractants to remove the various metals; and to determine correlation coefficients for soil extractable versus plant accumulation in tobacco. The extractants evaluated were Mehlich 1 and 3, and DTPA‐pH 7.3. Composite Ap horizon soil samples and tobacco leaf samples were obtained in 1984 from research plots at two sites in Maryland that were established in 1972 and 1976, respectively, using sludge materials from three wastewater treatment facilities in the Washington, D.C. metropolitan region. Similar application rates were used at both sites.

A wide range in soil pH values was found among treatments at each site. Significant (p ≤ 0.05) increases were observed in total Zn, Cu, Fe, Pb, Ni, and Cd for all sludge sources with increased rates; however, values for total soil Mn exhibited high variability in all cases. The rankings among the extractants varied for some elements depending on the sludge sources. For Zn, the rankings were Mehlich 1 > Mechlich 3 > DTPA‐pH 7.3 across all sources and rates. For Cu, Mehlich 3 > Mehlich 1 > DTPA‐pH 7.3 was found for soils amended with Blue Plains digested (BPD) and Piscataway limeddigested (PLD) sludges but Mehlich 1 ≥ DTPA pH 7.3 > Mehlich 3 for Blue Plains limed compost (BPLC) and Annapolis Fe and heat treated (AFH) sludges. Concerning extractable Mn, Mehlich Mehlich 1 > Mechlich 3 > DTPH pH 7.3 was the order for BPLC and AFH sludges but Mehlich 3 > Mehlich 1 > DTPA‐pH 7.3 was observed for BPD and PLD sludges. The rankings among extractants for Fe (Mehlich 3 > Mehlich 1 > DTPA‐pH7.3), Ni (Mehlich 3 ≥ Mehlich 1 > DTPA‐pH 7.3), Pb (Mehlich 3 > DTPA‐pH 7.3 > Mehlich 1) and Cd (Mehlich 1 > Mehlich 3 > DPTA‐pH7.3) were somewhat similar across all sludge sources. Significant correlation coefficients were obtained for all three extractants for soil extractable vs. plant Zn, Cu, Ni, and Cd at both sites; however, Mehlich 3 was not significant for Mn. Also, neither of the extractants produced significant coefficients for Fe and Pb.  相似文献   

13.

Purpose

This work studies the implications of different traffic patterns for heavy metal and solid pollution generation processes following rainfall events with contrasting antecedent meteorological conditions, at a periurban catchment. The aim is to provide information on the pollution processes and their potential environmental impacts for urban areas.

Materials and methods

Seven campaigns were performed covering winter, spring, and summer conditions, for rainfall events with different antecedent conditions. Four types of roads were monitored: low traffic, average traffic, heavy traffic with demanding driving situations (break and turning), and heavy traffic with high vehicle speed (motorway profile). Samples were taken at the beginning, middle and end of the events to measure within event variation in concentration. Analytical standard procedures were used to quantify pH, conductivity, turbidity, total solids, volatile solids, suspended solids, volatile suspended solids and heavy metals (Cd, Cu, Pb and Zn) in the total and dissolved forms (as to infer the particulate fraction), namely copper, zinc, cadmium and lead.

Results and discussion

The collected data show a direct relation among the number of vehicles and/or the driving manoeuvres performed by them and the amount of solids and heavy metals present in the wash out overland flow collected. An important fraction of the heavy metals is washed off in the particulate form, which represents an increased problem since the road overland flow is directed to green/brown areas and for the local aquatic ecosystems. Maximum copper values recorded exceed 0.6 mh L?1, zinc exceeds 5 mg L?1, lead 0.1 mg L?1 and cadmium 0.01 mg L?1. Values are higher after long dry spells and reduce concentration throughout the rainfall events.

Conclusions

An important part of the heavy metals (with relevance for zinc and lead) are washed off in the particulate form, pollutants are typically related to the amount of traffic, and especially to the existence of driving manoeuvres. The summer events show the highest values, due to the accumulation of pollutants during the long dry spells.
  相似文献   

14.
Journal of Soils and Sediments - The aim of the study was to (1) investigate the distributions of sulfur (S), iron (Fe), and phosphorus (P) in coastal surface sediments under the stresses of high...  相似文献   

15.
Upper Silesia has rich deposits of hard coal and substantial deposits of zinc, lead and iron ores. the watersheds of two rivers cut right through the zinc and lead ore mining region and most of the tailing drainage water is contaminated with heavy metals. in total, about 807 tyr-1 of zinc, 67t yr-1 of lead and 17 tyr-1 of cadmium are discharged with the drainage and process waste water. in the Upper Silesia many industrial plants also discharge waste water contaminated with heavy metals. the Bukowno Complex is the most important regional source of heavy metals and the Biala Przemsza River is the main receiver of waste waters from this complex. Measured data at a cross-section of this river are given. It is shown by a simplified calculation that lead and zinc are transported downstream to the Vistula River and later to the Baltic Sea, or are deposited in the river bed. It is shown that there are many other possible sources of heavy metals. Atmospheric deposition of metals on the surface leads to surface runoff, accumulation in plants, and subsequently discharge with animal or human excreta. Contaminated sediments will continue to pollute the overflowing river water, perhaps for centuries. Mobilization of heavy metals and factors affecting that process are discussed in relation to providing safe drinking water now and in the future. It is emphasized that the drinking water quality is already threatened.  相似文献   

16.
Abstract

In this study, a new parallel and sequential extraction procedure was proposed to investigate the solubility of metals [cadmium (Cd), zinc (Zn), copper (Cu), and nickel (Ni)] and their association with soil components in naturally metal‐rich soils of Norway. Two different soils, alum shale (clay loam) and moraine (loam), developed on alum shale minerals were used. Each soil had two pH levels. For parallel and successive extractions, H2O, 0.1M NH4OAc (soil pH), 0.3M NH4OAc (soil pH), 1M NH4OAc (soil pH), and 1M NH4OAc (pH 5.0) were used. A significant amount of Cd was extracted by NH4O Ac related to concentration of NH4OAc in the extracting solution. The amounts of Zn, Cu, and Ni extracted by these reagents were almost negligible except with 1M NH4OAc (pH 5.0). Thus these metals were strongly bound to soil components. A seven step sequential extraction procedure was applied to evaluate the association of metals with soil constituents. The extractions were performed sequentially by extracting the soil with reagents having an increasing dissolution strength: 1M NH4OAc (soil pH), 1M NH4OAc (pH 5.0), 1M NH2OH.HCl (in 25% HOAc), 1M NH2OH.HCl (in 0.1M HNO3), 30% H2O2 (in 0.1M HNO3), 30% H2O2 (1M HNO3), and aqua regia. In both soils at both pH levels investigated, appreciable percentages of total Cd (20–50%) were found associated with the NH4OAc extractable fraction (mobile fraction). For Zn, Cu, and Ni, the percentage of total metal extracted with NH4OAc was low (<4%), but it increased significantly by introducing a reducing agent (NH2OH.HCl). The NH2OH.HCl‐extractable fraction was the greatest fraction (>60%) for all four metals examined. These results suggest that among the metals studied, only Cd was easily desorbed from soil and should be considered mobile and potentially bioavailable. Other metals (Zn, Cu, and Ni) were strongly associated with the soil components and should be considered less available to plants. Using the sequential fractionation technique as a measure of availability, mobility and potential bioavailability of these four metals in the alum shale soils were: Cd>Zn>Ni>Cu.  相似文献   

17.
Yang  Wentao  Chen  Yonglin  Yang  Liyu  Xu  Mengqi  Jing  Haonan  Wu  Pan  Wang  Ping 《Journal of Soils and Sediments》2022,22(10):2654-2670
Journal of Soils and Sediments - The overexploitation of resources such as mining and metallurgical and agricultural resources has resulted in heavy metal accumulation and soil acidification....  相似文献   

18.
Little is known about the decomposition rates of shoot and root residues of perennial grasses. This knowledge is important to estimate the carbon sequestration potential of the grasses. An incubation experiment was carried out in a sandy clay loam with shoot and root residues of three native perennial grasses (Wallaby grass, Stipa sp. and Kangaroo grass) and the annual grass barley either separately or in mixtures of two residues. Respiration rate was measured over 18 days, and microbial C and available N were measured on days 0 and 18. Decomposition was lower for roots than for shoots and lower for residues of perennial grasses than for barley. Cumulative respiration was positively correlated with water-soluble C in the residues but not with residue C/N. In the mixtures, the measured cumulative respiration was higher than the expected value in five of the nine mixes usually where the differences in cumulative respiration between the individual residues were relatively small. Lower than expected cumulative respiration were found in two of the mixtures in which barley shoots (high cumulative respiration) were mixed with residues with low cumulative respiration. There was a negative correlation between the change in microbial biomass C concentration from day 0 to day 18 and cumulative respiration on day 18. In the amended soils, the available N concentration decreased from day 0 to day 18. It is concluded that the low decomposition rate of perennial grasses residues should favour C sequestration, but that mixing residues of similar decomposition rate may accelerate their decomposition.  相似文献   

19.
ABSTRACT

Today, soil metal pollution has become a significant environmental issue of great public concern. This is because soil is both a major sink for heavy metal(loid)s (HMs) released into the environment, by both pedogenic and anthropogenic activities; and also a major source of food chain contamination mainly through plant uptake and animal transfer. In addition, HM contamination of soil leads to negative impacts on soil characteristics and function by disturbing both soil biological and physiochemical properties (e.g. extreme soil pH, poor soil structure and soil fertility and lack of soil microbial activity). This eventually leads to decreased crop production. Various soil remediation techniques have been successfully employed to reduce the risks associated with HMs efflux into soil. Among these, the use of low-cost and environmentally safe inorganic and organic amendments for the in-situ immobilization of HMs has become increasingly popular. Immobilization agents have successfully reduced the availability of metal ions through a variety of adsorption, complexation, precipitation, and redox reactions. Soil amendments can also be a source of nutrients and thus can also act as a soil conditioner, improving the soil’s physiochemical properties and fertility, resulting in enhanced plant establishment in metal contaminated soils. This article critically reviews the use of immobilizing agents in HM contaminated agricultural and mining soils paying particular attention to metal immobilization chemistry and the effects of soil amendments on common soil quality parameters.  相似文献   

20.
Density fractionation is frequently applied to separate soil organic matter according to the degree and the mode of interaction with minerals. Density fractions are operationally defined by density cut-off and sonication intensity, which determine the nature of the separated material. However, no tests or general agreements exist on the most appropriate density cut-off as well as on method and intensity of dispersion. Numerous variants have been proposed and applied, with results often contrasting each other and being hard to interpret. Here, we aimed at separating two light fractions (free and occluded into aggregates) composed of almost pure organic material, and one heavy fraction comprising the organic–mineral associations. We tested effects of different density cut-offs and sonication intensities, in combination and separately, on fraction yields, as well as on the fractions' organic carbon, total nitrogen and lignin-derived phenols. We tried to find optimum density cut-offs and sonication intensities, providing light fractions with maximum organic material and minimum contamination by mineral material. Under the test conditions, a density of 1.6 g cm?3 gave best results for all test soils, allowing for separation of maximums amounts of almost pure organic material. The density cut-off at 1.6 g cm?3 is well in line with previous studies and theoretical considerations, therefore we recommend the use of this density as most suitable for separation of organic debris. Sonication levels for aggregate disruption to achieve complete separation of occluded light organic matter varied amongst soils. The necessary intensity of dispersion relates to the type of soil, depending on the stability of contained aggregates. The application of one single dispersion energy level to different soils may result either in mineral contamination or in incomplete separation of light and heavy fractions as well as in redistribution of organic material amongst fractions. This means there is no single sonication level that can be applied to all soils. Thus, obtaining a meaningful light fraction residing within aggregates (occluded light fraction) requires assessment of the dispersion energy necessary to disrupt the aggregate system of a given soil without dispersion of organic–mineral associations. This can be done in pre-experiments where the soil is fractionated at different sonication levels. The appropriate dispersion is determined by mass yields and OC content of the obtained occluded fractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号