首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Anaplasmosis, a hemolytic disease of cattle caused by the tick-borne pathogen Anaplasma marginale (Rickettsiales: Anaplasmataceae) has been controlled using killed vaccines made with antigen harvested from infected bovine erythrocytes. We recently developed a cell culture system for propagation of A. marginale in a continuous tick cell line. In this study, we performed a cattle trial to compare the bovine response to vaccination with A. marginale harvested from tick cell culture or bovine erythrocytes. All immunized and control cattle were then challenge-exposed by allowing male Dermacentor variabilis infected with A. marginale to feed and transmit the pathogen. Nine yearling cattle (three per group) were used for this study and were immunized with cell culture-derived A. marginale, erythrocyte-derived A. marginale or received adjuvant only to serve as controls. Each vaccine dose contained approximately 2 x 10(10) A. marginale and three immunizations were administered at weeks 1, 4 and 6. At week 8, cattle were challenge-exposed by allowing 60 D. variabilis male that were infected with A. marginale as adults to feed on the cattle. Antibody responses of cattle against major surface proteins (MSP) 1a, 1b and 5, as determined by ELISAs, peaked 2 weeks after the last immunization. Cattle immunized with infected IDE8 cell-derived antigens had a preferential recognition for MSP1b while cattle immunized with erythrocyte-derived antigens had a preferential recognition for MSP1a. Protection efficacy was evaluated using the percent infected erythrocytes (PPE), the packed cell volume (PCV), and the prepatent period. A. marginale-immunized cattle showed lower PPE and higher PCV values when compared to control animals and did not display clinical anaplasmosis. The cell culture-derived A. marginale shows promise for use as antigen in development of a new killed vaccine for anaplasmosis.  相似文献   

3.
Major surface protein 1 (MSP1) of the cattle pathogen Anaplasma marginale (Rickettsiales: Anaplasmataceae) is a complex of two proteins, MSP1a and MSP1b. Previous studies demonstrated that MSP1a and MSP1b are adhesins for bovine erythrocytes, while only MSP1a proved to be an adhesin for tick cells. In this study, a tick cell culture system for propagation of A. marginale was used to develop an infection inhibition assay for testing the ability of antisera to block infection of A. marginale for cultured tick cells. A. marginale derived from cell culture was incubated with various antisera prior to inoculation onto cell monolayers. The monolayers were harvested 7 days post-inoculation and A. marginale in the cultures was quantified using an antigen detection ELISA. Antisera tested in the infection inhibition assay were derived from persistently infected cattle, from cattle immunized with A. marginale purified from bovine erythrocytes, and from rabbits and cattle that were immunized with the recombinant MSP1a, MSP1b and MSP1 complex. Antibodies from cattle persistently infected with A. marginale, cattle immunized with A. marginale from bovine erythrocytes or cattle immunized with the recombinant MSP1 complex did not inhibit the infectivity of A. marginale for tick cells. Antiserum from rabbits immunized with MSP1a and MSP1b (individually or combined) reduced infection of both the Virginia and Oklahoma isolates of A. marginale for tick cells by 25-70%. Likewise, antisera from cattle immunized with recombinant MSP1a or MSP1b inhibited infection of tick cells by 26-37%. These results further confirm the role of MSP1 complex proteins in infection of tick cells. Lack of inhibition of infection by antisera from naturally infected cattle or cattle immunized with whole organisms suggests that the bovine immune response is not directed toward blocking infection of A. marginale for tick cells and may contribute to the continued infectivity of the pathogen for ticks.  相似文献   

4.
Anaplasmosis is a hemolytic disease of cattle caused by the ehrlichial tick-borne pathogen Anaplasma marginale. Killed vaccines used for control of anaplasmosis in the US used antigen harvested from infected bovine erythrocytes which was often contaminated with bovine cells and other pathogens. In this study, we performed an initial cattle trial to test A. marginale harvested from tick cell culture as an immunogen for cattle. Eleven yearling Holstein cattle were immunized with the cell culture-derived A. marginale and 11 cattle were non-immunized contact controls. Each vaccine dose contained approximately 2 x 10(10) A. marginale in an oil-based adjuvant. Two immunizations were administered subcutaneously 4 weeks apart and the cattle were challenge-exposed 10 weeks after the second immunization with A. marginale infected blood. Maximum antibody levels as determined by an A. marginale specific competitive ELISA were observed 2 weeks after the last immunization. Antibody responses against major surface proteins (MSPs) 1a and 1beta1 were also characterized and immunized cattle demonstrated a preferential recognition for MSP1beta1. Cattle immunized with the cell culture-derived A. marginale had a significantly lower percent reduction in the packed cell volume (P<0.05) after challenge exposure as compared with the controls and did not display clinical anaplasmosis. The cell culture-derived A. marginale shows promise for use as antigen in development of a new killed vaccine for anaplasmosis.  相似文献   

5.
Anaplasmosis, caused by Anaplasma marginale, results in significant economic losses of cattle in tropical and subtropical regions worldwide. Six major surface proteins (MSPs) were well characterized and designated as MSP1, MSP2, MSP3, MSP4, and MSP5. The objective of this study was to evaluate the humoral immune response of BALB/c mice against the recombinant MSPs, incorporated into immunostimulating complex (ISCOM). The recombinant proteins purified by Ni-NTA columns were incorporated into ISCOM and ISCOMATRIX by the lipid film hydration method. BALB/c mice immunized with ISCOM/rMSPs and ISCOMATRIX/rMSPs vaccines produced whole IgG, IgG1, and IgG2a, in contrast to the negative groups (PBS and ISCOMATRIX adjuvant). All groups that received antigen responded specifically against the rMSPs by Western blotting, showing the rMSP1a (60-105kDa), rMSP1b (100kDa), rMSP4 (47kDa), and rMSP5 (29kDa). Additional studies will have to be performed in cattle to evaluate the humoral and cellular mechanisms of this subunit vaccine and their possible use as protective vaccines against homologous and heterologous strains of A. marginale.  相似文献   

6.
The major surface protein (MSP) 1a of the genus type species Anaplasma marginale (Rickettsiales: Anaplasmataceae) has been shown to mediate adhesion, infection and transmission of the organism, as well as to contribute to protective immunity in cattle. MSP1a contains a variable number of tandemly repeated peptides in the amino-terminal region, while the remainder of the protein is highly conserved among isolates. The number of repeats varies among geographic isolates of A. marginale but is constant within an isolate and has been used as a stable genetic marker of isolate identity. Because the sequence of the tandem repeats is the most variable part of the protein among isolates, this region of the protein is most likely to be involved in adhesion to host cells, a prerequisite to infection. The purpose of this study was to characterize the organization and function of the MSP1a tandem repeats of A. marginale in adhesion to host cells. We demonstrated by use of recombinant mutant proteins that the tandemly repeated region of MSP1a was necessary and sufficient to mediate adhesion of MSP1a to tick cells and bovine erythrocytes. Synthetic peptides representing the predominant sequences of individual repeats were tested for their adhesive capacity for tick cell extract (TCE). Peptides containing acidic amino acids D or E at position 20 bound to TCE, while peptides with a G as the 20th amino acid were not adhesive to TCE. Antibodies produced in rabbits against a synthetic repeat peptide neutralized A. marginale infection of cultured tick cells, and the neutralization observed was similar to that effected by antibodies produced against the whole MSP1a recombinant protein. Analysis of tandemly repeated MSP1a peptides of several geographic isolates of A. marginale revealed a complex relationship between the msp1alpha genotype and the tick-transmissible phenotype of the isolate and suggested that both the sequence and conformation of the repeated peptides influenced the adhesive properties of MSP1a. These studies demonstrated that the tandemly repeated region of the protein mediates the adhesive function of MSP1a.  相似文献   

7.
Bovine anaplasmosis is a tick-borne hemolytic disease of cattle that occurs worldwide caused by the intraerythrocytic rickettsiae Anaplasma marginale. Control measures, including use of acaricides, administration of antibiotics and vaccines, have varied with geographic location. Our research is focused on the tick-pathogen interface for development of new vaccine strategies with the goal of reducing anaplasmosis, tick infestations and the vectorial capacity of ticks. Toward this approach, we have targeted (1) development of an A. marginale cell culture system to provide a non-bovine antigen source, (2) characterization of an A. marginale adhesion protein, and (3) identification of key tick protective antigens for reduction of tick infestations. A cell culture system for propagation of A. marginale was developed and provided a non-bovine source of A. marginale vaccine antigen. The A. marginale adhesion protein, MSP1a, was characterized and use of recombinant MSP1a in vaccine formulations reduced clinical anaplasmosis and infection levels in ticks that acquired infection on immunized cattle. Most recently, we identified a tick-protective antigen, subolesin, that reduced tick infestations, as well as the vectorial capacity of ticks for acquisition and transmission of A marginale. This integrated approach to vaccine development shows promise for developing new strategies for control of bovine anaplasmosis.  相似文献   

8.
The major surface protein (MSP) 1a of the ehrlichial cattle pathogen Anaplasma marginale, encoded by the single-copy gene msp1alpha, has been shown to have a neutralization-sensitive epitope and to be an adhesin for bovine erythrocytes and tick cells. msp1alpha has been found to be a stable genetic marker for the identification of geographic isolates of A. marginale throughout development in acutely and persistently infected cattle and in ticks. The molecular weight of MSP1a varies among geographic isolates of A. marginale because of a varying number of tandemly repeated peptides of 28-29 amino acids. Variation in the sequence of the tandem repeats occurs within and among isolates, and may have resulted from evolutionary pressures exerted by ligand-receptor and host-parasite interactions. These repeated sequences include markers for tick transmissibility that may be important in the identification of ehrlichial pathogens because they may influence control strategies and the design of subunit vaccines.  相似文献   

9.
The Anaplasma marginale is a bacterium that has obligate intraerythrocytic multiplication in cattle causing important economic loss. The A. marginale major surface protein 1 (MSP1) complex, heterodimer composed of MSP1a and MSP1b, has been identified as adhesins for bovine erythrocytes. The objectives of this study were to sequences the msp1β gene and produce and characterize recombinant MSP1a and MSP1b from a Brazilian strain of A. marginale, PR1. The msp1α and msp1β genes from the PR1 strain were cloned and expressed in E. coli BL21 Star using the vectors pET102 and pET101/D-TOPO. Antibodies were produced against the recombinant proteins and were shown to react with rMSP1a and rMSP1b demonstrating a molecular mass of 70 kDa to 105 kDa and 100 kDa, respectively for these proteins. Bovine erythrocytes were agglutinated by BL21/rMSP1a and BL21/rMSP1b and, this agglutination was inhibited by the presence of the IgY anti-rMSP1a, confirming the adhesion function of these proteins. Additionally, using the IgY anti-rMSP1a and rMSP1b in a IFI, the presence of rMSP1a and rMSP1b was confirmed on the outer membrane of the recombinant E. coli BL21. Our results show that the msp1β gene from the PR1 strain has both the conserved region and contain the defined polymorphism regions previously described for other strains of A. marginale. The results from this study confirm adhesive functions for rMSP1a and rMSP1b from PR1 strain in bovine erythrocytes invasion.  相似文献   

10.
Anaplasma marginale (A. marginale) is a tick-borne ehrlichial pathogen of cattle that causes the disease anaplasmosis. Six major surface proteins (MSPs) have been identified on A. marginale from cattle and ticks of which three, MSP1a, MSP4 and MSP5, are from single genes and do not vary within isolates. The other three, MSP1b, MSP2 and MSP3, are from multigene families and may vary antigenically in persistently infected cattle. Several geographic isolates have been identified in the United States which differ in morphology, protein sequence and antigenic properties. An identifying characteristic of A. marginale isolates is the molecular weight of MSP1a which varies in size among isolates due to different numbers of tandemly repeated 28-29 amino acid peptides. For these studies, genes coding for A. marginale MSP1a and MSP4, msp1alpha and msp4, respectively, from nine North American isolates were sequenced for phylogenetic analysis. The phylogenetic analysis strongly supports the existence of a south-eastern clade of A. marginale comprised of Virginia and Florida isolates. Analysis of 16S rDNA fragment sequences from the A. marginale tick vector, Dermacentor variabilis, from various areas of the United States was used to evaluate possible vector-parasite co-evolution. Our phylogenetic analysis supports identity between the most parsimonious tree from the A. marginale MSP gene data and the tree that reflected the western and eastern clades of D. variabilis. These phylogenetic analyses provide information that may be important to consider when developing control strategies for anaplasmosis in the United States.  相似文献   

11.
The cross-protective capacity of culture-derived soluble immunogens against heterologous Babesia bovis strains from different geographical locations of Latin America was examined. Susceptible yearling cattle were either immunized with immunogens derived from Venezuelan or Mexican strains, or were administered a multi-component immunogen containing antigens of the Australian, Mexican and Venezuelan strains. Cattle were challenged with virulent B. bovis organisms of the Argentinian, Colombian, Ecuadorean, Mexican and Venezuelan strains. The major parameters used to evaluate cross-protection were the following: presence, level and duration of parasitemia; maximal PCV reduction; level and duration of fever; determination of fibrinogen and cryofibrinogen; homologous and heterologous antibody levels; and net gains in body weight. Results showed good protection with a Venezuelan B. bovis immunogen after homologous and heterologous challenge exposures. A low degree of cross-immunity was observed when cattle vaccinated with the Mexican immunogen were challenged with each of the heterologous strains.  相似文献   

12.
Although Anaplasma marginale was known to be endemic in Italy, the diversity of Anaplasma spp. from this area have not been characterized. In this study, the prevalence of Anaplasma spp. antibodies in randomly selected farm animals collected on the island of Sicily was determined by use of a MSP5 cELISA for Anaplasma spp. and an immunofluorescence test specific for Anaplasma phagocytophilum. Genetic variation among strains of Anaplasma spp. from animals and ticks was characterized using the A. marginale msp1alpha and the Anaplasma spp. msp4 genes. Eight species of ticks were collected and tested by PCR. Seropositivity for Anaplasma spp. and A. phagocytophilum was detected in bovine and ovine samples. All the donkeys were seropositive for A. phagocytophilum but not for Anaplasma spp. Four A. marginale genotypes were identified by msp4 sequences from bovine and tick samples. Two new genotypes of Anaplasma ovis were characterized in sheep. The sequences of A. phagocytophilum from three donkeys proved to be identical to the sequence of the MRK equine isolate from California. Six A. marginale genotypes were found in cattle and one tick using the A. marginale msp1alpha sequences. All genotypes had four repeated sequences in the N-terminal portion of the MSP1a, except for one that had five repeats. The Italian strains of A. marginale contained three repeat sequences that were not reported previously. Definition of the diversity of Anaplasma spp. in Sicily reported, herein is fundamental to development of control strategies for A. marginale, A. ovis and A. phagocytophilum in Sicily.  相似文献   

13.
In Mexico, there are no commercial alternatives for the immunoprophylaxis of bovine Anaplasmosis, a disease responsible for great economic losses. Blood derived Anaplasma marginale used for immunizing susceptible cattle has shown promising results for homologous protection and controversial results against unrelated strains. The present study examined, under controlled conditions, the cross-protective potential of an immunogen composed of blood derived A. marginale of three strains against challenge with strains not included in the immunogens. Groups 1 and 2 were immunized with blood derived Anaplasma from strains Mexico, Morelos and Yucatan, group 4 with strains Morelos, Veracruz and Yucatan, two more groups (2 and 5) of equal conditions were inoculated with an adjuvant alone. Groups 1, 4 and 5 were challenged with Mexico strain; groups 2 and 3 were challenge-inoculated with strain Veracruz; groups 3 and 5 with strains Veracruz and Mexico as controls. Only animals in group 1, immunized and challenged with strain Mexico showed adequate protection. Both groups challenged with strains not included in the immunogens developed poor protection, while all the controls had to be treated to prevent death.  相似文献   

14.
High titered antibody from rabbits immunized with Anaplasma centrale or from cattle recovered from A. centrale infection bound predominantly to several 33-36 kDa polypeptides present in both A. centrale and the Israel-NT isolate of Anaplasma marginale. High titered bovine antibody against the Israel-NT isolate of A. marginale also reacted predominantly with A. centrale polypeptides in this size range. The immunodominance of the 33-36 kDa polypeptides and their cross-reactivity indicate that these shared epitopes may be primarily responsible for the cross-protective immunity between A. centrale and A. marginale.  相似文献   

15.
Anaplasma marginale (Rickettsiales: Anaplasmataceae), a tick-borne pathogen of cattle, is endemic in tropical and subtropical regions of the world, and many isolates of A. marginale may occur in a given geographic area. Phylogenetic relationships have been reported for A. marginale isolates from the US using gene and protein sequences of MSP1a and msp4. These studies demonstrated that msp4 sequences, but not MSP1a DNA or protein sequences, provide phylogeographic information and also that MSP1a sequences are highly heterogeneous among A. marginale populations. However, little information is available on the genetic diversity of A. marginale isolates from other regions of the world. The present study was undertaken to examine genetic variation among 10 isolates of A. marginale obtained from infected cattle in the State of Minas Gerais, Brazil, where A. marginale is endemic. Neighbor-joining analysis of msp4 sequences of Brazilian and New World isolates of A. marginale from Argentina, Mexico and the US provided bootstrap support for a Latin American clade. The sequences of the MSP1a repeats of four Brazilian isolates of A. marginale were compared to sequences of Latin American and US isolates. The MSP1a repeated sequences of Latin American isolates of A. marginale had nine repeat forms, alpha-phi, which have not been reported previously in North American isolates of A. marginale. Furthermore, the repeated forms tau, sigma and mu were only present in the Brazilian isolates. The results demonstrated that the genetic heterogeneity observed among isolates of A. marginale is common in endemic areas, independent of the predominant tick vector and is consistent with previous studies in which msp4 provided phylogeographic information about A. marginale isolates, while MSP1a was found not to be a useful marker for phylogeographic characterization of A. marginale isolates.  相似文献   

16.
为建立检测牛边缘无浆体(Anaplasma marginale)抗体的方法,本研究以牛A.marginale膜表面重组MSP5蛋白作为包被抗原,抗MSP5单克隆抗体(MAb)作为竞争抗体,建立一种用于检测牛A marginale抗体的重组MSP5蛋白竞争抑制ELISA(CI-ELISA)方法.经优化确定CI-ELISA的最佳反应条件为:抗原包被浓度为2μg/孔,封闭液为2%脱脂乳,MAb的稀释度为1:400,酶标二抗的稀释度为1:1000,阴性和阳性血清临界值分别为33%和40%;该方法具有良好的特异性和重复性;2 348份临床血清样品的检测结果表明,217份为阳性,阳性率为9.2%,与IDEXXA marginale抗体检测试剂盒的阳性符合率为95.3%,阴性符合率为100%.本实验建立的ELISA方法具有较高的特异性和重复性,可用于流行病学调查研究.  相似文献   

17.
Anaplasma marginale is a tick-borne hemoparasite of cattle worldwide. The Virginia isolate of A. marginale was propagated previously in a cell line derived from embryos of the tick, Ixodes scapularis. The cultured Anaplasma (VA-tc) was passaged continuously for over 4 years and retained its infectivity for cattle and antigenic stability. We report herein the continuous in vitro cultivation of a second isolate of A. marginale derived from a naturally infected cow in Oklahoma (OK-tc). Blood from the infected cow was subinoculated into a splenectomized calf and blood collected at peak parasitemia was frozen, thawed and used as inoculum on confluent tick cell monolayers. Colonies of Anaplasma were apparent in low numbers at 9 days post exposure (PE) and infection in monolayers reached 100% by 4-5 weeks PE. Cultures were passaged by placing supernatant onto fresh tick cell monolayers at a dilution of 1:5 or 1:10. By the third passage development of the OK-tc was similar to that of the VA-tc and a 1:5 dilution resulted in 100% infection in 10-12 days. Inoculation of OK-tc into a splenectomized calf caused clinical anaplasmosis and Dermacentor ticks that fed on this calf transmitted the organism to a second susceptible calf. Major surface proteins (MSPs) 1-5 of the OK-tc were compared with homologous proteins present on VA-tc and the erythrocytic stage of the Oklahoma isolate. The MSPs 1, 2, 4, 5 were conserved on the OK-tc but there was evidence for structural variation in MSP3 between the cultured and erythrocytic stage of Anaplasma. MSP2 and MSP3 were the major proteins recognized by serum from infected cattle. Two-dimensional gels also identified positional differences between VA-tc and OK-tc in MSP2 and MSP3. The OK-tc may have potential to be used as antigen for development of an improved vaccine for anaplasmosis in the South Central United States.  相似文献   

18.
A cell culture system for the tick-borne rickettsia Anaplasma marginale offers new opportunities for research on this economically important pathogen of cattle. A. marginale multiplies in membrane-bound inclusions in host cells. Whereas erythrocytes appear to be the only site of infection in cattle, A. marginale undergoes a complex developmental cycle in ticks and transmission occurs via the salivary glands during feeding. We recently developed a cell culture system for A. marginale using a cell line derived from embryos of Ixodes scapularis. Here we review the use of this cell culture system for studying the interaction of A. marginale with tick cells. Several assays were developed using the A. marginale/tick cell system. An adhesion assay was developed for the identification of proteins required by A. marginale for adhesion to tick cells. The effect of antibodies against selected major surface proteins in inhibiting A. marginale infection was tested in an assay that allowed further confirmation of the role of surface proteins in the infection of tick cells. A drug screening assay for A. marginale was developed and provides a method of initial drug selection without the use of cattle. The culture system was used to test for enhancing effects of tick saliva and saliva components on A. marginale infection. The tick cell culture system has proved to be a good model for studying A. marginale-tick interactions. Information gained from these studies may be applicable to other closely related tick-borne pathogens that have been propagated in the same tick cell line.  相似文献   

19.
Three synthetic peptides (SBm4912, SBm7462 and SBm19733), derived from the Bm86 glycoprotein from Boophilus microplus gut, were constructed and used to immunize cattle from a tick-free area. The immunized animals received three subcutaneous doses of the peptides, with saponin as adjuvant, at 30-day intervals. The immune response was evaluated by IgG elicited against the peptides by the detection of anti-Bm86 specific antibodies in situ and by Western blotting analysis. After tick challenge, reduction in the number, weight and oviposition capacity of engorged females was observed in the tick population that had fed on immunized animals. The results pointed a high efficacy (81.05%) for the SBm7462 synthetic peptide in relation to the others (p<0.01), demonstrating the efficiency of the immune response elicited by synthetic peptides to control the cattle tick B. microplus.  相似文献   

20.
The immunity induced by frozen and fresh Anaplasma centrale vaccines against anaplasmosis caused by A. marginale was tested in 12-month old Friesian steers. A. centrale parasitaemia occurred in all cattle inoculated with both types of vaccine. The average maximal decrease in PCV for the frozen and fresh vaccines was 41.0 and 40.3% respectively. All cattle recovered spontaneously. Vaccinated and control steers of the same age were challenged six months later with doses of 10(6), 10(7) or 10(8) A. marginale organisms. Vaccinated cattle showed average maximal A. marginale parasitemia of 1.2-4.0 versus 10.3-12.0% in control cattle. The average maximal decrease in packed cell volume (PCV) was 33.1 and 30.0% for steers vaccinated with frozen or fresh vaccine, respectively, and 57.4% for the non-vaccinated steers. All vaccinated cattle recovered spontaneously from the A. marginale infection while 7 out of 8 control steers required specific treatment. It thus appears that both frozen and fresh A. centrale vaccines are equally capable of inducing partial protection against infection with A. marginale and of preventing severe red blood cell destruction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号