首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies evaluating the effects of dobutamine in horses do not consistently report increases in cardiac output despite increases in arterial blood pressure. The concurrent administration of the α2 agonist clonidine, in people, inhibited the chronotropic effects of dobutamine and increased left ventricular stroke work ( Zimpfer et al. 1982 ). Our study was performed to determine if pre‐medication with an α2 agonist affects the response to dobutamine in anaesthetized horses. Eleven horses were anaesthetized on four separate occasions for one of four randomly assigned treatments; (I) no xylazine, no dobutamine (II) xylazine, no dobutamine (III) no xylazine, dobutamine, and (IV) xylazine, dobutamine. Horses received 0.02 mg kg?1 of butorphanol IV 10 minutes prior to anesthetic induction. Two minutes prior to induction, groups II and IV received 0.5 mg kg?1 of IV xylazine. Anaesthesia was induced with 6–7 mg kg?1 of thiopental and maintained with halothane. End‐tidal halothane concentrations were maintained between 1.1 and 1.2% in groups I and III, and 0.9–1.0% for groups II and IV. Heart rate, cardiac output, right atrial pressure, and systolic (SAP), diastolic (DAP) and mean (MAP) arterial pressure were recorded 30 minutes after beginning halothane anaesthesia (T10). Cardiac output was estimated using Lithium dilution ( Linton et al. 2000 ). Baseline measurements were repeated twice, at 5‐minute intervals (T5 and T0). At time 0 (T0), an IV infusion of either saline (100 mL hour?1) or dobutamine (0.001 mg kg?1 minute?1) was started and data recorded at 5‐minute intervals for 30 minutes (T5 – T30). Stroke volume and systemic vascular resistance (SVR) were calculated. Data were analysed using repeated measures anova (p < 0.01 significant) and Newman–Keuls for multiple comparisons. Cardiac output and stroke volume increased over time in groups III and IV. Cardiac index was higher in groups III and IV than in groups I and II from T10 until completion of the study. Estimates of cardiac index at T30 for groups I–IV were 45 ± 9, 46 ± 11, 71 ± 11, and 78 ± 19 mL kg?1 minute?1, respectively (mean ± SD). Stroke index was higher in groups III and IV than in groups I and II from T15 to T30. Values for stroke index at T30 for groups I–IV were 0.98 ± 0.19, 1.11 ± 0.18, 1.46 ± 0.21, 1.74 ± 0.33 mL kg?1. Heart rate decreased from T10–T30 in groups I and II. Heart rate was greater in groups I and III than in groups II and IV at T5 and T0. Values for heart rate at T0 for groups I–IV were 48 ± 5, 42 ± 5, 50 ± 4, 43 ± 4 beats minute?1. Systolic arterial pressure, DAP and MAP were higher in groups III and IV than in groups I and II from T5 to T30. There were no differences in SVR between groups. Dobutamine at 0.001 mg kg?1 minute?1 increased cardiac output, blood pressure, and stroke volume. Premedication with xylazine at 0.5 mg kg?1 did not appear to affect the response to dobutamine.  相似文献   

2.
This clinical study analysed the anaesthetic sparing effect of a medetomidine constant rate infusion (CRI) during isoflurane anaesthesia in horses. Forty healthy horses undergoing different types of orthopaedic and soft tissue surgeries were studied in a randomized trial. Orthopaedic surgeries were primarily arthroscopies and splint bone extractions. Soft tissue surgeries were principally castrations with one ovariectomy. All horses received 0.03 mg kg?1 acepromazine IM 1 hour prior to sedation. Group A (11 orthopaedic and nine soft tissue surgeries), was sedated with 1.1 mg kg?1 xylazine IV, group B (13 orthopaedic and seven soft tissue surgeries) with 7 µg kg?1 medetomidine IV. Anaesthesia was induced in both groups with 2.2 mg kg?1 ketamine and diazepam 0.02 mg kg?1 IV. Maintenance of anaesthesia was with isoflurane (ISO) in 100% oxygen, depth of anaesthesia was always adjusted by the first author. Group B received an additional CRI of 3.5 µg kg?1 hour?1 medetomidine. Respiratory rate (RR), heart rate (HR), mean arterial blood pressure (MAP), Fe ′ISO and Fe ′CO2 were monitored with a methane insensitive monitor (Cardiocap 5, Ohmeda, Anandic, Diessenhofen) and noted every 5 minutes. Arterial blood was withdrawn for gas analysis (PaO2, PaCO2) 5 minutes after the induction of anaesthesia and every 30 minutes thereafter. Dobutamine (DOB) was given as a CRI to maintain mean arterial blood pressure above 70 mm Hg. Data were averaged over time (sum of measurements/number of measurements) and tested for differences between groups by unpaired t‐tests. There were no significant differences between the groups in terms of body mass (group A, 508 ± 73.7 kg; group B, 529.25 ± 78.4 kg) or duration of anaesthesia (group A, 125.5 ± 36 minutes; group B, 121.5 ± 48.4 minutes). The mean Fe ′ISO required to maintain a surgical plane of anaesthesia was significantly higher in group A (1.33 ± 0.13%) than in group B (1.07 ± 0.19%; p = 2.78 × 10?5). Heart rate was different between the two groups (group A, 42.2 ± 8.3; group B, 32.6 ± 3.5; p = 8.8 × 10?5). Dobutamine requirements were higher in group A (group A, 0.72 ± 0.24 μg kg?1 minute?1; group B, 0.53 ± 0.23 μg kg?1 minute?1; p = 0.023). Respiratory rate, Fe ′CO2, PaO2, PaCO2 were not different between the groups. Adjustment of anaesthetic depth subjectively was easier with the medetomidine infusion and isoflurane (group B) than with isoflurane as a sole agent (group A). In group A 12 horses and in group B five horses showed purposeful movements on 27 (A) and 12 (B) occasions. They were given thiopental (group A, 0.0114 mg kg?1 minute?1; group B, 0.0023 mg kg?1 minute?1). In group A, a further 17 horses were given ketamine to deepen anaesthesia (52 occasions, 0.00426 mg kg?1 minute?1) whereas in group B only nine horses needed ketamine (34 occasions, 0.00179 mg kg?1 minute?1). An infusion of 3.5 µg kg?1 MED during ISO anaesthesia resulted in a significantly reduced ISO requirement.  相似文献   

3.
Same‐day mass sterilization of feral cats requires rapid onset, short‐duration anesthesia. The purpose of this study was to compare our current anesthetic protocol, Telazol–ketamine–xylazine (TKX) with medetomidine–ketamine–buprenorphine (MKB). Feral female cats received either IM TKX (n = 68; 0.25 mL cat?1; tiletamine 12.5 mg, zolazepam 12.5 mg, K 20 mg, and X 5 mg per 0.25 mL) or MKB (n = 17; M 40 µg kg?1, K 15 mg kg?1, and B 10 µg kg?1). Intervals measured included time from injection to recumbency, time to surgery, duration of surgery, and time from reversal of anesthesia (TKX: yohimbine 0.50 mg cat?1 IV; MKB: atipamezole 0.50 mg cat?1 IM) to sternal recumbency. Following instrumentation (Vet/Ox 4403 and Vet/BP Plus 6500), physiological measurements were recorded at 5‐minute intervals, and included rectal temperature, heart rate (HR), respiratory rate (RR), SpO2 (lingual or rectal probes), and indirect mean arterial blood pressure (MAP) (oscillometric method). Nonparametric means were compared using Mann–Whitney U‐tests. Parametric means were compared using a two‐factorial anova with Bonferroni's t‐tests. The alpha‐priori significance level was p < 0.05. Values were mean ± SD. Body weight (TKX: 2.9 ± 0.5 kg, MKB: 2.7 ± 0.7 kg), time to recumbency (TKX: 4 ± 1 minutes, MKB: 3 ± 1 minutes), time to surgery (TKX: 28 ± 7 minutes, MKB: 28 ± 5 minutes), and duration of surgery (TKX: 11 ± 7 minutes, MKB: 8 ± 5 minutes) did not differ between groups. In contrast, MKB cats required less time from reversal to sternal recumbency (TKX: 68 ± 41 minutes, MKB: 7 ± 2 minutes) and were recumbent for shorter duration (TKX: 114 ± 39 minutes, MKB: 53 ± 6 minutes). Temperature decreased during the study in both groups, but overall temperature was higher in MKB cats (38.0 ± 0.95 °C) than in TKX cats (37.5 ± 0.95 °C). RR, HR, and SpO2 did not change during the study in either group. However, overall HR and RR were higher in TKX cats (RR: 18 ± 8 breaths minute?1, HR: 153 ± 30 beats minute?1) compared to MKB cats (RR: 15 ± 7 breaths minute?1, HR: 128 ± 19 beats minute?1). In contrast, overall SpO2 was lower in the TKX group (90 ± 6%) compared to the MKB group (94 ± 4%). MAP was also lower in the TKX group (112 ± 29 mm Hg) compared to that in the MKB group (122 ± 20 mm Hg). However, MAP increased in the TKX group during surgery compared to pre‐surgical values, but did not change in the MKB group. The results of this study suggested that MKB might be more suitable as an anesthetic for the purpose of mass sterilization of feral female cats.  相似文献   

4.
Alpha2 agonists have a significant role in epidural anaesthetic techniques. However, there are few reports regarding epidural administration of these drugs especially in small animals ( Greene et al. 1995; Keegan et al. 1995; Vesal et al. 1996 ). This study compared the haemodynamic effects of xylazine and medetomidine after epidural injection in dogs. Six dogs (four females and two males) weighing 27.5 ± 3.39 kg, aged 5.6 ± 1.42 years were studied on two separate occasions one month apart. Dogs were sedated with 0.5 mg kg?1 diazepam IM and 0.1 mg kg?1 acepromazine IM. After 20 minutes, a lumbosacral epidural injection of 0.25 mg kg?1 xylazine was administered (group X). One month later, following the same sedation, 15 µg kg?1 medetomidine was administered epidurally (group M). Haemodynamic variables (ECG and indirect blood pressure (Doppler)), respiratory rate and rectal temperature were recorded before (baseline) and then every 5 minutes after the epidural injection, up to 60 minutes. Differences between groups were compared by a paired t‐test. Within group changes were compared to basal values by anova . A p‐value of < 0.05 was considered statistically significant. Both groups showed significant reductions in heart rate (106.3 ± 7.7 beats minute?1 baseline versus 67.7 ± 7.6 (group M); 91 ± 3.8 baseline versus 52.3 ± 9 (group X)) and mean arterial blood pressure (113.1 ± 12.3 mm Hg baseline versus 87 ± 11 (group M); 118 ± 7 baseline versus 91 ± 14 (group X)). There were no differences between groups in these variables. After epidural injection, first degree atrioventricular block was recorded significantly more often in group X (50% against 33%) but second degree block was significantly more frequent in group M (66% against 33%). Also 50% of dogs in group X and 66% in group M showed sinus arrest. Respiratory rate decreased significantly in both groups following the epidural injection (20.66 ± 0.66 minute?1 baseline versus 16.33 ± 4.77 (group M); 37.66 ± 0.56 baseline versus 16.33 ± 1.81 group X), but no differences between groups were observed. Rectal temperature decreased significantly in group X (38.16 ± 0.21) with respect to the basal measurement (39.30 ± 0.14 °C). In group M, there was no significant reduction in temperature, however, no statistical difference in rectal temperature was found between groups. This study shows that 0.25 mg kg?1 xylazine and 15 µg kg?1 medetomidine produce similar, significant cardiovascular and respiratory changes following lumbosacral epidural administration in dogs.  相似文献   

5.

Objective

To evaluate cardiopulmonary and recovery characteristics of horses administered total intravenous anesthesia (TIVA) with xylazine and ketamine combined with midazolam or propofol.

Study design

Randomized crossover study.

Animals

A group of eight adult horses, aged 7–22 years, weighing 493–740 kg.

Methods

Horses were administered xylazine (1 mg kg?1) intravenously (IV), and anesthesia was induced with ketamine (2.2 mg kg?1) IV. Anesthesia was maintained for 45 minutes via IV infusion of xylazine (0.016 mg kg?1 minute?1) and ketamine (0.03 mg kg?1 minute?1) combined with midazolam at 0.002 mg kg?1 minute?1 (MKX), propofol at 0.05 mg kg?1 minute?1 (PKXlow) or propofol at 0.1 mg kg?1 minute?1 (PKXhigh). Additional ketamine was administered if a horse moved spontaneously. Cardiopulmonary variables, blood gases, lactate concentration, packed cell volume and total solids were recorded before sedation (baseline), at 10, 20, 30 and 45 minutes during TIVA and 10 minutes after standing. Recovery variables and quantitative recovery scores were compared. Significance was set at p < 0.05.

Results

Additional ketamine was required for 50% of MKX horses. Systolic arterial pressure was elevated in MKX at 20 minutes compared with baseline (p = 0.043), at 10 and 20 minutes compared with PKXhigh (p = 0.007, p = 0.024) and at 20 and 30 minutes compared with PKXlow (p = 0.009, p = 0.02). MKX horses (5/8) were hypertensive compared with PKXlow (1/8; p = 0.017). All horses became hypoxemic (PaO2 ≤80 mmHg; 10.7 kPa) during TIVA. Recovery variables did not differ among treatments.

Conclusions and clinical relevance

PKXlow and PKXhigh had similar cardiopulmonary and recovery performance compared with MKX. PKX combinations provided superior quality of anesthesia to that of MKX. A combination of propofol, ketamine and xylazine administered as TIVA can be used in horses to provide anesthesia for short procedures. Supplemental oxygen is recommended.  相似文献   

6.
Objective To compare behavioral characteristics of induction and recovery in horses anesthetized with eight anesthetic drug protocols. Study design Randomized prospective experimental study. Animals Eight horses, 5.5 ± 2.4 years (mean ± SD) of age, and weighing 505 ± 31 kg. Methods After xylazine pre‐medication, each of eight horses was anesthetized on four occasions using one of eight different anesthetic induction protocols which incorporated various combinations of ketamine (KET), propofol (PRO), and thiopental (THIO): THIO 8 mg kg?1; THIO 6 mg kg?1 + PRO 0.5 mg kg?1; THIO 4 mg kg?1 + PRO 1 mg kg?1; THIO 2 mg kg?1 + PRO 1.5 mg kg?1; KET 2 mg kg?1; KET 1.5 mg kg?1 + PRO 0.5 mg kg?1; KET 1 mg kg?1 + PRO 1 mg kg?1; KET 0.5 mg kg?1 + PRO 1.5 mg kg?1. Quality of induction and recovery were scored from 1 (poor) to 5 (excellent), and time taken to achieve lateral recumbency, first movement, sternal recumbency, and standing were evaluated. Results Time taken to achieve lateral recumbency after drug administration differed significantly (p < 0.0001) among the various combinations, being shortest in horses receiving THIO‐8 (mean ± SD, 0.5 ± 0.3 minutes) and longest in horses receiving KET‐2 (1.4 ± 0.2 minutes). The best scores for induction quality were associated with KET‐1.5 + PRO‐0.5, and the worst scores for induction quality were associated with KET‐2, although the difference was not significant. Time to first movement varied significantly among drug protocols (p = 0.0133), being shortest in horses receiving KET‐2 (12.7 ± 3.6 minutes) and longest in horses receiving THIO‐8 (29.9 ± 1.5 minutes). Horses receiving THIO‐8 made the greatest number of attempts to attain sternal posture (6.5 ± 4.7) and to stand (1.6 ± 0.8). Horses in the THIO‐8 treatment also received the poorest recovery scores (3.3 ± 1.0 and 3.0 ± 0.7 for sternal and standing postures, respectively). The best recovery scores were associated with combinations comprised mainly of propofol. Conclusions Combining propofol with either ketamine or thiopental modifies behaviors associated with use of the individual drugs. Clinical relevance Quality of early anesthesia recovery in horses may be improved by some combinations of propofol with either thiopental or ketamine.  相似文献   

7.
Objective To characterize responses to different doses of propofol in horses pre‐medicated with xylazine. Animals Six adult horses (five females and one male). Methods Each horse was anaesthetized four times with either ketamine or propofol in random order at 1‐week intervals. Horses were pre‐medicated with xylazine (1.1 mg kg?1 IV over a minute), and 5 minutes later anaesthesia was induced with either ketamine (2.2 mg kg?1 IV) or propofol (1, 2 and 4 mg kg?1 IV; low, medium and high doses, respectively). Data were collected continuously (electrocardiogram) or after xylazine administration and at 5, 10 and 15 minutes after anaesthetic induction (arterial pressure, respiratory rate, pH, PaO2, PaCO2 and O2 saturation). Anaesthetic induction and recovery were qualitatively and quantitatively assessed. Results Differences in the quality of anaesthesia were observed; the low dose of propofol resulted in a poorer anaesthetic induction that was insufficient to allow intubation, whereas the high dose produced an excellent quality of induction, free of excitement. Recorded anaesthesia times were similar between propofol at 2 mg kg?1 and ketamine with prolonged and shorter recovery times after the high and low dose of propofol, respectively (p < 0.05; ketamine, 38 ± 7 minutes; propofol 1 mg kg?1, 29 ± 4 minutes; propofol 2 mg kg?1, 37 ± 5 minutes; propofol 4 mg kg?1, 50 ± 7 minutes). Times to regain sternal and standing position were longest with the highest dose of propofol (32 ± 5 and 39 ± 7 minutes, respectively). Both ketamine and propofol reversed bradycardia, sinoatrial, and atrioventricular blocks produced by xylazine. There were no significant alterations in blood pressure but respiratory rate, and PaO2 and O2 saturation were significantly decreased in all groups (p < 0.05). Conclusion The anaesthetic quality produced by the three propofol doses varied; the most desirable effects, which were comparable to those of ketamine, were produced by 2 mg kg?1 propofol.  相似文献   

8.
ObjectiveTo evaluate the cardiovascular, respiratory, electrolyte and acid–base effects of a continuous infusion of dexmedetomidine during propofol–isoflurane anesthesia following premedication with dexmedetomidine.Study designProspective experimental study.AnimalsFive adult male Walker Hound dogs 1–2 years of age averaging 25.4 ± 3.6 kg.MethodsDogs were sedated with dexmedetomidine 10 μg kg?1 IM, 78 ± 2.3 minutes (mean ± SD) before general anesthesia. Anesthesia was induced with propofol (2.5 ± 0.5 mg kg?1) IV and maintained with 1.5% isoflurane. Thirty minutes later dexmedetomidine 0.5 μg kg?1 IV was administered over 5 minutes followed by an infusion of 0.5 μg kg?1 hour?1. Cardiac output (CO), heart rate (HR), ECG, direct blood pressure, body temperature, respiratory parameters, acid–base and arterial blood gases and electrolytes were measured 30 and 60 minutes after the infusion started. Data were analyzed via multiple linear regression modeling of individual variables over time, compared to anesthetized baseline values. Data are presented as mean ± SD.ResultsNo statistical difference from baseline for any parameter was measured at any time point. Baseline CO, HR and mean arterial blood pressure (MAP) before infusion were 3.11 ± 0.9 L minute?1, 78 ± 18 beats minute?1 and 96 ± 10 mmHg, respectively. During infusion CO, HR and MAP were 3.20 ± 0.83 L minute?1, 78 ± 14 beats minute?1 and 89 ± 16 mmHg, respectively. No differences were found in respiratory rates, PaO2, PaCO2, pH, base excess, bicarbonate, sodium, potassium, chloride, calcium or lactate measurements before or during infusion.Conclusions and clinical relevanceDexmedetomidine infusion using a loading dose of 0.5 μg kg?1 IV followed by a constant rate infusion of 0.5 μg kg?1 hour?1 does not cause any significant changes beyond those associated with an IM premedication dose of 10 μg kg?1, in propofol–isoflurane anesthetized dogs. IM dexmedetomidine given 108 ± 2 minutes before onset of infusion showed typical significant effects on cardiovascular parameters.  相似文献   

9.
Background: Stress echocardiography is used to diagnose myocardial dysfunction in horses, but current methods are not well standardized. The influence of heart rate (HR) on measurements is largely unknown. Objectives: To investigate the use of 2‐dimensional echocardiography (2DE), anatomical M‐mode (AMM), tissue Doppler imaging (TDI), and 2D speckle tracking (2DST) at rest and after exercise for quantification of regional and global left‐ventricular (LV) function. Animals: Five athletic Warmblood horses; 11.6 ± 3.6 years; 529 ± 48 kg. Methods: Prospective study. Three separate echocardiographic examinations were performed before (baseline) and over 5 minutes after treadmill exercise with 2DE (1st, short‐axis view; 2nd, long‐axis view) and pulsed‐wave TDI (3rd examination). Offline analyses were performed at baseline and after exercise at HR 120, 110, 100, 90, and 80 minute?1. Global and segmental measurements were compared by analysis of variance. Results: Quantitative analyses of stress echocardiograms were feasible in all horses. None of the AMM indices changed significantly after exercise. Stroke volume and ejection fraction by 2DE and strain by 2DST decreased, whereas strain rate by 2DST increased significantly at HR > 100 minute?1. TDI analyses were technically difficult and provided little additional information. Conclusions and Clinical Importance: Volumetric indices by 2DE and strain and strain rate by 2DST are applicable for quantitative assessment of stress echocardiograms. In healthy horses, they are significantly altered at a HR > 100 minute?1 and need to be evaluated in view of the instantaneous HR. Further investigations are needed to define the clinical value of stress echocardiography in horses with cardiac disease.  相似文献   

10.
Objective To directly compare the time to onset and duration of analgesia produced by a lidocaine/xylazine combination with that produced by lidocaine and xylazine administered alone in the caudal epidural space of dairy cattle. Design Prospective randomized experimental study. Animals Nine adult (> 4 years of age) dairy cows (520–613 kg). Methods Caudal epidural analgesia was produced in all cows with 2% lidocaine (0.22 mg kg?1; 5.5 mL 500 kg?1), 10% xylazine (0.05 mg kg?1 diluted to 5.5 mL 500 kg?1 with sterile water), and 2% lidocaine/10% xylazine (0.22 mg kg?1/0.05 mg kg?1; total volume of 5.7 mL 500 kg?1), at no earlier than weekly intervals in a Latin square design. Time to onset, duration and cranial spread of analgesia were recorded, as were degree of sedation, ataxia and ptyalism. Results No significant difference (p > 0.05) was noted for time (mean ± SEM) of onset of analgesia between lidocaine (4.8 ± 1.0 minutes) and the lidocaine/xylazine combination (5.1 ± 0.9 minutes) but onset of analgesia following xylazine was significantly longer (11.7 ± 1.0 minutes) than either of the other two treatments. Lidocaine/xylazine (302.8 ± 11.0 minutes) produced analgesia of significantly longer duration than that of xylazine (252.9 ± 18.9 minutes) and both the lidocaine/xylazine combination and xylazine alone produced analgesia of significantly longer duration than that produced by lidocaine (81.8 ± 11.8 minutes). In all cattle, xylazine, administered either alone or with lidocaine, induced mild to moderate sedation and ataxia and cutaneous analgesia from the coccyx to T13. Mild ataxia was also present in those cattle receiving lidocaine alone. Conclusion The combination of xylazine and lidocaine produces analgesia of quicker onset and longer duration than xylazine administered alone and of longer duration than lidocaine administered alone. Clinical relevance Utilizing this combination, long‐duration obstetrical and surgical procedures could commence relatively soon after epidural injection and could be completed without re‐administration of anesthetic agents.  相似文献   

11.
A central eyeball position is often required during sedation or anaesthesia to facilitate examination of the eye. However, use of neuromuscular blockade to produce a central eye position may result in depressed ventilation. This study evaluated the eyeball position, muscle relaxation and changes in ventilation during general anaesthesia after the IV administration of 0.1 mg kg?1 rocuronium. With client consent, 12 dogs of different breeds, body mass 27.2 ± 11.8 kg, aged 5.6 ± 2.8 years (mean ± SD) were anaesthetized for ocular examination. Pre‐anaesthetic medication was 0.01 mg kg?1 medetomidine and 0.2 mg kg?1 butorphanol IV. Anaesthesia was induced with propofol to effect and maintained with 10 mg kg?1 hour?1 propofol by infusion. The dogs were placed in left lateral recumbency, their trachea intubated and connected to a circle breathing system (Fi O2 = 1.0). All dogs breathed spontaneously. The superficial peroneal nerve of the right hind leg was stimulated every 15 seconds with a train‐of‐four (TOF) stimulation pattern and neuromuscular function was assessed with an acceleromyograph (TOF‐Guard). Adequacy of ventilation was measured with the Ventrak 1550. After 10 minutes of anaesthesia to allow stabilisation of baseline values, 0.1 mg kg?1 rocuronium was administered IV. Minute volume (Vm ), tidal volume (Vt ), respiratory rate (RR), Pe ′CO2 and maximal depression of T1 and TOF ratio were measured. Data were analysed using a paired t‐test. The changes in the eyeball position were recorded. A total of 100 ± 33 seconds after the injection of rocuronium, T1 was maximally depressed to 62 ± 21% and the TOF ratio to 42 ± 18% of baseline values. Both variables returned to baseline after 366 ± 132 seconds (T1) and 478 ± 111 seconds (TOF). There was no significant reduction in Vm (2.32 ± 1.1 L minute?1), Vt (124.1 ± 69.3 mL) and RR (10 ± 3.8 breaths minute?1) and no increase in Pe ′CO2 (6.5 ± 2.1 kPa (48.8 ± 16.1 mm Hg)) throughout the procedure. The eyeball rotated to a central position 35 ± 7 seconds after rocuronium IV and remained there for a minimum of 20 ± 7 minutes in all dogs. We conclude that rocuronium at a dose of 0.1 mg kg?1 can be administered to dogs IV with minimal changes in ventilatory variables. The eyeball is fixed in a central position for at least 20 minutes, which greatly facilitates clinical examination.  相似文献   

12.
This study evaluated the antinociceptive and physiologic effects of xylazine (X) and detomidine (D) administered intrathecally (IT) at the lumbosacral space, before and after the injection of atipamezole (A) IV. The study was approved by the National Animal Protection Authorities. Five adult healthy female sheep were anaesthetized with propofol on four occasions to inject the following treatments IT: groups 1 and 2, 0.05 mg kg?1 X (2 mg mL?1 saline) IT; groups 3 and 4, 0.01 mg kg?1 D (0.5 mg mL?1 saline) IT ( Waterman et al. 1988 ). Nociceptive threshold (TH) was tested by applying pulsed and stepwise enhanced direct current ( Ludbrook et al. 1995 ) at one hind leg pastern and noting the current at the moment of foot lift. Maximum current applied was 40 mA. Baseline TH was measured twice before anaesthesia and every 10 minutes when the sheep regained consciousness. Atipamezole was given IV immediately after reaching maximum analgesic action of X and D as defined by two equal or decreasing TH values and measurements were continued for 90 minutes. The dose of A for groups 1 and 3 was 0.005 mg kg?1 (0.25 mg mL?1 saline) IV, and for groups 2 and 4 was 0.0025 mg kg?1 A (0.25 mg mL?1 saline) IV. Heart rate (HR), mean direct arterial pressure (MAP), PaO2 and PaCO2 were measured. The differences between measurements recorded before and after treatment were analysed using a paired t‐test for the drug effects and a nonparametric Wilcoxon's rank sum test for the comparison between groups. A p‐value < 0.05 was considered significant. All sheep were able to stand before A IV. Threshold baseline value was 4.5 ± 1.7 (mean ± SD) mA for all animals. Xylazine caused a significantly higher TH rise (35.2 ± 1.8 mA), faster onset (21.1 ± 16.0 minutes) and longer duration of the TH enhancement (104.1 ± 8.6 minutes) than D (TH: 16.3 ± 7.8 mA, onset: 49.5 ± 28.4 minutes, duration: 59.3 ± 27.3 minutes). A significant increase in PaCO2 was observed in the X and D treated animals, 0.39 ± 0.21 kPa (2.9 ± 1.6 mm Hg) and 0.39 ± 0.29 kPa (2.9 ± 2.2 mm Hg), respectively. Heart rate was significantly decreased by ?21 ± 17 beats minute?1 for X animals and ?13 ± 13 beats minute?1 for D. Mean arterial pressure (?9 ± 13 mm Hg for X and ?1 ± 11 mm Hg for D animals) and PaO2 0.65 ± 1.32 kPa (4.9 ± 9.9 mm Hg) for X and 1.45 ± 4.19 kPa (10.9 ± 31.4 mm Hg) for D animals) did not change significantly. The nociceptive threshold was not affected by A in any group. Threshold values of all X treated animals before A was 39.3 ± 1.4 mA and after was 37.2 ± 6.3 (group 1) and 40 ± 0 (group 2). Threshold values of all D treated animals before A was 21.0 ± 8.3 and after was 19.4 ± 7.3 (group 3) and 24.8 ± 8.0 (group 4). At the dosages administered intrathecally in this study, X and to a lower degree D induce antinociception without major physiologic changes. Atipamezole up to 0.005 mg kg?1 IV does not affect the resulting antinociception as assessed by electrical stimulation.  相似文献   

13.
Objectives To evaluate the analgesic, physiologic, and behavioral effects of the epidural administration of tiletamine/zolazepam in horses. Study design Prospective, double‐blind, randomized experimental study. Animals Five adult, healthy horses aged 10–16 years and weighing (mean ± SD) 400 ± 98 kg. Methods The horses were sedated with 1.0 mg kg?1 intravenous (IV) xylazine, and an epidural catheter was placed into the first intercoccygeal intervertebral space. After a 48‐hour resting period, epidural tiletamine/zolazepam, 0.5 mg kg?1 (treatment I) or 1.0 mg kg?1 (treatment II), diluted up to 5 mL in sterile water, was administered with a 1‐week interval between the treatments. Heart rate, respiratory rate, arterial blood pressure, and sedation were evaluated. In order to evaluate the respiratory effects, blood from the carotid artery was withdrawn at time 0 (baseline), and then after 60 and 240 minutes. Analgesia was evaluated by applying a noxious stimulus with blunt‐tipped forceps on the perineal region, and graded as complete, moderate, or absent. Data were collected before tiletamine/zolazepam administration and at 15‐minute intervals for 120 minutes, and 4 hours after tiletamine/zolazepam administration. Data were analyzed with anova and Bonferroni's test with p < 0.05. Results The results showed no significant difference between treatments in cardiovascular and respiratory measurements. Sedation was observed with both doses, and it was significantly different from baseline at 60, 75, and 90 minutes in treatment II. Moderate analgesia and locomotor ataxia were observed with both the treatments. Conclusions and clinical relevance The results suggest that caudal epidural 0.5 and 1.0 mg kg?1 tiletamine/zolazepam increases the threshold to pressure stimulation in the perineal region in horses. The use of epidural tiletamine/zolazepam could be indicated for short‐term moderate epidural analgesia. There are no studies examining spinal toxicity of Telazol, and further studies are necessary before recommending clinical use of this technique.  相似文献   

14.
Six 3‐year‐old goats (three males and three females) weighing 60.0 ± 18 kg (mean ± SD) were used to investigate the effect of medetomidine (MED; 20 µg kg?1 IV) and its antagonism with atipamezole (ATI; 100 µg kg?1 IV) on physiologic responses (heart rate (HR; beats minute?1), respiratory rate (RR; breaths minute?1), electrocardiogram (ECG), rectal temperature (T; °C), blood pressure (oscillometric; mm Hg), sedation (SED), posture (REC), analgesia (ALG), and stress‐related hormonal and metabolic responses (epinephrine and norepinephrine (high performance liquid chromatography with electrochemical detection), cortisol (COR; µg dL?1; radioimmunoassay), glucose (GLU; mg mL?1; enzymatic colorimetric assay), and free fatty acids (modified enzymatic colorimetric assay)); each goat received ATI or SAL in random order separated by 1 week. Jugular catheters were placed for drug administration and blood sampling (10–12 mL sample?1) using a lidocaine skin block (20 mg) 2 hours prior to beginning of each trial; during this trial, goats breathed room air. Physiologic parameters were measured, SED, REC, and ALG were scored, and blood samples were collected from jugular catheters at baseline (time = ?30 minutes), 5 minutes post‐MED administration (time = ?25 minutes), 25 minute post‐MED administration and immediately prior to antagonism (time = 0 minute), and at 5, 30, 60, and 120 minutes after administering ATI or SAL. ALG was tested by clamping the withers and metacarpus with hoof testers fitted with a force transducer to measure applied isometric force (lb) (a technique used previously in goats to evaluate analgesia). Continuous variables were analyzed by Repeated Measures analysis of variance (anova ); categorical data were analyzed using a Friedman Repeated Measures anova on ranks. A p‐value of <0.05 was considered significant. If a significant difference was found, a Dunnett's pair‐wise comparison of means was conducted. Differences between ATI and SAL were examined at 5, 30, 60, and 120 minutes using a paired t‐test with a Bonferroni correction. Administration of MED resulted in a decrease in T (38.7 ± 0.3 to 34.5 ± 0.4 °C), HR (78 ± 19 to 55 ± 9), and RR (31 ± 12 to 14 ± 5) over time; an increase in mean arterial blood pressure (90 ± 19 to 132 ± 23), COR (0.254 ± 0.125 to 4.327 ± 1.233), and GLU (82.0 ± 13.2 to 255.9 ± 38.9); and changes in SED (alert to marked sedation), REC (standing to recumbent), and ALG (metacarpus = 5 ± 2 to 14 ± 0; withers = 3 ± 2 to 14 ± 0). GLU was 62–70% higher at 60 and 120 minutes and COR was 336% higher after SAL than after ATI at 120 minutes; at 30, 60, and 120 minutes, T was 4–10% higher after ATI than SAL. There were no other significant differences. REC, SED, and ALG were antagonized after ATI. ATI did not antagonize the effect of MED on HR, RR, or MAP, but stabilized T and antagonized the increase in GLU and COR.  相似文献   

15.
ObjectiveTo determine the pharmacokinetics and pharmacodynamics of the neurosteroidal anaesthetic, alfaxalone, in horses after a single intravenous (IV) injection of alfaxalone, following premedication with acepromazine, xylazine and guaiphenesin.Study designProspective experimental study.AnimalsTen (five male and five female), adult, healthy, Standardbred horses.MethodsHorses were premedicated with acepromazine (0.03 mg kg?1 IV). Twenty minutes later they received xylazine (1 mg kg?1 IV), then after 5 minutes, guaiphenesin (35 mg kg?1 IV) followed immediately by IV induction of anaesthesia with alfaxalone (1 mg kg?1). Cardiorespiratory variables (pulse rate, respiratory rate, pulse oximetry) and clinical signs of anaesthetic depth were evaluated throughout anaesthesia. Venous blood samples were collected at strategic time points and plasma concentrations of alfaxalone were assayed using liquid chromatography-mass spectrometry (LC/MS) and analysed by noncompartmental pharmacokinetic analysis. The quality of anaesthetic induction and recovery was scored on a scale of 1–5 (1 very poor, 5 excellent).ResultsThe median (range) induction and recovery scores were 4 (3–5) (good: horse slowly and moderately gently attained recumbency with minimal or no rigidity or paddling) and 4 (1–5) (good: horse stood on first attempt with some knuckling and ataxia) respectively. The monitored cardiopulmonary variables were within the range expected for clinical equine anaesthesia. The mean ± SD durations of anaesthesia from induction to sternal recumbency and from induction to standing were 42.7 ± 8.4 and 47 ± 9.6 minutes, respectively. The mean ± SD plasma elimination half life (t1/2), plasma clearance (Clp) and volume of distribution (Vd) for alfaxalone were 33.4 minutes, 37.1 ± 11.1 mL minute?1 kg?1 and 1.6 ± 0.4 L kg?1, respectively.Conclusions and clinical relevanceAlfaxalone, in a 2-hydroxypropyl-beta-cyclodextrin formulation, provides anaesthesia with a short duration of recumbency that is characterised by a smooth induction and satisfactory recovery in the horse. As in other species, alfaxalone is rapidly cleared from the plasma in the horse.  相似文献   

16.
ObjectiveTo evaluate the effects of intravenous (IV) or intramuscular (IM) hyoscine premedication on physiologic variables following IV administration of medetomidine in horses.Study designRandomized, crossover experimental study.AnimalsEight healthy crossbred horses weighing 330 ± 39 kg and aged 7 ± 4 years.MethodsBaseline measurements of heart rate (HR), cardiac index (CI), respiratory rate, systemic vascular resistance (SVR), percentage of patients with second degree atrioventricular (2oAV) block, mean arterial pressure (MAP), pH, and arterial partial pressures of carbon dioxide (PaCO2) and oxygen (PaO2) were obtained 5 minutes before administration of IV hyoscine (0.14 mg kg?1; group HIV), IM hyoscine (0.3 mg kg?1; group HIM), or an equal volume of physiologic saline IV (group C). Five minutes later, medetomidine (7.5 μg kg?1) was administered IV and measurements were recorded at various time points for 130 minutes.ResultsMedetomidine induced bradycardia, 2oAV blocks and increased SVR immediately after administration, without significant changes in CI or MAP in C. Hyoscine administration induced tachycardia and hypertension, and decreased the percentage of 2oAV blocks induced by medetomidine. Peak HR and MAP were higher in HIV than HIM at 88 ± 18 beats minute?1 and 241 ± 37 mmHg versus 65 ± 16 beats minute?1 and 192 ± 38 mmHg, respectively. CI was increased significantly in HIV (p ≤ 0.05). Respiratory rate decreased significantly in all groups during the recording period. pH, PaCO2 and PaO2 were not significantly changed by administration of medetomidine with or without hyoscine.Conclusion and clinical relevanceHyoscine administered IV or IM before medetomidine in horses resulted in tachycardia and hypertension under the conditions of this study. The significance of these changes, and responses to other dose rates, requires further investigation.  相似文献   

17.
Objective To compare the anti‐nociceptive effects of extradural xylazine, fentanyl and a xylazine–fentanyl combination in sheep, and to measure the cardiopulmonary effects of the xylazine–fentanyl combination. Study design Prospective, randomized study. Animals Twenty‐five half‐merino ewes 2–4 years of age and body mass 54.2 ± 1.1 kg. Methods Six sheep in group 1 received 0.2 mg kg?1 xylazine by extradural injection, six in group 2 received fentanyl 1.5 µg kg?1 and 13 in group 3 received the combination of both treatments. In all groups, drugs were mixed with saline (0.15 mL kg?1 before injection). Pulmonary and carotid arterial catheters were placed in seven sheep of group 3 which were used to evaluate cardiopulmonary effects. Anti‐nociception was determined by the response to electrical stimulation (40 V for 1.5 milliseconds) of the left flank and by superficial and deep muscular ‘pinpricking’ stimulation of the pelvic and thoracic limbs and thoracolumbar region. Results Lack of response to electrical stimulation at the left flank was present in 10 ± 1.1 minutes (mean ± SEM) (group 1) and in 4.5 ± 0.5 minutes in group 3. The duration of lack of response to electrical stimulation at the left flank was 96 ± 6 minutes in group 1 and 315 ± 6 minutes in group 3. Responses persisted in group 3. Significant decreases (p < 0.05) in cardiac output 30, 45, 60 and 90 minutes after injection, and in cardiac work at 30 and 45 minutes were observed in the seven animals of group 3. Arterial blood pH was lowest at 90 minutes, arterial bicarbonate was lowest at 60 minutes and values for both arterial and mixed venous base excess increased significantly at 60 and 90 minutes. There was no significant change from baseline values in heart rate, mean arterial blood pressure, respiratory rate, body temperature, systemic vascular resistance, arterial and mixed venous PO2, PCO2, oxygen saturation, blood oxygen content, haemoglobin concentration, mixed venous blood bicarbonate and pH. Conclusions Fentanyl decreases the onset time and prolongs the duration of anti‐nociception produced by xylazine. The combination decreases cardiac output but is without significant respiratory effects. Clinical relevance Further studies are required to show that surgery is possible in sheep after extradural xylazine–fentanyl injection.  相似文献   

18.
Propofol anaesthesia for surgery in late gestation pony mares   总被引:2,自引:0,他引:2  
Objective To characterize propofol anaesthesia in pregnant ponies. Animals Fourteen pony mares, at 256 ± 49 days gestation, undergoing abdominal surgery to implant fetal and maternal vascular catheters. Materials and methods Pre‐anaesthetic medication with intravenous (IV) acepromazine (20 µg kg?1), butorphanol (20 µg kg?1) and detomidine (10 µg kg?1) was given 30 minutes before induction of anaesthesia with detomidine (10 µg kg?1) and ketamine (2 mg kg?1) IV Maternal arterial blood pressure was recorded (facial artery) throughout anaesthesia. Arterial blood gas values and plasma concentrations of glucose, lactate, cortisol and propofol were measured at 20‐minute intervals. Anaesthesia was maintained with propofol infused initially at 200 µg kg?1 minute?1, and at 130–180 µg kg?1 minute?1 after 60 minutes, ventilation was controlled with oxygen and nitrous oxide to maintain PaCO2 between 5.0 and 6.0 kPa (37.6 and 45.1 mm Hg) and PaO2 between 13.3 and 20.0 kPa (100 and 150.4 mm Hg). During anaesthesia flunixin (1 mg kg?1), procaine penicillin (6 IU) and butorphanol 80 µg kg?1 were given. Lactated Ringer's solution was infused at 10 mL kg?1 hour?1. Simultaneous fetal and maternal blood samples were withdrawn at 85–95 minutes. Recovery from anaesthesia was assisted. Results Arterial blood gas values remained within intended limits. Plasma propofol levels stabilized after 20 minutes (range 3.5–9.1 µg kg?1); disposition estimates were clearance 6.13 ± 1.51 L minute?1 (mean ± SD) and volume of distribution 117.1 ± 38.9 L (mean ± SD). Plasma cortisol increased from 193 ± 43 nmol L?1 before anaesthesia to 421 ± 96 nmol L?1 60 minutes after anaesthesia. Surgical conditions were excellent. Fetal umbilical venous pH, PO2 and PCO2 were 7.35 ± 0.04, 6.5 ± 0.5 kPa (49 ± 4 mm Hg) and 6.9 ± 0.5 kPa (52 ± 4 mm Hg); fetal arterial pH, PO2 and PCO2 were 7.29 ± 0.06, 3.3 ± 0.8 kPa (25 ± 6 mm Hg) and 8.7 ± 0.9 kPa (65 ± 7 mm Hg), respectively. Recovery to standing occurred at 46 ± 17 minutes, and was generally smooth. Ponies regained normal behaviour patterns immediately. Conclusions and clinical relevance Propofol anaesthesia was smooth with satisfactory cardiovascular function in both mare and fetus; we believe this to be a suitable anaesthetic technique for pregnant ponies.  相似文献   

19.
ObjectiveTo compare the effects of xylazine on mechanical nociceptive thresholds in donkeys and horses.Study designRandomized, controlled, crossover, Latin-square, operator-blinded design.AnimalsSix 3.1 ± 0.89 year old standard donkeys weighing 145.0 ± 30.5 kg and six 9.6 ± 4.4 year old Thoroughbred horses weighing 456.0 ± 69.0 kg.MethodsEach animal received one of four doses of xylazine (0.5, 0.7, 0.9, and 1.1 mg kg?1), or acepromazine (0.05 mg kg?1) or saline solution (0.9%) intravenously and mechanical nociceptive thresholds were assessed over 90 minutes. The areas under the threshold change versus time curve values for 60 minutes (AUC0-60) post-drug administration were used to compare the effect of treatment. A 1-week interval was allowed between successive trials on each animal.ResultsAll doses of xylazine, but not acepromazine or saline, increased mechanical thresholds for up to 60 minutes. Xylazine-induced hypoalgesia was dose-dependent and corresponding AUC0-60 values for each treatment were not significantly different between donkeys and horses (p≥ 0.0697).ConclusionThe hypoalgesic effects of xylazine at four different doses were not different between donkeys and horses.Clinical relevanceXylazine induced a similar degree of mechanical hypoalgesia in donkeys and horses suggesting that similar doses are needed for both species with regard to analgesia.  相似文献   

20.
ObjectiveTo investigate physiological and sedative/immobilization effects of medetomidine or dexmedetomidine combined with ketamine in free-ranging Chinese water deer (CWD).Study designProspective clinical trial.Animals10 free-ranging adult Chinese water deer (11.0 ± 2.6 kg).MethodsAnimals were darted intramuscularly with 0.08 ± 0.004 mg kg?1 medetomidine and 3.2 ± 0.2 mg kg?1 ketamine (MK) or 0.04 ± 0.01 mg kg?1 dexmedetomidine and 2.9 ± 0.1 mg kg?1 ketamine (DMK) If the animal was still laterally recumbent after 60 minutes of immobilization, atipamezole was administered intravenously (MK: 0.4 ± 0.02 mg kg?1, DMK: 0.2 ± 0.03 mg kg?1). Heart rate (HR) respiratory rate (fR) and temperature were recorded at 5-minute intervals. Arterial blood was taken 15 and 45 minutes after initial injection. Statistical analysis was performed using Student’s t-test or anova. p < 0.05 was considered significant.ResultsAnimals became recumbent rapidly in both groups. Most had involuntary ear twitches, but there was no response to external stimuli. There were no statistical differences in mean HR (MK: 75 ± 14 beats minute?1; DMK: 85 ± 21 beats minute?1), fR (MK: 51 ± 35 breaths minute?1; DMK; 36 ± 9 breaths minute?1), temperature (MK: 38.1 ± 0.7 °C; DMK: 38.4 ± 0.5 °C), blood gas values (MK: PaO2 63 ± 6 mmHg, PaCO2 49.6 ± 2.6 mmHg, HCO3? 30.8 ± 4.5 mmol L?1; DMK: PaO2 77 ± 35 mmHg, PaCO2 45.9 ± 11.5 mmHg, HCO3? 31.0 ± 4.5 mmol L?1) and biochemical values between groups but temperature decreased in both groups. All animals needed antagonism of immobilization after 60 minutes. Recovery was quick and uneventful. There were no adverse effects after recovery.Conclusion and clinical relevanceBoth anaesthetic protocols provided satisfactory immobilisation. There was no clear preference for either protocol and both appear suitable for CWD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号