首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The decomposition of leaves, twigs and roots of two diameter classes (<1.5 mm, 1.5–5 mm) were examined in an alley cropping experiment withGliricidia sepium, Calliandra calothyrsus andSenna sianea in the subhumid savanna of Central Togo using the litterbag technique. The effect of the application of leaves and twigs as mulch or green manure was examined. Gliricidia showed the most rapid mass loss. For all species, leaves decomposed faster than roots. Twigs had the lowest decomposition rate except forCalliandra. The two diameter classes of roots decomposed differently in the three species:Gliricidia fine roots decomposed faster than its coarser root fraction, the coarse roots ofSenna decomposed faster than the fine roots.Termites influenced the mass loss of twigs and roots to varying extents for the different species. In the case of twigs this was markedly influenced by the mode of application: green manure showed more termite frass than mulch.Nutrient release resembled the mass loss patterns of the prunings except for K, which was leached independently from mass loss. The release of the different nutrients was in the order CaGliricidia andSenna seemed to be best for mulch and green manure production at our site.  相似文献   

2.
Nutrient losses during slash-and-burn clearing in tropical forests, coupled with demand by food crops, can deplete nutrients and result in crop abandonment after 1–2 years. Slash-and-mulch technology prevents nutrient losses from burning, while mulch decomposition may serve as a nutrient source. This research investigates the release of nutrients from the mulch and potential uptake of released N by plant biomass after a multi-species agroforestry system was planted in June 2005, following the clearing of a 1 ha of 7-year-old forest with a mulching tractor in Igarapé Açu, Brazil. The study evaluated soil conditions, mulch decomposition, and nutrient concentrations of Manihot esculenta and native vegetation under treatments of P+K fertilization in combination with four native tree species and N-fixing Inga edulis, or with three native tree species without I. edulis. Mulch layer N, Ca and Mg content decreased in response to fertilization, while mulch layer P and K content increased. Nutrient content increased in M. esculenta stems and tubers with fertilization and in the presence of I. edulis, and in competing vegetation with fertilization. Estimated tree N content increased 311 % with fertilization, but by 154 % in the presence of I. edulis. Fertilization with P+K, as well as the presence of I. edulis, increased N stocks in total biomass.  相似文献   

3.
Throughout the Amazon of Brazil, manioc (Manihot esculenta) is a staple crop produced through slash-and-burn agriculture. Nutrient losses during slash-and-burn can be large and nutrient demand by food crops so great that fields are often abandoned after two years. In recent decades, farmers have reduced the fallow phase from 20 to ~5 years, limiting plant nutrient accumulation to sustain crop yields. Improved fallows through simultaneous planting of trees with food crops may accelerate nutrient re-accumulation. In addition, slash-and-mulch technology may prevent loss of nutrients due to burning and mulch decomposition may serve as a slow-release source of nutrients. This study in Pará, Brazil, in a 7-year-old secondary forest following slashing and mulching of the vegetation, involved two main plot treatments (with and without P and K fertilizers) and two sub-plot treatments (with or without a N2-fixer Inga edulis). A mixed-culture of trees and manioc was planted in all plots. P and K fertilizer increased tree mortality due to weed competition but growth of surviving trees in four of the five tree species tested also increased as did biomass production of manioc. In the N2-fixer treatment trends of greater growth and survival of four of five tree species and manioc biomass were also observed. Fertilization increased the biomass of competing vegetation, but there was a fertilizer by N2-fixer interaction as I. edulis caused a reduction in competing biomass in the fertilized treatment. After one year, fertilization increased decomposition of the mulch such that Ca, Mg, and N contents within the mulch all decreased. In contrast, P and K contents of mulch increased in all treatments. No influence of the N2-fixer on 0–10 cm soil N contents was observed. Two years after establishment, this agroforestry system succeeded in growing a manioc crop and leaving a well-maintained tree fallow after the crop harvest.  相似文献   

4.
Soil fertility restoration depends on natural fallows in the slash-and-burn system of eastern Madagascar. In the Beforona-Vohidrazana study zone, none of the fallow species are able to withstand the slashing, burning and cropping frequencies of 3–5 years. Eventually soils are abandoned for agriculture. Along the degradation sequence, this study quantifies fallow biomass, nutrient stocks and soil nutrient availability of four dominant fallow species Trema orientalis, Psiadia altissima, Rubus moluccanus, and Imperata cylindrica. At 3 years, the shrubs Psiadia and Rubus were more productive (11–14.4 t/ha aboveground biomass or AGB) than the tree species Trema (8.5 t/ha). Only after 5 years did tree productivity (24.7 t/ha) exceed that of shrubs (17–20 t/ha). Imperata’s biomass stagnated at 5.5 t/ha after 3 years. A sharp decline in fallow productivity was observed with advancing fallow cycles after deforestation. While Psiadia produced highest AGB in the second fallow cycle (C2) being 100%, C1 achieved 89% of that, C3 74%, and C4 only 29%. With the ability to propagate vegetatively and to accumulate important amounts of nutrients in roots, Rubus and Imperata, both exotic and invasive species, showed improved adaptation mechanisms towards frequent disturbances compared to the two indigenous species Trema and Psiadia. Available soil nutrients P, K, Mg were highest under forest and declined rapidly with increasing fallow cycles. Ca and pH rose momentarily in the first fallow cycle before declining with advanced soil use. Al concentrations increased steadily with time. As lengthened fallow periods are not practical, there is a need to intensify upland systems based on improved nutrient cycling, targeted inputs, fire-less land management, and land use diversification. Allowing regrading tree and bush fallows to accumulate biomass (above- and belowground carbon) will significantly improve Madagascar's greenhouse gas mitigation contribution.  相似文献   

5.
Chromolaena odorata, introduced to Laos in the 1930s, has become the most abundant weed and fallow species in slash-and-burn fields over a wide range of land use systems, elevation, and pH ranges. Regeneration from roots, high seed production and easy dispersal allow for the rapid colonization of fields in the initial fallow period. At rice harvest, after a 1-year and a 2-year fallow, the total aboverground biomass in monitoring plots was 1.4, 10, and 15.4 t ha–1, with 16, 48, and 29% contribution byC. odorata, respectively. With progressing fallow periodC. odorata is gradually replaced by tree and bamboo species. Slash-and-burn farmers preferredC. odorata over other fallow species common in their fields.Chromolaena odorata is an excellent fallow species considering its fast expansion after crop harvest, high biomass production, weed suppression, and fast decomposition rate. Some of these properties may, however, become a serious disadvantage when farmers gradually change to land use systems that integrate grazed fallow, crop rotation, and/or fruit and timber plantations.  相似文献   

6.
An experiment was carried out in a slash-and-burn production system in northern Laos to evaluate legume establishment methods and effects of legume species on fallow vegetation, weeds, yield of upland rice, and soil parameters. Cajanus cajan, Calliandra calothyrsus, Crotalaria anagyroides, Flemingia congesta, Leucaena leucocephala, and Sesbania sesban were dibbled separately or mixed with rice. Legume and planting method had no effect on rice yield. Legume establishment was slightly improved and vigor after rice harvest was higher when planted in separate hills. Compared to control (no legume), the above ground fallow biomass observed 13 months after establishment, consisting mostly of Chromolaena odorata, was reduced by 68% with C. anagyroides and by 40% with L. leucocephala, while other species had no effect. Most of the C. cajan and S. sesban plants died. In March 1995, 22 months after planting, the biomass was 0.21, 0.25, 1.62 and 2.56 kg m-2 for F. congesta, C. calothyrsus, C. anagyroides, and L. leucocephala, respectively. Legume species had no effect on rice yield or weed biomass in the rice crop. The species tested can influence fallow vegetation but do not allow for field preparation without burning. Compared to mulching, burning of residue reduced weed biomass by 42%, soil organic C by 9% and the C/N ratio by 6% but increased extractable P by 90% and pH by 8%. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Between October 1988 and August 1992, field experiments were carried out in West Kenya to evaluate the suitability of Leucaena leucocephala, L. collinsii, Gliricidia sepium, Calliandra calothyrsus, Sesbania sesban, S. grandiflora, Senna siamea and S. spectabilis to provide a range of agroforestry products and services. The initial objective was to establish the growth rates and wood and leaf yields of these tree species, when planted in single rows. After the initial evaluation, it was evident that valuable additional information could be collected if the trees were converted to hedges and their effect on intercropped maize and soils was studied. At 21 months after planting, different species and provenances ranged in height between 3.5 and 6 m and varied considerably in phenotypic appearance. Wood production (1988–1990) varied from 3 to 33.8 t ha−1 and leaf production varied from 0.62 to 10.1 t ha−1. During intercropping (1990–1992), leaf production varied from 0 to 10.9 t ha−1. Maize yields were higher in association with Leucaena and Gliricidia than with Calliandra, Sesbania and Senna. Cumulative maize grain and stover yields over four seasons were positively correlated with the total amount of tree leaves applied (r2 range, 0.70–0.95). The effect of tree leaf mulch on crop yields decreased over time for all species. Leaves with high nutrient contents, which decompose fast (Leucaena, Gliricidia, Sesbania) are likely to have been more effective in sustaining crop yields than leaves with lower nutrient contents (Senna) or more complex decomposition patterns (Calliandra). Simple “leaf input-crop output” budgets to calculate the reserves for N, P and K in different systems explained crop yield differences in some cases. Compared to the fertility status of “zero-mulch” control plots, the status of soil C, N, P, K, Ca, Mg and S was to varying degrees improved under Leucaena, Gliricidia and Sesbania, much less under Calliandra but not under Senna. First season grain yields were related to the soil fertility status at the end of the tree fallow. The results of these experiments suggest that under subhumid tropical conditions with soils of relatively poor nutrient status, where light and water are not likely to be the major limiting factors to crop production, the application of sufficient quantities of high quality tree mulch may positively influence maize yields. When agroforestry tree species with contrasting decomposition and nutrient release patterns are evaluated jointly, it is more difficult to demonstrate a general relationship between quantities of mulch applied and improvements in crop yields and soil fertility levels. Therefore, further chemical, physiological and phenotypic characterization of free species with potential for fallow and intercropping systems is required.  相似文献   

8.
Short-term improved fallow technology, which is characterised by deliberate planting of fast growing N2 fixing legumes species in rotation with crops is currently being promoted for soil fertility replenishment in the small holder farms in the tropics. Recent research and extension efforts on this technology have mainly focused on a narrow range of species. There is a need to evaluate more alternative species in order to diversify the options available to farmers and hence reduce the risks of over dependence on fewer species. We evaluated twenty-two shrubby and herbaceous species for their site adaptability, biomass and nutrient accumulation, biomass quality and maize yield response to soil incorporated plant biomass after the fallow (six and twelve months) in three different field experiments on a Kandiudalfic Eutrudox in western Kenya. Species which yielded large amounts ofthe most biomass N adequate for two to three maize crops were Sesbania sesban, Tephrosia vogelii, Tephrosia candida, Crotalaria grahamiana, Dodonea viscosa, Colopogonium mucunoides, Desmondium uncinatum, Glycine wightii and Macroptilium atropurpureum. Most fallow species tested recycled <22 kg P ha–1 in plant biomass. Significant amounts of K were recycled through plant biomass of Sesbania sesban, Tithonia diversifolia, Tephrosia candida, Crotalaria grahamiana, Dodonea viscosa, Colopogonium mucunoides, Desmondium uncinatum, Glycine wightii, Macroptilium atropurpureum and natural weed fallows. Recyclable K in plant biomass ranged between 4 and 188 kg ha–1Two methods of establishing S. sesban and T. vogelii fallows did not result in significant differences in biomass and nutrient yields at the end of the fallow period. Shrubby species gave Hhigh lignin (>10%) and polyphenol (>2%) concentrations. were found only in the shrubby species, and the (Ppolyphenol + lignin ): N ratio varied widely (0.3–5) amongst the species. evaluated. Maize yield increased by two-fold in the first season following the fallow phase compared with continuous maize for most species. Results suggest that there are a wide variety of legumes that could be used for use in improved fallow technologies aimed at ameliorating nutrient degraded soils and subsequently enhancing crop yields.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

9.
Microarthropods, such as soil mites (Acari) and springtails (Collembola), with body width between 0.08 mm and 0.5 mm play important roles in soil fertility maintenance through their regulatory activities in decomposition and nutrient turnover. Observations were made at IITA, Ibadan, southwestern Nigeria to evaluate the effects of natural regrowth of vegetation — mainly the shrub Chromolaena odorata — and three planted woody fallow species (Acacia leptocarpa, Senna siamea, and Leucaena leucocephala) on soil microarthropods in a degraded Alfisol. Populations of soil microarthropods were higher in the rainy season than the dry season, and populations were greater under natural fallow than for continuous cropping with maize (Zea mays) and cassava (Manihot esculenta). Populations of soil microarthropods were comparable under leucaena and natural fallow, but populations in the rainy season were 38% higher under senna than natural fallow and 36% higher under acacia than natural fallow. Regression analysis indicated that soil microarthropod population under fallow species was positively correlated with the lignin contents of leaf litter.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

10.
A major constrait to alley cropping is the competition of tree or shrub roots with those of companion food crops for available water and nutrients in the topsoil. Root distribution patterns of Acioa barteri, Alchornea cordifolia, Cassia siamea and Gmelina arborea grown on an acid Ultisol at Onne in the humid forest zone of southeastern Nigeria were examined to a depth of 120 cm and laterally to 200 cm from the tree trunk to study the suitability of the species for alley cropping. The four woody species have roots throughout the soil profile examined but differ in the concentration of roots both laterally and vertically. Alchornea cordifolia, Cassia siamea and Gmelina arborea, in spite of higher underground biomass production, most of their fine roots (<2 mm diameter) were in the top 20 cm of the soil. This soil layer had 73%, 76%, and 74% of the total Alchornea cordifolia, Cassia siamea, and Gmelina arborea fine roots in the profile examined, respectively. Such root systems would compete with food crops for nutrients and moisture in the surface soil. Alchornea cordifolia and Gmelina arborea have many large woody roots in the surface soil which will make any tillage operation or seedbed preparation difficult. Acioa barteri in contrast, has the desirable rooting system with fewer fine roots in the surface soil (49%), and roots that are concentrated close to tree trunk and decrease markedly away from the tree base. In addition, Acioa barteri roots penetrate deeper soil horizons and can result in more efficient nutrient cycling from these layers, and reduced competition with shallow-rooted food crops. The rooting distribution patterns of Acioa barteri indicated that the species is a promising alley shrub in acid soils of the humid forest ecology. Therefore, consideration of rooting characteristics of potential tree/shrub species is recommended for the development of agroforestry systems such as alley cropping.IITA Journal Paper No: 91:/JA/24.  相似文献   

11.
Red wood ants (Formica rufa group, RWAs) are common insects in boreal forests in Fennoscandia, and they build large, long-lived mounds as their nests. RWA mounds are enriched with carbon and nutrients, but little information is available about how they affect root distribution and the nutrient uptake of trees. In this study, we investigated the biomass, biomass density, nutrient concentrations, and amounts of fine (<2 mm) and coarse (>2 mm) roots in RWA mounds, and compared them with those of surrounding forest soil in mixed coniferous stands of different age classes in Finland. Neither fine nor coarse root biomasses differed significantly between the aboveground parts of the mounds and the organic layer of the soil. Root biomass density was lower in mounds than in the organic layer. However, fine root biomass and biomass density were higher in the belowground parts of mounds than in the surrounding mineral soil. Macroelement (N, Ca, K, P, S, Mg) and Zn and Cu concentrations in roots in the mounds were significantly higher than those in the organic layer. Root biomass and biomass density did not differ between stands of different age classes. The results of this study indicate that RWA mounds increase heterogeneity in root distribution in forest ecosystems, and also increase the availability of nutrients for plants that extend their roots inside RWA mounds.  相似文献   

12.
A closely spaced (1 x 1 m) cottonwood (Populus deltoides Bartr.) plantation was established to evaluate the effects of nutrient availability on fine root dynamics. Slow-release fertilizer (17:6:12 N,P,K plus micronutrients) was applied to 225-m(2) plots at 0, 50, 100 and 200 kg N ha(-1), and plots were monitored for two growing seasons. Fine root production, mortality, live root standing crop and life span were analyzed based on monthly minirhizotron observations. Fine root biomass was measured in soil cores. Fine root dynamics were controlled more by temporal, depth and root diameter factors than by fertilization. Cumulative fine root production and mortality showed strong seasonal patterns; production was greatest in the middle of the growing season and mortality was greatest after the growing season. Small diameter roots at shallow soil depths cycled more rapidly than larger or deeper roots. The strongest treatment effects were found in the most rapidly cycling roots. The standing crop of live roots increased with fertilizer treatment according to both minirhizotron and soil coring methods. However, production and mortality had unique treatment response patterns. Although cumulative mortality decreased in response to increased fertilization, cumulative production was intermediate at 0 kg N ha(-1), lowest with 50 kg N ha (-1), and highest with 200 kg N ha(-1). Aboveground growth responded positively to fertilization up to an application rate of 50 kg N ha(-1), but no further increases in growth were observed despite a threefold increase in application rate. Median fine root life span varied from 307 to over 700 days and increased with depth, diameter and nutrient availability.  相似文献   

13.
Ecosystem fertility and fallow function in the humid and subhumid tropics   总被引:10,自引:4,他引:6  
The regeneration of natural vegetation (fallowing) is a traditional practice for restoring fertility of agricultural land in many parts in the tropics. As a result of increasing human population and insufficient fertilizer inputs, the ecosystem fertility functions of traditional fallows must now be improved upon via the use of managed fallows. Interactions between vegetation and soil determine nutrient losses and gains in crop—fallow systems and are influenced by fallow species, patterns and rates of biomass allocation, and crop and fallow management. Nutrient losses occur through offtake in crop harvests during the cropping phase and through leaching, runoff, and erosion in the cropping phase and the initial stage of fallows $#x2014; when nutrient availability exceeds nutrient demand by vegetation. Gains in nutrient stocks in later stages of fallow are generally more rapid on soils with high than low base status due to greater quantities of weatherable minerals and lack of constraints to N2 fixation, deep rooting, and retrieval of subsoil nutrients by fallow vegetation. On low base status soils (exchangeable Ca < 1 cmolc kg–1), N2 fixation and atmospheric inputs are likely to be the main sources of nutrient additions. On high base status soils limited by N, gains in N stocks by inputs from N2 fixation and retrieval of subsoil nitrate can occur relatively rapidly; hence short-term fallows can often improve crop performance. Large losses of Ca associated with soil organic matter (SOM) mineralization and soil acidification during cropping and fallow establishment, combined with chemical barriers to root penetration, suggest that long-duration fallows (> 5 yr) are needed for recovery of cation stocks and crop performance on low base status soils. On both soils, however, residual benefits of fallows on crop yields usually last less than three crops.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

14.
Contour hedgerows of multipurpose tree species in the sloping tea lands of Sri Lanka are expected to reduce soil erosion and also add significant amounts of plant nutrients to the soil via periodic prunings. The objective of this experiment was to characterize the biomass decomposition pattern and quantify the amount of nutrients added through prunings of six tree species (Calliandra calothyrsus, Senna spectabilis, Euphatorium innulifolium, Flemingia congesta, Gliricidia sepium and Tithonia diversifolia) currently being used in hedgerows associated with tea. Withered leaf and stem prunings (50 g) were enclosed in 2-mm litter bags, placed at 5-cm depth and retrieved after one, three, six, nine and 12 weeks. Loss of initial dry weight, N, P and K was measured. Single exponential decay function adequately described both dry weight and nutrient loss. Tree species differed significantly in their rate of breakdown with decomposition constants (k) varying from 0.0299 to 0.2006 week−1 for leaves and from 0.0225 to 0.0633 week−1 for stems. Gliricidia showed the highest k for leaves with the rest in the following descending order: Senna > TithoniaEuphatorium > Calliandra > Flemingia. A similar pattern was observed for loss of all nutrients with Calliandra and Flemingia always having lower k values than the rest. Although N immobilization was not observed, immobilization of P and K was observed during the first week of incubation in some species, particularly in stem prunings. Annual biomass of prunings differed significantly between tree species in the following descending order: Calliandra > Senna > Flemingia > Tithonia > Gliricidia > Euphatorium. Calliandra added the greatest amount of nutrients annually to the soil with Euphatorium adding the least. Calliandra prunings provided the annual total K requirement and 49% of the N requirement of mature tea. However, none of the species provided more than 5% of the P requirement. It is concluded that among the tree species tested, Calliandra and Flemingia are the most suitable for contour hedgerows in tea plantations of this agroclimatic region because of their higher soil nutrient enrichment capacity and slower decomposition rates which would minimize leaching losses. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
The selection and use of appropriate plant materials to maintain a sufficiently high nutrient supply to meet crop needs remains a major challenge of nutrient management under low input systems. Therefore, research on plant biomass quality as it relates to decomposition and nutrient release has become imperative. This research was conducted at the Agroforestry Research Station of the Kwame Nkrumah University of Science and Technology, Kumasi, Ghana to determine the decomposition and nutrient release patterns of Tithonia diversifolia, a rarely used non-traditional species but of research interest in soil fertility improvement practices in Ghana. The decomposition and nutrient release patterns of T. diversifolia was compared with Senna spectabilis, Gliricidia sepium, Leucaena leucocephala and Acacia auriculiformis which are commonly used in biomass transfer systems. Results of the study confirmed significantly high N, P, K concentrations in T. diversifolia comparable to levels recorded for the four leguminous species. In addition, T. diversifolia recorded the highest percent decomposition and nutrient release rates which differed significantly (P < 0.05) from rates of the four leguminous species. It was apparent from the study that decomposition and nutrient release rates of species are related to quality of leaf material. Phosphorus and Mg concentration in particular were most influential in decomposition and nutrient release based on significant results. For this reason, it would be imperative to consider the concentrations of P and Mg among other factors in selecting high quality plant materials for green manuring.  相似文献   

16.
Striga hermonthica (striga) weed is a major threat to crop production in sub-Saharan Africa, and short duration improved fallow species have recently been found to reduce the effects of this weed because of their ability to replenish soil nitrogen. The objective of this study was to compare the efficacy and profitability of coppicing improved fallow species (Gliricidia sepium [gliricidia], Leucaena trichandra [leucaena] and Calliandra calothyrsus [calliandra]) and non-coppicing species (Sesbania sesban [sesbania], Mucuna pruriens [mucuna], and Tephrosia vogelii [tephrosia]), in controlling striga. Natural fallow and a sole maize crop were included as control treatments. The fallow treatments were split into two and either fertilized with N or unfertilized. The results showed that coppicing fallows produced higher biomass than non-coppicing fallows. For example, Callindra (coppicing fallow species) produced 19.5 and 41.4 Mg ha−1 of leafy and woody biomass, respectively after four cumulative harvests as compared with Sesbania (non-coppicing species), which produced only 2.3 and 5.9 Mg ha−1 leaf and woody biomass, respectively. Improved fallows reduced striga population in proportion to the amount of leafy biomass incorporated into the soil (r = 0.87). N application increased cumulative maize yield by between 15–28% in improved fallow systems and by as much as 51–83% in the control treatments. Added total costs of the coppicing fallows did not differ significantly from those of the non-coppicing fallows and control treatments. However, the added net benefits of the coppicing fallows were significantly higher (US$ 527 for +N and 428 for −N subplots; P < 0.01) than those of the non-coppicing fallows (US$ 374 for +N and 278 for −N), and the least for the control treatments. The most profitable fallow system was Tephrosia with net added benefits of US$ 453.5 ha−1 season−1 without N, and US$ 586.7 ha−1 season−1 with added N.  相似文献   

17.
Planted fallow systems under ‘slash and mulch’ management were compared with natural fallow systems at two farms (BM1 and BM2) in the Colombian Andes. The BM1 site was relatively more fertile than the BM2 site. Planted fallow systems evaluated included Calliandra calothyrsus CIAT 20400 (CAL), Indigofera constricta (IND) or Tithonia diversifola (TTH). During each pruning event slashed biomass was weighed, surface-applied to the soil on the same plot and sub-samples taken for chemical analyses. While Indigofera trees consistently showed significantly greater (p < 0.05) plant height and collar diameter than Calliandra trees at both study sites, only collar diameter in Indigofera was significantly affected at all sampling times by differences between BM1 and BM2. After 27 months, TTH presented the greatest cumulative dry weight biomass (37 t ha–1) and nutrient accumulation in biomass (417.5 kg N ha–1, 85.3 kg P ha–1, 928 kg K ha–1, 299 kg Ca ha–1 and 127.6 kg Mg ha–1) among planted fallow systems studied at BM1. Leaf biomass was significantly greater (P < 0.05) for CAL than IND irrespective of site. However, CAL and IND biomass from other plant parts studied and nutrient accumulation were generally similar at BM1 and BM2. At both sites, NAT consistently presented the lowest biomass production and nutrient accumulation among fallow systems. Planted fallows using Calliandra and Indigofera trees had the additional benefit of producing considerable quantities of firewood for household use. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
In the study reported here we examined the short-term effects (1–3 years) of slash retention (SR) and the long-term effects (13–15 years) of wood-ash application (A) on fine roots and mycorrhizae in a 40-year-old Norway spruce forest in southwest Sweden. Soil cores were used to obtain estimates of the biomass (g m−2) of roots in three diameter classes (<0.5, 0.5–1 and 1–2 mm), root length density (RLD), specific root length (SRL) and mycorrhizal root tip density (RTD). Fine root (<1 mm) length production and mortality, and mycelium production, were estimated using minirhizotron and mesh bag techniques, respectively. Compared with the control plots (C), the biomass of fine roots in diameter classes <0.5 mm and 0.5–1 mm was significantly higher in A plots, but lower in SR plots. In addition, RLD was significantly lower in the humus layer of SR plots than in the humus layers of C and A plots, but not in the other layers. None of the treatments affected the SRL. In all soil layers, the SR treatment resulted in significant reductions in the number of ectomycorrhizal root tips, and the mycelia production of fungi in mesh bags, relative to the C treatment, but the C and A treatments induced no significant changes in these variables. Fine root length production in the C, A and SR plots amounted to 94, 87 and 70 mm tube−1 during the 2003 growing season, respectively. Fine root mortality in treated plots did not change over the course of the study. We suggest that leaving logging residues on fertile sites may result in nitrogen mineralisation, which may in turn induce reductions in root biomass, and both root and mycelium production, and consequently affect nutrient uptake and the accumulation of organic carbon in soil derived from roots and mycorrhizae.  相似文献   

19.
We hypothesized that tree-based intercropping in southwestern Québec, Canada, would stimulate soil microbial activity and increase soil nutrient supply, thereby benefiting the growth of trees. Our experimental design comprised alternating rows of hybrid poplar (Populus nigra L. × P. maximowiczii A. Henry) and high-value hardwood species spaced 8 m apart, between which two alley treatments were applied 5–6 years after planting the trees. The first alley treatment consisted of a fertilized soybean (Glycine max (L.) Merr.) intercrop grown over two consecutive years, while the second consisted of repeatedly harrowing to minimize vegetation in the alley. Tree rows were mulched with a 1.5 m wide polythene mulch. Microbial respiration and biomass, and mineral N concentrations and mineralization rates were measured on five or six dates at 0, 2 and 5 m from hybrid poplar rows. On some of the sampling dates, we found significantly higher soil microbial biomass, mineral N concentrations and nitrification rates, and a significantly lower microbial metabolic quotient (qCO2), in the soybean intercropping than in the harrowing treatment. Over the 2 year period, hybrid poplar biomass increment and N response efficiency (NRE) were significantly higher (51 and 47%, respectively) in the intercropping than in the harrowing treatment. Microbial biomass and mineral N supply were significantly lower beneath the polyethylene mulch than in the alleys, and we posit that this may stimulate the growth of tree roots into the alley. We conclude that soybean intercropping improves nutrient turnover and supply for hybrid poplar trees, thereby increasing the land equivalent ratio (LER).  相似文献   

20.
Fine roots play an important role in above- and belowground carbon (C) allocation in forest ecosystems. However, few studies have focused on the seasonal dynamics of fine roots with different branching orders. The objective of this study is to provide insight to the seasonal heterogeneity in roots of different orders within root hierarchies of poplar trees under different soil conditions. Three plots were established in high (plantation A) and low (plantation B) soil nutrient conditions. Fine roots were sampled in each of four seasons throughout one year. All sampled roots were classified into one to five groups depending on their branching order, and the dry biomass of living roots and the concentrations of C, nitrogen (N) and total non-structural carbohydrate (TNC) were examined. Low order (first- to second-order) roots demonstrated more significant seasonal dynamics than high order roots, and the biomass of first-order fine roots was positively influenced by soil temperature and moisture while the biomass of second-order fine roots was negatively affected by soil nutrient conditions. The different responses of fine roots to environmental fluctuations implied a high division of root function, even within low order roots. The C and N chemistry of poplar fine roots also differed significantly with branching order; element concentrations were lower in low order roots. Principal component analysis indicated that root order explained 98.2% of the variation in fine root chemistry. Moreover, the first-order roots in plantation A had greater C but less TNC concentrations than those in plantation B, suggesting that C allocation in low order roots may be more responsive to soil nutrient conditions. The allocation of C and N also exhibited significant seasonal dynamics (p < 0.05); the TNC concentration was highest in winter, whereas C:N ratios were significantly lower in the summer and fall in each order of fine roots (p < 0.05). All these results suggest that branching order may be related to root growth and photoassimilate allocation, which should receive greater attention in future studies on C and N fluxes in forest ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号