首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, application of sewage sludge or effluents resulted in raising the concentrations of some heavy metals in some agricultural soils of Iran. Experiments were conducted to evaluate the competitive adsorption of lead (Pb), copper (Cu), zinc (Zn), and cadmium (Cd) on six calcareous soils. Adsorption characteristics were evaluated by equilibration of 1 g of each soil sample with 20 ml of 0, 10, 20, 30, 40, 50, 100, or 200 mg L?1 of their nitrate solutions and 0.01 M NaNO3 as background electrolyte. Furthermore, solid/liquid distribution coefficients (Kd) of studied metals, as an index of soil capacity to resist a change of the soil solution concentration, were calculated. Results indicated that amounts of adsorbed Pb, Cu, Zn, and Cd increased with increase in their concentrations in the contact solutions, but this trend was more pronounced for Pb and Cu than the others. For all studied soils and metals, Langmuir equation described the adsorption behavior fairly well. Furthermore, Langmuir and Freundlich equation parameters were positively correlated to cation exchange capacity (CEC) and smectite contents; whereas, they were negatively correlated to sand content. Considering Kd values, the selectivity sequence of the metal adsorption was Pb > Cu > Zn > Cd. Therefore, the risk of leaching and also plant uptake of Zn and Cd will be higher as compared to those of the other elements.  相似文献   

2.
伊朗一些石灰性土壤中锌解吸动态研究   总被引:1,自引:0,他引:1  
Desorption of zinc (Zn) from soil is an important factor governing Zn concentration in the soil solution and Zn availability to plants. Batch experiments were performed to study the kinetics of Zn desorption by diethylenetriaminepentaacetic acid (DTPA) from 15 calcareous soil samples taken from Golestan Province in northern Iran. Soils were equilibrated with 0.005 mol L-1 DTPA solutions for 0.25 to 192 h. The results showed that the extraction process consisted of rapid extraction in the first 2 h followed by much slower extraction for the remainder of the experiment. Desorption kinetic data was fitted to pseudo-first-order kinetic model. The experimental data were found to deviate from the straight line of the pseudo-first-order plots after 2 h. The model of two first-order reactions was fitted to the kinetic data and allowed to distinguish two pools for Zn: a labile fraction (Q1 ), quickly extracted with a rate constant k1 , and a slowly labile fraction (Q2 ), more slowly extracted with a rate constant k2 . The applicability of pseudo-second-order model in describing the kinetic data of Zn desorption was also evaluated.  相似文献   

3.
为了探讨磷酸盐和石灰对重金属污染土壤的稳定效果,采用铅冶炼污染石灰性土壤(镉、铜、铅和锌全量分别为4.12、81.0、455和115 mg·kg-1)、设置磷酸盐和3个不同石灰用量及磷酸盐和石灰同时施用及间隔15 d施用的处理,培养后测定土壤性质。结果表明,两种添加剂间隔15 d施用且石灰用量为250和500 mg·kg-1时,土壤pH和磷有效性均高于同时施用处理。两种添加剂间隔15 d施用时,土壤镉有效性显著低于二者同时施用时(P<0.05,低6.63%~11.82%)、土壤锌有效性显著高于同时加入的处理(P<0.05,高17.64%~28.39%)。两种添加剂的不同施用方式对土壤铅和铜的有效性影响较小。石灰用量为1000 mg·kg-1且两种添加剂间隔15 d施用时,土壤镉和铅有效性最低。以上说明,对于石灰性镉污染土壤,磷酸盐和石灰的施用方式对土壤镉的稳定效果存在重要影响。  相似文献   

4.
Zinc(Zn) is essential to plant growth and relatively mobile in soils.This study was conducted to assess the effect of common ions(Ca 2+,K +,Na +,NH + 4,Cl,NO 3,and H 2 PO 4) on sorption of Zn in surface samples of ten calcareous soils from western Iran using 10 mmol L 1 KCl,KNO 3,KH 2 PO 4,Ca(NO 3) 2,NaNO 3,and NH 4 NO 3 solutions as background electrolytes.The results indicated that both NH + 4,K +,and Ca 2+ equally decreased Zn sorption as compared to Na +.Zinc sorption was decreased by H 2 PO 4 as compared to NO 3 and Cl.The Langmuir and Freundlich equations fitted closely to the sorption data of all ions.The Langmuir maximum,bonding energy constant,and Freundlich distribution coefficient for Zn sorption differed among the various ionic background electrolytes.Langmuir sorption parameters showed that the presence of H 2 PO 4 decreased the maximum Zn adsorbed,but increased the bonding energy.Although K + and NH + 4 equally influenced maximum Zn adsorbed,they differed in their effect on the distribution coefficient of Zn in soils.Values of saturation index calculated using Visual MINTEQ indicated that at the low Zn concentration,Zn solubility was controlled by sorption reactions and at the high Zn concentration,it was mainly controlled by sorption and mineral precipitation reactions,such as precipitation of Zn 3(PO 4) 2.4H 2 O,Zn 5(OH) 6(CO 3) 2,and ZnCO 3.For most ionic background electrolytes,soil pH,CaCO 3,and cation exchange capacity(CEC) were significantly correlated with sorption parameters.  相似文献   

5.
We investigated the effects of land uses on P distribution and availability in selected calcareous soils under different management practices. KCl‐P (labile P), NaOH‐P (Fe‐Al‐bound P), HCl‐P (Ca‐bound P), and residual P (Res‐P) fractions at 0–30 cm depth were determined for soils planted to garlic, orchard, pasture, potato, leafy vegetables, and wheat. Trends in P distribution between chemical fractions were similar between land uses. Ca‐bound P was the most abundant P fraction in the soils, constituting between 61% and 78% of the total P, whereas P associated with labile was less abundant (< 2%). Soils under leafy vegetables and wheat along with pasture presented the highest and lowest values in all fractions of P, respectively. Labile P generally was highest for leafy vegetables and potato. Labile P and Fe‐Al‐bound P comprised < 1.4% and 8% of total P, respectively. Residual P ranged from ≈ 14% (potato and garlic) to 31% (pasture). Long‐term fertilization increased P allocation to inorganic fractions, as Ca‐bound P contained 78% of total P for potato and garlic and 74% for leafy vegetables but 61% for pasture. A strong positive correlation between labile P and Fe‐Al‐bound P (r = 0.534, p < 0.01), labile P and Ca‐bound P (r = 0.574, p < 0.01), Ca‐bound P and Fe‐Al‐bound P (r = 0.504, p < 0.01), Olsen‐P and CaCl2‐P (r = 0.821, p < 0.01) was found. Principal‐component analysis showed that the first four components accounted for most of the variation, 32.5%, 16.9%, 12.9%, and 7.9% of total variation, respectively.  相似文献   

6.
7.
Anthropogenic activities have caused the accumulation of heavy metals in the soil environment. Pollution of the soils significantly reduces environmental quality and affects human health. In many recent studies, magnetic susceptibility measurements have been used for pollution monitoring. The objective of this research was to determine the spatial variability of magnetic properties and selected heavy metals and the effects of land use on their variability in the surface soils of the Isfahan region, Central Iran. A total of 158 composite surface (0-5 cm) samples of calcareous soils were collected from an area of about 700 km2, located along a cross-border transect from Isfahan City to a steel plant, covering urban, industrial, agricultural and uncultivated land uses. Concentrations of copper (Cu), zinc (Zn), lead (Pb), manganese (Mn), iron (Fe), nickel (Ni), chromium (Cr), and cobalt (Co) and magnetic parameters, magnetic susceptibility at low frequency (χlf), natural remanent magnetization (NRM), saturation isothermal remanent magnetization (SIRM), and isothermal remanent magnetization at the field of 100 mT (IRM100mT) and the backfield of 100 mT (IRM-100mT), were measured in all the soil samples. Results showed that magnetic susceptibility in the urban and industrial land topsoils (0--5 cm) samples was significantly higher than that in the agricultural and uncultivated land soils in the study area. Concentrations of Cu, Zn, Pb, Mn, and Fe were positively correlated with magnetic properties (χlf, IRM100mT, SIRM, IRM-100mT, and NRM), which could be attributed to their inputs from traffic emissions and industrial activities at the study sites. Ni and Cr concentrations showed significant negative correlations with magnetic properties. No significant correlation was found between Co concentration and magnetic parameters. The Tomlinson pollution load index (PLI) showed significant correlation with the magnetic properties (χlf, IRM100mT, SIRM, IRM-100mT, and NRM). The spatial distribution of the selected heavy metals and χlf in the study area suggested that activities at the urban and industrial land sites caused greater pollution as compared to that at the study sites of other land uses. The concentrations of Cu and Zn seemed to have been affected by anthropogenic sources, whereas Ni, Cr, and Co were mainly controlled by natural sources in the study area. Moreover, the concentrations of soil Pb and Fe in the study area could be affected by both lithologic and anthropogenic sources. The magnetic parameters appeared to be a proxy measure for the degree of heavy metal contamination and could be a potential method for the detection and mapping of contaminated soils.  相似文献   

8.
Abstract

City sewage sludge was applied to the surface layer (0–10 cm) of two sandy soils, slightly calcareous with 8.9% CaCO3 and moderately calcareous with 26.7% CaCO3, at the rates of 0, 25, 50, 75, and 100 Mg ha‐1. The effects of sewage sludge and its rates on total soluble salts, pH of soils and concentration and movement of some heavy metals within soils were investigated. Soil samples were packed at bulk density of 1.5 g cm‐3 in PVC columns and incubated for 19 weeks. The results indicated that total soluble salts (EC) of the treated layer increased with increasing sewage sludge rates. Soluble salts also increased with an increase in soil depth for both soils. The pH values of treated layers in two soils decreased with increasing sewage sludge rates. With increasing sewage sludge rates, concentrations of heavy metals [cobalt (Co), nickel (Ni), cadmium (Cd), and leaf (Pb)] increased in the treated layers compared to the untreated layers and their mobility was restricted mostly to the upper 30‐cm depth. Movement of Co and Pb in both the soils was predominately limited up to a depth of 40 cm for Co and 5 cm for Pb below the treated soil layer. Nickel and Cd movement was mostly limited to a depth of 10 cm in slightly calcareous soil and 5 cm in moderately calcareous soil. Metal movement in the respective soils is ranked as Co>Ni=Cd>Pb and Co>Ni=Cd>Pb. The low concentrations of heavy metals and the restricted mobility with soil depth, suggest that this material may be used for agricultural crop production without any toxic effect on plants.  相似文献   

9.
Afforestation of sandy arable soils in northern Europe is likely to lead to an increase in the soil's acidity and changes in the behaviour of the organic matter, and this might affect the ability of the soil to retain heavy metals. It is important to assess the impact of such a change in the land use on the solubility of the heavy metals and to assess the risk of leaching to surface‐ and groundwater and the possible entrapment of heavy metals in the tree canopy. The impact of afforestation was assessed by excavating soil profiles in adjacent 34‐year‐old Norway spruce stands and arable plots at four different sites. We found that after 34 years the pH had decreased and cations were depleted in the topsoil under forest. The aqua regia‐extractable heavy metals were determined, and the heavy metal binding within the soil was assessed using a modified version of the BCR (Community Bureau of Reference) sequential extraction procedure. Higher contents of heavy metal were found in the arable plots in the loamy sand soils. Cadmium was found only in the most mobile fractions. The content of Pb in the subsoil was strongly correlated with the clay content, but not in the topsoil, which suggested that Pb had been added to the topsoil. We found strong correlations between the clay content and the Cu, Ni and Zn in the residual fraction, leading us to conclude that much of the Cu, Ni and Zn is of geological origin. No significant differences in the heavy metal fractionation between forest and arable soil were found, presumably because 34 years of different land use is not long enough to produce such differences.  相似文献   

10.
Potassium fixation capacity and mineralogical analysis of 24 representative soils, collected from southern Iran, were studied. Potassium fixation analysis was performed by adding six rates of K from 0 to 1000 mg kg?1 soil in a plastic beaker and shaking for 24 h. Mineralogical analysis showed that the clay fractions were dominated by smectite, chlorite, mica, palygorskite, vermiculite and quartz. In general, the studied soils fixed 8.5–55% of the added K. The potassium fixation capacity of the studied soils was significantly correlated with smectite content (r 2 = 0.87), clay content (r 2 = 0.60), cation-exchange capacity (r 2 = 0.79) and NH4OAc-K. Wetting and drying treatment and incubation time had significant effects on K fixation. The average percentage increase in K fixation following the wetting and drying treatment was 24 and 30% for surface and subsurface soils, respectively. The average percentage increase in K fixation with increasing residence time was 79 and 56% for surface and subsurface soils, respectively. Because K fixation is a diffusion process, time and increased concentration of soluble K (because of soil drying) are factors affecting the rate of K diffusion from a soil solution to the interlayer positions of the expansible 2:1 clay minerals.  相似文献   

11.
Soil samples were collected to a depth of 0 to 10 cm from several sites near a secondary Pb smelter during the summer of 1976 in order to determine heavy metal concentrations of soil and enumerate soil microorganisms and earthworms. Chemical analyses indicated that abnormally high concentrations of Pb, As, Cd, and Cu decreased with increasing distance from the source and population counts of bacteria, actinomyces, fungi, nematodes and earthworms increased with increasing distance from the smelter. The negative correlation coefficients between bacteria, actinomyces, fungi, and nematodes and the level of Pb, As, Cd, and Cu in the soil were statistically significant. The microflora of the contaminated soil was altered and the marked quantitative reduction or elimination of organisms were attributable to heavy metal pollution emission from the secondary Pb smelter.  相似文献   

12.
Qualitative and quantitative studies of the kinetics and dynamics of technogenic migration of heavy metals (HMs) have been performed in laboratory experiments. It is shown that the redistribution of HMs applied into soils in neutral form has an impulsive pattern. Soil texture does not have a decisive influence on the migration capacity of metals. An important feature of the technogenic migration of HMs is the effect of the polymetallic contamination, upon which the migration capacity of a set of heavy metals is higher than that of separate metal compounds. An index characterizing the ratio of absolute values of migration rates of ionic forms of metals estimated from electrical conductivity values to the rate of infiltration of the soil solution (vm/vf) is suggested to estimate the kinetics of HM migration in soils.  相似文献   

13.
Influence of carbonate on the reaction of heavy metals in soils   总被引:3,自引:0,他引:3  
The reaction of Cu, Zn and Cd with soils with carbonate contents ranging from 0 to 75 mg g−1 was studied before and after removal of soil carbonates with acetate buffer at pH 5. Treatment with acetate buffer caused a strong decrease in metal retention by those soils containing carbonates, although if no carbonate was originally present, the treatment caused little effect or even an increase in the amounts sorbed. Before the treatment, adsorption of increasing amounts of Cu and Zn was accompanied by a continuous increase in Ca + Mg released, and those soils containing carbonate released Ca + Mg in excess of their exchangeable amounts, due to dissolution of carbonates and/or penetration of the heavy metal into the carbonate structure. It is suggested that Cu was preferentially retained by the treated soils through precipitation of Cu oxide, and by adsorption on the soil carbonates in the case of the original samples. Zn was removed from the solution by the original carbonate soils through formation of ZnCO3. Treated soils were likely to retain Zn by cation exchange and/or adsorption. Adsorption was probably the main process involved in retention of Cd. In all cases pH was the master variable in controlling the extent and probably the nature of the reaction.  相似文献   

14.
Abstract

The analysis of soils, using 0.1 N HC1 as an extractant for the heavy metals, Cd, Cr, Ni and Pb on “fine”; textured North Shore and “coarse”; textured Annapolis Valley soils was completed. Results show ranges of 0.012 to 0.469 parts per million Cd; 0.102 to 2.90 parts per million Cr; 0.16 to 29.25 parts per million Ni and 0.12 to 244.8 parts per million Pb. Correlation studies indicate that the heavy metal content of fine textured soils is less influenced by changes in clay content and organic matter than are coarse textured soils. Generally the surface layers (0–15 cms) are higher in extractable heavy metal content than the lower layers (15–30 cms).  相似文献   

15.
Soil wettability and water repellency, two important soil physical properties, play an important role in water retention and water conductivity in arid and semi-arid regions. To date, there is a lack of information on soil water repellency in calcareous soils of western lran. In this study, soil water repellency and its affecting factors were studied using 20 soil series collected from Hamadan Province~ western Iran. The effects of soil properties including organic carbon content (SOC), total nitrogen (TN), C:N ratio, texture, CaCO3 content, and both fungal and bacterial activities on water repellency were investigated using air-dried, oven-dried and heated soil samples. Water repellency index (WRI) was determined using the short-time sorptivity (water/ethanol) method. To distinguish the actual effects of SOC, a set of soil samples were heated at 300 ~C to remove SOC and then WRI was measured on the heated samples. Relative water repellency index (RWRI) was defined as the change of WRI due to heating relative to the oven-dry WRI value. Results of the WRI values showed that the soils were sub-critically water-repellent. Pasture soils had higher WRI values compared to tilled soils, resulting from high SOC and TN, and high activities of bacteria and fungi. It was observed that SOC, TN, fungal activity, and SOC:clay ratio had significant positive impacts on WRI. Strong positive correlations of RWRI with SOC, TN and fungal activity were also observed. Pedotransfer functions derived for predicting WRI showed that the WRI values had an increasing trend with the increases in fungal activity, salinity, alkalinity and fine clay content, but showed a decreasing trend with increasing bacterial activity.  相似文献   

16.
Zinc (Zn) desorption is an important process to determine Zn bioavailability in calcareous soils. An experiment was performed to assess the pattern of Zn release from 10 calcareous soils of orange orchards, southern Iran and the soil properties influencing it. For Zn desorption studies, soil samples were extracted with diethylene triamine penta-acetic acid solution at pH 7.3 for periods of 0.083–48 h. Suitability of seven kinetic models was also investigated to describe Zn release from soils. Generally, Zn desorption pattern was characterized by a rapid initial desorption up to 2 h of equilibration, followed by a slower release rate. The simple Elovich and two-constant rate kinetic models described Zn release the best, so it seems that Zn desorption is probably controlled by diffusion phenomena. The values of the rate constants for the superior models were significantly correlated with some soil properties such as soil organic matter (SOM) content, cation exchange capacity (CEC), and soil pH, whereas carbonate calcium equivalent and clay content had no significant influence on Zn desorption from soils. SOM had a positive effect on the magnitude of Zn release from soils, while soil pH showed a negative effect on Zn desorption. Furthermore, the initial release rate of soil Zn is probably controlled by CEC in the studied soils. Finally, it could be concluded that SOM, CEC, and soil pH are the most important factors controlling Zn desorption from calcareous soils of orange orchards, southern Iran.

Abbreviations: Soil organic matter (SOM); Cation exchange capacity (CEC); Calcium carbonate equivalent (CCE); Zinc (Zn).  相似文献   


17.
X-ray fluorescence and X-ray radiometry represent easy and simple methods to determine concentrations of heavy metals in the ash of peat soils contaminated with oil and can be applied for soil monitoring purposes. Oil spills on peat bogs produce two contamination zones differing in the composition of heavy metals. In the zone of primary contamination, the peat surface is covered by a bitumen crust with V, Ni, Sr, Ba, Ce, and La accumulating there. This zone adjoins the zone of secondary peat contamination, where heavy alkaline-earth metals (Sr, Ba) and lanthanides (Ce and La) are accumulated to a lesser extent. Biological preparations recommended for remediation of oil-contaminated peat soils should be tolerant to high concentrations of heavy metals, particularly, V, Ni, and Ba that are present in the oil contaminated soils in relatively high amounts.  相似文献   

18.
土壤中重金属离子竞争吸附的研究进展   总被引:13,自引:1,他引:13  
林青  徐绍辉 《土壤》2008,40(5):706-711
本文主要对土壤中重金属离子竞争吸附的研究现状进行了综述。讨论了影响重金属离子竞争吸附能力的一些主要因子、吸附平衡模型及吸附反应的动力学过程。重金属离子的一级水解常数、离子半径、电负性等性质及其外界环境条件,如pH值、离子强度、有机质含量等因素影响着离子选择性吸附的强弱。竞争的Langmuir方程和扩展的Freundlich方程被用来对竞争吸附过程进行描述,同时指出竞争吸附过程中存在着一个"过饱和点"。最后,对竞争吸附的发展方向进行了展望,指出应加强理论模型和多因子综合作用影响的研究。  相似文献   

19.
We used sequential extraction to investigate changes in the amounts of six chemical forms of manganese, cobalt and cadmium in soil samples after chloroform fumigation. The six forms were designated as follows: exchangeable, dilute-acid-soluble, manganese-oxide-occluded, organically bound, iron-oxide-occluded and residual. For all three metals, the decreases in the amounts of manganese-oxide-occluded forms were equivalent to the sum of the increases in the amounts of exchangeable and dilute-acid-soluble forms. The amounts of the other three forms did not change significantly after fumigation. These results indicate that some of the cobalt and cadmium in the manganese oxides was converted into exchangeable and dilute-acid-soluble forms, which suggests that soil sterilization may increase the availability of these heavy metals to plants.  相似文献   

20.
Rhizosphere processes have a major impact on copper (Cu) availability and its fractions in soils. A greenhouse experiment with wheat was performed to investigate availability (using seven chemical procedures) and fractionation of Cu in the rhizosphere of ten agricultural soils (Typic Calcixerepts) amended with sewage sludge (1% w/w) using rhizoboxes. The results show that available Cu concentrations in rhizosphere soils were significantly (P < 1%) lower than in bulk soils. In comparison with the bulk soils, in the rhizosphere soils the concentration of Cu associated with organic matter and residual Cu increased by 24 and 4%, respectively, whereas exchangeable Cu, Cu associated with iron‐manganese oxides, and Cu associated with carbonate decreased by 20, 14, and 12%, respectively. Dissolved organic carbon (DOC) and Cu associated with iron‐manganese oxides and Cu associated with organic matter in the rhizosphere and bulk soils were significantly correlated (P < 5%). The results show that the differences between rhizosphere and bulk soils in chemical conditions such as DOC concentrations can change the proportion of soil Cu fractions and, therefore, Cu availability for wheat in calcareous soils amended with sewage sludge. The results show that the wheat root‐induced modifications of chemical and biological soil conditions do not only lead to Cu depletion in mobile soil Cu fractions, but also to modification in soil Cu fractions which are commonly considered as more stable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号