首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Unfertilized oocytes are one of the most desired germ cell stages for cryopreservation because these cryopreserved oocytes can be used for assisted reproductive technologies, including in vitro fertilization (IVF) and intracytoplasmic sperm injection. However, in general, the fertility and developmental ability of cryopreserved oocytes are still low. The aim of the present study was to improve vitrification of mouse oocytes. First, the effects of calcium and cryoprotectants, dimethyl sulfoxide and ethylene glycol (EG), in vitrification medium on survival and developmental ability of vitrified oocytes were evaluated. Oocytes were vitrified by a minimal volume cooling procedure using different cryoprotectants. Most of the vitrified oocytes were morphologically normal after warming, but their fertility and development were low independently of calcium and cryoprotectants. Second, the effect of cumulus cells on ability of oocytes to be fertilized and develop in vitro was examined. The fertility and developmental ability of denuded oocytes (DOs) after IVF were reduced compared with cumulus-oocyte complexes (COCs) both in fresh and cryopreserved groups. Vitrified COCs showed significantly (P<0.05) higher fertility and ability to develop to the 2-cell and blastocyst stages than those of vitrified DOs with cumulus cells and vitrified DOs alone. The vitrified COCs developed to term at a high success rate equivalent to the rate obtained with IVF using fresh COCs. Taken together, the current results clearly demonstrate that, in the presence of surrounding cumulus cells, matured mouse oocytes vitrified using calcium-free media and EG retain their developmental competence. These findings will contribute to improve oocyte vitrification in not only experimental animals but also clinical application for human infertility.  相似文献   

2.
Although cryopreservation of mammalian oocytes is an important technology, it is well known that unfertilized oocytes, especially in pigs, are highly sensitive to low temperature and that cryopreserved oocytes show low fertility and developmental ability. The aim of the present study was to clarify why porcine in vitro matured (IVM) oocytes at the metaphase II (MII) stage showed low fertility and developmental ability after vitrification. In vitro matured cumulus oocyte complexes (COCs) were vitrified with Cryotop and then evaluated for fertility through in vitro fertilization (IVF). Although sperm‐penetrated oocytes were observed to some extent (30–40%), the rate of pronuclear formation was low (9%) and none of them progressed to the two‐cell stage. The results suggest that activation ability of cryopreserved oocytes was decreased by vitrification. We examined the localization and expression level of the type 1 inositol 1,4,5 trisphosphate receptor (IP3R1), the channel responsible for Ca2+ release during IVF in porcine oocytes. Localization of IP3R1 close to the plasma membrane and total expression level of IP3R1 protein were both decreased by vitrification. In conclusion, our present study indicates that vitrified‐warmed porcine COCs showed a high survival rate but low fertility after IVF. This low fertility seems to be due to the decrease in IP3R1 by the vitrification procedure.  相似文献   

3.
In spite of many attempts to establish an in vitro fertilization (IVF) technique in the equine, no efficient conventional IVF technique is available. The presence of oviductal fluid or oviductal cells during IVF helps to improve embryo production in vitro but is not sufficient to reach high fertilization rates. Thus, our aim was to perform equine IVF either after sperm pre‐incubation with oviductal fluid or in the presence of oviductal cells, and to evaluate the effect of cumulus removal from the oocyte or sperm pre‐incubation with progesterone. In experiments 1 and 2, IVF was performed in the presence of porcine oviduct epithelial cells. The removal of cumulus cells from equine oocytes after in vitro maturation tended to increase the percentage of fertilization when fresh sperm was used (1/33 vs. 4/31, p > 0.05) but had no effect when frozen sperm was used (1/32 vs. 1/32). Equine sperm pre‐incubation with progesterone did not significantly influence the fertilization rate when fresh or frozen sperm was used (2/14 vs. 2/18 for fresh, 1/29 vs. 1/25 for frozen). In experiments 3 and 4, IVF was performed after pre‐incubation of sperm with porcine oviductal fluid. The removal of cumulus cells tended to increase the percentage of fertilization when fresh sperm was used (1/24 vs. 3/26, p > 0.05). Sperm pre‐incubation with progesterone did not significantly influence the fertilization rate when fresh or frozen sperm was used (2/39 vs. 2/36 for fresh, 2/37 vs. 1/46 for frozen), but two 3–4 cell stage zygotes were obtained with fresh sperm pre‐incubated with progesterone. This is an encouraging result for the setting up of an efficient IVF procedure in equine.  相似文献   

4.
This study was undertaken to compare cryotolerance, in terms of viability and resumption of meiosis after warming and culture (24 and 48 h), of ex situ (isolated) and in situ (enclosed in the ovarian tissue) feline cumulus–oocyte complexes (COCs) vitrified with DAP 213 (2 m DMSO, 1 m acetamide, 3 m propylene glycol) in cryotubes or Cryotop method. Ovaries were harvested from 49 pubertal queens. Of each pair of ovaries, one was dissected to release COCs randomly divided into three groups: fresh COCs (control), ex situ COCs vitrified with DAP 213 and Cryotop. The cortex of the other ovary was sectioned into small fragments (approximately 1.5 mm3) and randomly assigned to be vitrified by DAP 213 or Cryotop. After warming, ex situ and in situ (retrieved form vitrified ovarian tissue) COCs were matured in vitro. Viability of oocytes was highly preserved after warming and culture in all treatments. Proportions of oocytes surrounded by complete layers of viable cumulus cells were remarkably decreased (p < 0.00001) in both vitrification procedures compared to fresh oocytes. Resumption of meiosis occurred in all treatments. After 24 h of culture, results were similar in ex situ and in situ vitrified oocytes regardless of the vitrification protocol used (range 29–40%), albeit lower (p < 0.05) than those of fresh oocytes (65.8%). After 48 h of culture, ex situ oocytes vitrified with Cryotop achieved the rates of meiosis resumption similar to fresh oocytes (53.8% vs 67.5%; p > 0.05) and ex situ and in situ oocytes vitrified with DAP 213 showed similar rates of resumption of meiosis. These findings demonstrated that DAP 213 and Cryotop preserve the viability of ex situ and in situ oocytes, but cumulus cells are highly susceptible to vitrification. However, the capability to resume meiosis evidences that feline immature oocytes vitrified as isolated or enclosed in the ovarian cortex have comparable cryotolerance.  相似文献   

5.
Seasonally, bred wild mice provide a unique bioresource, with high genetic diversity that differs from wild‐derived mice and laboratory mice. This study aimed to establish an alternative superovulation method using wild large Japanese field mice (Apodemus speciosus) as the model species. Specifically, we investigated how the application of inhibin antiserum and equine chorionic gonadotropin (IASe) during both the reproductive and non‐reproductive seasons impact the ovulation rate and competence of embryo development after in vitro fertilization (IVF) with fresh and cryopreserved sperm. When the wild mice were superovulated by injecting eCG followed by human chorionic gonadotropin (hCG), few oocytes were collected during the reproductive and non‐reproductive seasons. In comparison, the number of ovulated oocytes was dramatically enhanced by the administration of IASe, followed by isolation of ovulated oocytes 24 hr after 30 IU hCG administration. The IVF oocytes that were in vitro cultured (IVC) with medium containing serum further developed to the 2‐ and/or 4‐cell stage using both fresh and frozen‐thawed sperm. In conclusion, we successfully established an alternative protocol for collecting ovulated oocytes from wild large Japanese field mice by administering IASe and hCG during both the reproductive and non‐reproductive seasons. This study is the first to develop IVF–IVC wild large Japanese field mice beyond the 2‐ and/or 4‐cell stage in vitro using fresh and cryopreserved sperm. This approach could be used in other species of wild or endangered mice to reduce the number of animals used for experiments, or in maintaining stocks of germ cells or embryos.  相似文献   

6.
Frozen‐thawed semen from six bulls with high (> 60%) and low (20–35%) in vitro fertility was used for studying the predictive value of simple sperm quality tests with respect to in vitro fertilization (IVF) outcome as assessed by pronucleus (PN) formation ability. Sperm quality parameters, such as sperm concentration, motility, progressive motility, live‐dead sperm ratio, morphology, membrane integrity, mitochondrial activity and acrosomal status were analysed using both conventional and automatic techniques at three time points during the IVF process, namely after sperm thawing, Percoll differential gradient centrifugation and IVF. Associations between the sperm quality parameters before and after IVF, and PN formation ability were assessed by using linear regression analyses. The percentages of motility, progressive motility and normal morphology determined after sperm thawing, and the percentage of live spermatozoa assessed after Percoll preparation by using nigrosin‐eosin (N‐E) staining showed a good correlation with PN formation ability, but the regression parameters were borderline not significant. These parameters formed the most reliable basis for predicting IVF outcome. After IVF, the percentage of live spermatozoa determined by using N‐E staining was the only sperm quality parameter showing a significant association with the PN formation ability of a given bull. This sperm quality test can be used as a non‐invasive method to estimate the PN formation ability of oocytes which are further cultured to assess embryonic development.  相似文献   

7.
Effect of sperm concentrations and cumulus cells (CCs) on porcine IVF was re‐evaluated using current improved IVM and IVC system. Our results showed that both CCs and sperm concentration had significant effect on penetration rate, frequency of polyspermy and embryonic development. The best IVF results were obtained with oocytes with CCs fertilized with 0.5 × 105 sperm/ml. Such an IVP system works on both sow and gilt oocytes.  相似文献   

8.
Hyaluronidase is generally used to remove cumulus cells from mouse oocytes before oocyte cryopreservation, intracytoplasmic sperm injection or DNA injection. In general, use of cumulus-free mouse oocytes decreases in vitro fertilizing ability compared with cumulus-surrounded oocytes. The effect of hyaluronidase exposure on the quality of mouse oocytes is not fully understood. Here, we investigated the effect of hyaluronidase exposure time on the fertilization rate of fresh and vitrified mouse oocytes and their subsequent developmental ability in vitro. We found that the fertilization rate decreased with hyaluronidase treatments. This reduction in the fertilization rate following treatment with hyaluronidase was fully reversed by removal of the zona pellucida. In addition, oocytes treated with hyaluronidase for 5 min or longer had a reduced capacity to develop to the morula and blastocyst stage. The survival, fertilization, and developmental rates of vitrified-warmed oocytes were also reduced by longer exposure to hyaluronidase. In conclusion, these results suggest that prolonged exposure to hyaluronidase decreases the quality of mouse oocytes and shorter hyaluronidase treatment times may help achieve a stable and high fertilization rate in fresh and cryopreserved oocytes.  相似文献   

9.
The objective of this study was to investigate the effects of beta‐mercaptoethanol (β‐ME) on post‐thaw embryo developmental competence and implantation rate of mouse pronuclear (PN) embryos that were cryopreserved after slow freezing, solid surface vitrification (SSV) or open‐pulled straw (OPS) vitrification methods. Mouse PN embryos were cryopreserved by using slow freezing, SSV and OPS methods. After cryopreservation, freeze–thawed PN embryos were cultured up to blastocyst stage in a defined medium supplemented without or with 50 μm β‐ME. The blastocyst formation rate of embryos that were cryopreserved by slow freezing method (40.0%) or vitrified by OPS method (18.3%) were lower than those vitrified by SSV method (55.6%) and fresh embryos (61.9%) in the absence of 50 β‐ME in the culture media (p < 0.05). The blastocyst formation rate of embryos that were cryopreserved by slow freezing method (53.1%) or by OPS method (41.9%) were lower than those vitrified by SSV method (79.5%) and that of fresh (85.7%) in the presence of β‐ME in the culture media (p < 0.05). The embryos transfer results revealed that the implantation rate of blastocyst derived from mouse PN embryos vitrified by SSV method (31.9% vs 51.2%) was similar to that of the control (39.0% vs 52.5%), but higher than those cryopreserved by slow freezing (28.2% vs 52.0%) and by OPS method (0.0% vs 51.2%) (p < 0.05). In conclusion, supplementation of β‐ME in an in vitro culture medium was shown to increase survival of embryo development and implantation rate of frozen–thawed mouse PN embryos after different cryopreservation protocols.  相似文献   

10.
The quality of porcine blastocysts produced in vitro is poor in comparison with those that develop in vivo. We examined the quality of in vitro‐matured and fertilized (IVM/IVF) oocytes, their abilities to develop to blastocysts under in vivo and in vitro conditions, and the potential of the embryos to develop to term after transfer. IVM/IVF oocytes were either transferred and the embryos recovered on Days 5 and 6 (100% and 87.5%, respectively) (‘ET‐vivo’ embryos), or cultured in vitro for 5 or 6 days (‘IVC’ embryos). The proportion of blastocysts differed significantly between the two groups on Day 5 (20.6% and 8.0%, respectively), but not on Day 6 (23.8% and 21.2%, respectively). The mean number of cells in ET‐vivo blastocysts on Days 5 or 6 was significantly higher (72.8 and 78.7, respectively) than that in IVC blastocysts (22.1 and 39.7, respectively). When IVM/IVF oocytes and IVC blastocysts on Day 6 were transferred, all (three and three, respectively) developed to piglets (16 and 16, respectively), without any difference in the rates of development to term (2.1% and 2.6%, respectively). These data suggest that, although blastocyst production differs between the two culture conditions, IVM/IVF oocytes possess the same ability to develop to term.  相似文献   

11.
Vitrification has been the method of choice for the cryopreservation of bovine oocytes, as rapid cooling decreases chilling sensitivity. The aim of this study was to determine the in vitro and in vivo survival and the viability of immature oocytes vitrified using super‐cooled liquid nitrogen. Immature oocytes were randomly allocated to three groups: (i) non‐vitrified control group, (ii) vitrified in normal (?196°C) liquid nitrogen (LN2) and (iii) vitrified in super‐cooled LN2 (≤?200°C). Open‐pulled glass micropipettes were used as vitrification containers. Immature oocytes were in vitro‐matured, fertilized and cultured to the blastocyst stage. In vitro viability was assessed by cleavage and blastocyst rates on days 2 and 7 of culture respectively. Vitrified blastocysts derived from the immature vitrified oocytes were directly transferred to synchronous recipients. The in vitro embryo development of vitrified immature oocytes was not influenced by the LN2 state. After direct transfer (one embryo per recipient) of 16 embryos obtained from immature vitrified oocytes (eight from each vitrified group), two healthy calves were born in each group. These results indicated that vitrification of immature bovine oocytes using glass micropipettes under normal or super‐cooled LN2, resulted in viable blastocysts and live calves following in vitro embryo production.  相似文献   

12.
A limited number of reports is available on cryopreservation of in vitro fertilization (IVF)‐derived cat blastocysts. In the present study, IVF‐derived domestic cat embryos which reached the blastocyst stage either on day 6 or day 7 were cryopreserved by vitrification using Cryotop as a cryodevice. Fresh control and post‐warm surviving blastocysts were examined by differential cell staining with Hoechst 33342 and propidium iodide to determine total cell number and inner cell mass (ICM) ratio, and the post‐warm survival rate was determined by re‐expansion of the blastocoel during 24 h of in vitro culture. In fresh control, the mean number of total cells of day 7 blastocysts (61.4 cells) tended to be smaller than that of day 6 blastocysts (81.9 cells, p = 0.096). The post‐warm survival rates of day 6 and day 7 blastocysts were not statistically different (73.8%; 31 of 42 vs 66.7%; 18 of 27). There were no significant differences in the total cell number and ICM ratio between fresh control and vitrified blastocysts, although the ICM ratio of surviving day 7 blastocysts was significantly smaller than that of fresh controls (stained at day 8, 18.9% vs 28.9%, p < 0.05). These results indicate that IVF‐derived domestic cat embryos that reached the blastocyst stage earlier can survive the Cryotop vitrification without a reduction in the parameters studied.  相似文献   

13.
Epigallocatechin gallate (EGCG) is the major polyphenol in green tea (Camellia sinensis) and is known for its antioxidant effects. The objective of the present study was to examine the effects of EGCG during in vitro fertilization (IVF) on the sperm quality and penetrability into oocytes. In the first experiment, the effects of concentration and incubation period of EGCG on the motility and penetrability of spermatozoa were examined. When frozen–thawed spermatozoa were incubated in IVF medium supplemented with 0 (control), 1, 50 and 100 μm EGCG for 1, 3 and 5 h, supplementation with 50 and 100 μm EGCG improved motility of the spermatozoa (p < 0.05), but not viability, as compared with the control group. When frozen–thawed spermatozoa were co‐incubated with in vitro‐matured (IVM) oocytes in IVF medium supplemented with 50 and 100 μm EGCG for 5 h, supplementation of EGCG had positive effects on sperm penetration rates. In the second experiment, the effects of supplementation of EGCG in IVF medium on penetrability of sperm from different boars and development of fertilized oocytes were evaluated. When frozen–thawed spermatozoa from six boars were co‐incubated with IVM oocytes in IVF medium supplemented with 50 μm EGCG, the effect of EGCG on sperm penetration and development of oocytes after fertilization was found to vary with individual boar. Our results indicate that motility and penetrability of boar spermatozoa are improved by co‐incubation with 50 μm EGCG, but the effects vary with individual boars.  相似文献   

14.
The aim of the present study was to compare the efficiency of the solid surface (SSV), cryotop (CT) vitrification methods and cytochalasin B (CB) pretreatment for cryopreservation of immature buffalo oocytes. Cumulus‐oocyte complexes (COCs) were placed for 1 min in TCM199 containing 10% dimethylsulfoxide (DMSO), 10% ethylene glycol (EG), and 20% fetal bovine serum, and then transferred for 30 s to base medium containing 20% DMSO, 20% EG and 0.5 mol/L sucrose. CB pretreated ((+)CB) or non‐pretreated ((?)CB) COCs were vitrified either by SSV or CT. Surviving vitrified COCs were selected for in vitro maturation (IVM) and in vitro fertilization (IVF). The rate of viable oocytes after vitrification in CT groups (82%) was significantly lower (P < 0.05) than that in a fresh control group (100%), but significantly higher (P < 0.05) than those in SSV groups (71–72%). Among vitrified groups, the highest maturation rate was obtained in the CT (?)CB group (32%). After IVF, the cleavage and blastocyst formation rates were similar among vitrified groups but significantly lower than those of the control group. In conclusion, a higher survival rate of oocytes after vitrification and IVM was obtained in the CT group compared with that in the SSV group, indicating the superiority of the CT method. Pretreatment with CB did not increase the viability, maturation or embryo development of vitrified oocytes.  相似文献   

15.
Co‐culture of cumulus‐oocyte complexes (COCs) with denuded oocytes (DOs) during in vitro maturation (IVM) was reported to improve the developmental competence of oocytes via oocyte‐secreted factors in cattle. The aim of the present study was to investigate if addition of DOs during IVM can improve in vitro fertilization (IVF) and in vitro culture (IVC) results for oocytes in a defined in vitro production system in pigs. The maturation medium was porcine oocyte medium supplemented with gonadotropins, dbcAMP and β‐mercaptoethanol. Cumulus‐oocyte complexes were matured without DOs or with DOs in different ratios (9 COC, 9 COC+16 DO and 9 COC+36 DO). Consequently; oocytes were subjected to IVF as intact COCs or after denudation to examine if DO addition during IVM would affect cumulus or oocyte properties. After fertilization, penetration and normal fertilization rates of zygotes were not different between all tested groups irrespective of denudation before IVF. When zygotes were cultured for 6 days, no difference could be observed between all treatment groups in cleavage rate, blastocyst rate and cell number per blastocyst. In conclusion, irrespective of the ratio, co‐culture with DOs during IVM did not improve fertilization parameters and embryo development of cumulus‐enclosed porcine oocytes in a defined system.  相似文献   

16.
In this study, the effects of the addition of L‐carnitine in in vitro maturation (IVM) medium for bovine oocytes on their nuclear maturation and cryopreservation were investigated; they were matured in IVM medium supplemented with 0.0, 0.3, 0.6 and 1.2 mg/mL of L‐carnitine (control, 0.3, 0.6 and 1.2 groups, respectively) and some of them were vitrified by Cryotop. Moreover, the effects of L‐carnitine during in vitro fertilization (IVF) and in vitro culture (IVC) on the developmental potential and quality of IVF embryos were also examined. A significantly higher maturation rate of oocytes was obtained for 0.3 and 0.6 mg/mL groups compared with the control (P < 0.05). The blastocyst formation rate in the 0.6 group was significantly improved, whereas the rate in the 1.2 group was significantly decreased when compared with the control group (P < 0.05). No significant difference was found in embryo development between the control and the L‐carnitine group after oocyte vitrification. Supplementation of IVF and IVC media with L‐carnitine had no effect on development to the blastocyst stage of IVM oocytes treated with 0.6 mg/mL L‐carnitine. In conclusion, the supplementation of L‐carnitine during IVM of bovine oocytes improved their nuclear maturation and subsequent embryo development after IVF, but when they were vitrified the improving effects were neutralized.  相似文献   

17.
The objectives of this study were to evaluate if vitrified porcine spermatozoa are able to maintain their capacity to produce zygotes in vitro using intracytoplasmic sperm injection (ICSI) and to evaluate the zygote development in two in vitro atmospheric conditions: 5% CO2 and tri‐gas. A group of porcine oocytes maturated in vitro were injected with vitrified‐warmed sperm (treatment group) and another group, with sperm diluted and conserved at 17°C (control group). To evidence parthenogenetic activation, some oocytes were submitted to a Sham test. The injected oocytes were cultured in G1 medium at 38°C, 100% humidity and 5% CO2 or tri‐gas. No significant differences (> .05) were observed in embryo development between the oocytes injected with vitrified‐warmed sperm (31.8%; 36/113), and those injected with semen diluted and conserved at 17°C (35.5%; 32/90), when cultured in 5% CO2 or under tri‐gas atmosphere (42.9%; 39/91 vs. 34.2%; 26/76, respectively). No significant differences (p > .05) were observed in the percentage of pronuclei (PN) obtained between 5% CO2 and tri‐gas, within each treatment either. Of the 52 oocytes submitted to the Sham test, only two presented a female PN (activation) indicating that the PN observed in the treatment group were a product of fertilization and not parthenogenetic activation. To conclude, porcine sperm vitrified using spheres, at a concentration of 5 × 106 spermatozoa/ml in TALP medium with 1% bovine serum albumin (BSA), conserve condensed and intact chromatin capable of producing early embryo development up to the pronuclear stage.  相似文献   

18.
A boar sperm encapsulation technology in barium alginate has been developed to enhance reproductive performances and spermatozoa preservation time; aim of this work was to evaluate the effect of in vitro sperm encapsulation on polyspermy as a function of storage time at 18°C. A total number of 40 in vitro fertilization (IVF) tests were performed using encapsulated or diluted spermatozoa (20 IVF each treatment). Overall, 1288 in vitro matured oocytes were fertilized with spermatozoa stored at 24, 48 or 72 h at 18°C for both treatments polyspermy and normospermy, and the non‐penetration rates were assessed by optical microscopy. Results indicate a significant reduction in risk of polyspermic oocytes when spermatozoa are preserved in barium alginate membranes (incidence risk ratio: 0.766 with respect to diluted); such enhancement could be explained by lesser damage of sperm membranes achieved by encapsulation technology.  相似文献   

19.
A heterologous in vitro system, using zona‐intact sheep oocytes, was used to evaluate the relationship between sperm factors of Iberian red deer thawed epididymal sperm and the percentage of cleaved oocytes. Epididymal spermatozoa were recovered from six males, diluted with freezing extender and cryopreserved. After thawing sperm motility (SM) and acrosome and membrane integrities were evaluated. Again, these parameters were assessed after incubation in freezing extender at 37°C for 2 h. After cryopreservation the values for SM and acrosome and membrane integrities were high (~80, 80 and 70% respectively). However, these values significantly decreased after incubation (~59, 62 and 47% respectively). Red deer thawed epididymal sperm fertilized zona‐intact sheep oocytes, although the percentage of cleaved oocytes was low (~22%). No relationship was found between sperm parameters assessed after thawing and the percentage of cleaved oocytes. Likewise, any sperm parameter evaluated after incubation was assessed in relation to the percentage of cleaved oocytes. However, acrosome and membrane integrities were near to significance (p = 0.06 and p = 0.09 respectively). Then, we conducted a reduced model with these two variables and both were related to the percentage of cleaved oocytes (p = 0.02 and p = 0.04 respectively). Thus, acrosome and membrane integrities were related to the percentage of cleaved oocytes negatively and positively respectively. It was concluded that the classical parameters assessed in deer thawed sperm samples can be good predictors of the ability to fertilize zona‐intact sheep oocytes.  相似文献   

20.
Improving pregnancy rates associated with the use of cryopreserved human oocytes would be an important advance in human assisted reproductive technology (ART). Vitrification allows glasslike solidification of a solution without ice crystal formation in the living cells. We have attempted to improve the survival rates of oocytes by a vitrification technique using bovine models. In vitro matured oocytes with or without cumulus cells were vitrified with either 15.0% (v/v) ethylene glycol (EG) + 15% (v/v) dimethylsulfoxide (DMSO) + 0.5 M sucrose or 15% (v/v) EG + 15% (v/v) 1,2-propanediol (PROH) + 0.5 M sucrose, using 'Cryotop' or 'thin plastic sticker', respectively. The oocyte survival rates after vitrifying-warming, and the capacity for fertilization and embryonic development were examined in vitro. The rate of embryonic development to blastocyst was significantly higher (P<0.05) in the oocytes vitrified with 15% (v/v) EG + 15% (v/v) PROH + 0.5 M sucrose than in the oocytes vitrified with 15% (v/v) EG + 15% (v/v) DMSO + 0.5 M sucrose (7.4% +/- 4.1 vs. 1.7% +/- 3.0, respectively). Oocytes vitrified without cumulus cells had a higher survival rate after thawing and a superior embryonic developmental capacity compared with oocytes vitrified with cumulus cells. Prolonged pre-incubation time after thawing adversely affected the rates of embryonic cleavage and development. These results indicate that in vitro matured bovine oocytes can be vitrified successfully with the mixture of the cryoprotectants, EG + PROH, the absence of cumulus cells for vitrification does not affect oocyte survival rate after warming, and vitrified and warmed oocytes do not require pre-incubation before in vitro fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号