首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
基于近红外光谱的寒地水稻稻瘟病检测数据分析   总被引:1,自引:0,他引:1  
为克服传统稻瘟病目测诊断正确率低的缺陷,以感染了稻瘟病的寒地水稻植株为研究对象,通过近红外光谱技术采集到了健康植株与染病植株不同部位光谱特征:叶瘟病3种病害等级光谱特征;谷粒瘟5种病害等级光谱特征和穗茎瘟4种病害等级光谱特征分析结果表明,得出的结论是,不同情况的植株都有各自的近红外光谱波段,这一结论为将来利用近红外光谱技术实现寒地水稻稻瘟病的实时检测奠定先期基础。  相似文献   

2.
针对甘蔗叶片早期轮斑病与锈病发病症状相似,难以区分,导致在实际生产中不便对症施药的问题,以甘蔗早期轮斑病和锈病叶片为研究对象,探究利用高光谱成像技术来识别甘蔗叶片早期轮斑病与锈病的可行性。首先,利用高光谱成像系统在406~1 014 nm光谱范围内采集甘蔗健康叶片、早期轮斑病叶片和锈病叶片的高光谱图像,提取图像的感兴趣区域(Region of interest, ROI)并计算其平均光谱作为原始光谱数据,采用一阶导数(First derivative, FD)、Savitzky-Golay卷积平滑(Savitzky-Golay convolutional smoothing, SG)和标准正态变换(Standard normal variate, SNV)分别对原始光谱数据进行预处理。然后,在预处理的基础上采用主成分分析(Principal component analysis, PCA)算法、蚁群优化(Ant colony optimization, ACO)算法进行特征降维,并将降维后的特征作为后期建模的输入变量。最后,结合降维和不降维2种方式使用支持向量机(SVM)和随机森林(R...  相似文献   

3.
基于高光谱成像的青梅酸度检测方法   总被引:4,自引:0,他引:4  
针对传统理化分析的青梅酸度检测方法破坏性大、耗时长、无法实现在线检测的不足,对基于高光谱成像技术的青梅酸度快速无损检测方法进行研究。采集了487个青梅样本在550~1 000 nm波段内的高光谱图像,经过光谱相对反射率校正和6种不同滤波后,分别利用连续投影算法(SPA)、遗传算法(GA)以及连续投影结合遗传算法(SPA+GA)3种光谱降维方法,提取了反映青梅内部酸度信息的特征波长,并建立波长与青梅p H值的偏最小二乘(PLS)预测模型,研究不同滤波和不同降维方法下的预测精度。研究结果表明:同一预测模型,Savitzky-Golay(S-G)平滑滤波预测精度最高;相比SPA或GA单一算法降维,经5点S-G平滑滤波后SPA+GA光谱降维的方法,可显著降低模型复杂度,提高模型预测精度,预测集的均方根误差为0.070 6,相关系数为0.792 5。  相似文献   

4.
水稻病害是影响水稻产量的重要因素之一,水稻病害的早期预测对水稻病害防治至关重要。为了实现水稻白叶枯病害的预测,连续采集了从接种病菌到早期发病共7d的白叶枯病害胁迫下的叶片高光谱图像。利用Savitzky-Golay算法对高光谱图像进行预处理,并利用主成分分析(Principal component analysis, PCA)和随机森林(Random forest, RF)算法提取光谱特征,构建多任务学习(Multi-task learning, MTL)与长短期记忆(Long short-term memory, LSTM)网络融合的预测模型,对水稻病害发病率和潜伏期进行预测,并利用鲸鱼优化算法(Whale optimization algorithm, WOA)对MTL-LSTM模型进行优化。实验结果表明:PCA和RF可以有效地从高光谱图像中提取光谱特征,降低高光谱数据维度,且基于光谱特征构建的预测模型性能优于全波段光谱构建的预测模型性能,建模时间降低约98%。基于时序高光谱构建的预测模型对发病率和潜伏期的预测取得了预期效果,基于前10个特征波长构建的WOA-MTL-LSTM模型取得了最优的预测性能,对发病率和潜伏期预测测试集的R2分别为0.93和0.85,RMSE分别为0.34和2.12,RE分别为0.33%和1.21%。通过WOA算法可以提升MTL-LSTM的预测性能,对发病率和潜伏期预测的R2均提升0.05。研究结果表明RF提取高光谱特征能有效表征全波段光谱,基于时序高光谱的WOA-MTL-LSTM模型可以准确预测白叶枯病害发病率和潜伏期,为水稻白叶枯病害的预防提供了技术支持。  相似文献   

5.
水稻白背飞虱虫害的单叶高光谱特征分析   总被引:4,自引:0,他引:4  
通过测试水稻白背飞虱主害代期间叶片的高光谱数据,采用多元统计分析方法,对叶片反射光谱与白背飞虱百株虫量进行相关分析,确定了514~602nm,697~1339nm,1501~1749nm及2 101-2 299nm为白背飞虱虫害的4个敏感波段,并基于这些敏感波段,采用逐步回归法建立了反演白背飞虱虫量的模型.  相似文献   

6.
氮素胁迫下水稻高光谱特征研究   总被引:1,自引:0,他引:1  
氮素是水稻生长发育的一种大量必需元素,需及时准确地监控水稻的氮营养状况。水稻的合理施肥对增产、优化品质、降低水污染具有重要意义。水稻营养状况遥感诊断技术具有简单、无损、快速等特点而得到各国专家的广泛研究和应用。本实验以方正水稻阳光4号品种为例,通过大田实验,利用高光谱遥感技术,采集6个施氮水平的水稻冠层水稻冠层图像,测定水稻冠层光谱反射率。结果表明:水稻冠层反射率与不同氮素含量有明显的相关性,从曲线图中可以定性区分出严重缺氮、正常施氮及过量施氮。下一步将结合光谱曲线找出诊断水稻氮素营养水平的敏感波段,为日后水稻冠层氮素营养诊断模型奠定基础。  相似文献   

7.
基于无人机高光谱遥感的水稻氮营养诊断方法   总被引:1,自引:0,他引:1  
氮亏缺量能够直接反映作物氮营养缺失程度,快速、大面积获取水稻氮亏缺量信息对实现水稻精准施肥具有重要意义。而现有的研究大都集中于利用无人机遥感监测水稻氮营养情况,对氮亏缺量本身的研究较少。本研究基于无人机高光谱遥感获取冠层光谱数据、通过田间采样获取水稻农学数据,研究东北地区水稻临界氮浓度曲线构建方法,在此基础上确定水稻氮亏缺量;以氮亏缺量约等于0状态下光谱为标准光谱,分别对光谱反射率进行比值、差值、归一化差值变换,通过竞争性自适应重加权采样法对原始光谱反射率与变换后光谱反射率进行特征波长提取,并以二者提取的特征波长为输入变量,氮亏缺量为输出变量,分别构建基于多元线性回归、极限学习机与蝙蝠算法优化极限学习机3种算法的水稻氮亏缺量反演模型。结果表明:基于田间数据构建东北地区水稻临界氮浓度曲线方程系数a、b分别为2.026与-0.460 3,和以往研究基本一致;相比其余变换方法,对水稻冠层光谱进行归一化差值变换与特征波长提取显著提高了冠层光谱反射率与水稻氮亏缺量的相关性,也提高了后续反演模型的反演结果;以归一化差值光谱为输入的蝙蝠算法优化极限学习机反演模型预测效果显著优于其余模型,验证集R  相似文献   

8.
为了快速准确地检测油茶籽含油率、解决传统检测手段费时费力等问题,提出了一种基于高光谱成像技术的油茶籽含油率检测方法.应用光谱集I (400~1000nm)和光谱集Ⅱ(900 ~1700 nm)两组高光谱成像系统采集油茶籽的漫反射高光谱图像,并结合化学计量学方法建立油茶籽含油率的回归预测模型.结果 显示,在不经预处理的情...  相似文献   

9.
水稻的光合性能与水稻的产量和品质密切相关,传统的水稻光合性能监测由人工完成,具有任务量大和效率低等缺点,高效、无损的监测作物长势,是现代化精准农业的要求。为此,以无人机搭载高光谱仪作为遥感技术平台,对水稻的光合性能进行研究分析,建立了估算水稻叶片类胡萝卜素(Car)含量的监测模型。测试结果表明:5组光谱参数与水稻样本叶片Car含量实测值的回归分析均达到显著相关水平,以SR(723,770)精度最高;进一步检验发现,水稻叶片类胡萝卜素含量实测值与SR(723,770)模型建立的估测值相关性更高,R~2达0.891 5,斜率更接近于1,具有更佳预测效果,可为水稻光合性能遥感监测提供技术支撑。  相似文献   

10.
基于无人机高光谱影像的水稻叶片磷素含量估算   总被引:1,自引:0,他引:1  
为快速获取水稻叶片磷素含量信息,采用无人机搭载高光谱成像仪获取水稻冠层高光谱影像,并采样检测叶片磷素含量(质量分数)(Leaf phosphorus content, LPC).分析了水稻LPC在无人机高光谱影像上的光谱特征,使用连续投影算法提取对磷素敏感的特征波长,通过任意波段组合构建并筛选与磷素高度相关的光谱指数,...  相似文献   

11.
随着植保变量喷施作业机械的研究和应用,急需一种高效的病害程度识别技术。为此,针对水稻稻叶病运用拉曼光谱仪采集正常及受病害叶片的光谱特性,通过绘制折线图及受试者工作特征曲线进行水稻受病害程度分析,并运用动量因子BP神经网络优化算法,建立了寒地水稻稻叶瘟的病害程度检测模型。结果表明:优化的BP神经网络算法网络预测集的均方误差为0. 002 409 6、相关系数为0. 998 2。该方法可以较好地区分水稻正常叶片、稻叶瘟重度和轻度叶片,是一种高效的病害程度识别技术。  相似文献   

12.
杨宁  程巍  张钊源  方啸  毛罕平 《农业机械学报》2024,55(7):298-304,314
针对基于图像的稻瘟病现场检测技术依赖先验知识且受制于算力与田间网络状况,无法实现自适应实时检测的问题,提出一种可利用现场可编程门阵列(Field programmable gate array, FPGA)加速的Mask R-CNN(Mask region-based convolutional neural network)稻瘟病高通量自适应快速识别模型。首先将骨干网络改进为MobileNetV2,利用其倒残差模块降低计算量,提高模型并行处理能力;随后增加用于稻瘟病多尺度特征融合的特征金字塔网络模块,使模型具备多尺度自适应处理能力;最后由全卷积网络(Fully convolutional network,FCN)分支输出稻瘟病病斑的实例分割,同时使用交叉熵损失函数完成稻瘟病的定位与分类。稻瘟病实测数据集对模型的验证结果表明:当输入为全高清图像时,模型平均推理时间减少至85ms,相较GPU服务器、同级别GPU边缘计算平台,速度分别提高86.2%、63.0%。在交并比为0.6时,准确率可达98.0%,病斑捕获能力平均提升21.2%。提出的Mask R-CNN自适应快速识别模型能够在田间恶劣网络状况下实现稻瘟病的快速现场检测,具有更好的抗噪能力和鲁棒性能,为水稻病害实时检测、察打一体提供了高效实时的片上系统方案。  相似文献   

13.
以"北京8号"桃为研究对象,应用900~1 700nm范围内近红外高光谱成像技术对损伤发生12h后的桃进行损伤早期检测研究。通过光谱比较,确定出识别光谱区域为950~1 350nm。基于此光谱区域,利用主成分分析与独立成分分析不同方法进行降维,结合中值滤波、阈值分割等数字图像处理算法进行损伤区域的检测。对60个正常样本和60个损伤样本进行检测,主成分分析方法对损伤果的识别率为85%,独立成分分析方法对损伤果识别率为96.6%,两种方法对正常果的识别率均为100%。结果表明:近红外高光谱成像技术能有效地进行桃损伤的早期检测。  相似文献   

14.
为解决稻瘟病孢子的人工检测过程中主观性强、自动化程度低、效率低等问题,提出一种基于梯度方向直方图特征(HOG特征)的加性交叉核支持向量机(IKSVM)的稻瘟病孢子检测方法。该方法首先利用图像采集系统采集稻瘟病孢子图像,利用Gamma校正法调节图像的对比度,抑制噪声干扰;然后,提取孢子图像的HOG特征作为输入向量,输入到支持向量机中,构建加性交叉核支持向量机分类器;最后,通过训练得到稻瘟病孢子分类器。为测试所提出的HOG/IKSVM方法的综合性能,分别选用HOG/线性SVM方法与HOG/径向基核SVM(HOG/RBF-SVM)方法做对比试验。试验结果表明,HOG/IKSVM的检测率为98.2%,高于HOG/线性SVM方法的79%;在平均检测时间上,HOG/IKSVM方法的平均检测耗时仅为HOG/RBF-SVM方法的1.1%。说明该方法可以进行稻瘟病孢子室内检测识别。  相似文献   

15.
基于低秩自动编码器及高光谱图像的茶叶品种鉴别   总被引:3,自引:0,他引:3  
提出一种基于低秩自动编码器及高光谱图像技术的茶叶品种鉴别方法。应用高光谱成像系统采集5个品种的茶叶样本高光谱图像数据,利用ENVI软件确定高光谱图像的感兴趣区域(ROI),并提取茶叶样本在ROI的平均光谱作为该样本的原始光谱数据。由于高光谱信息量大、冗余性强且存在噪声,运用自动编码器和低秩矩阵恢复结合的低秩自动编码器(LR-SAE)对原始光谱数据进行降维,在自动编码器降维基础上加入去噪处理,提取鲁棒判别特征。在此基础上应用支持向量机(SVM)和Softmax分类算法对降维后的茶叶样本高光谱数据分类。通过5折交叉试验验证,LR-SAE-SVM模型的预测集准确率达到99.37%,SAE-SVM模型的预测集准确率为98.82%;LR-SAE-Softmax模型的预测集准确率达99.04%,SAE-Softmax模型的预测集准确率为97.99%。研究结果表明,相较于未进行去噪处理的传统自动编码器,LR-SAE降维之后的分类建模效果有所提升,将其应用于茶叶品种鉴别是可行、高效的。  相似文献   

16.
针对温室黄瓜早期霜霉病高光谱图像田间采集环境光照的影响及有效病害特征难以提取的问题,提出融合病害差异信息改进的竞争性自适应重加权算法(Competitive adaptive reweighted sampling, CARS)和连续投影算法(Successive projections algorithm, SPA)相结合的特征波段提取方法,并建立了黄瓜霜霉病早期检测模型。首先,采集黄瓜健康叶片和染病12d内每天的高光谱图像,按病程分为7类;提取感兴趣区域,并计算平均光谱作为光谱数据;采用包络线消除法确定霜霉病害差异波段,基于病害差异波段采用CARS对7个不同阶段的光谱数据分别提取特征波段,再利用SPA进行二次降维寻优;最后,将各特征波段组合,得到47个特征波段数据,据此建立最小二乘-支持向量机(Least square support vector machines, LSSVM)模型,用于病害检测。在94个叶片样本组成的测试集上进行了病害检测实验,结果表明,融合病害差异信息的Dis-CARS-SPA-LSSVM对染病2d到发病12d均能取得100%的检测识别率;对染病1d的测试集检测识别率达到95.83%,其中染病样本的召回率达到100%,相较于未融合病害差异信息的CARS-SPA特征提取方法识别率高4.16个百分点。说明所提出的Dis-CARS-SPA-LSSVM模型能够有效实现温室黄瓜霜霉病害的早期检测。  相似文献   

17.
针对任意放置姿态下的轻微绿皮马铃薯难以检测的问题,进行了半透射与反射高光谱成像方式的不同检测方法比较研究,最终确定较优高光谱成像方式的检测方法。分别以半透射与反射高光谱成像方式对图像维提取RGB、HSV和Lab空间颜色信息,并采用等距映射、最大方差展开、拉普拉斯特征映射进行图像信息降维;分别以半透射与反射高光谱成像方式对光谱维提取感兴趣区域的平均光谱数据,并采用局部保持投影、局部切空间排列、局部线性协调进行光谱信息降维;然后分别建立不同高光谱成像方式下的图像与光谱信息的深度信念网络模型;对识别率良好的模型采用多源信息融合技术进一步优化,并建立基于图像和光谱融合或不同成像方式融合的模型。结果表明,基于半透射和反射高光谱的光谱信息融合模型最优,校正集和测试集识别率均达到100%,可实现轻微绿皮马铃薯的无损检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号