首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Kinetics of reduction of iron(IV) in ferrylmyoglobin by chlorogenate in neutral or moderately acidic aqueous solutions (0.16 M NaCl) to yield metmyoglobin was studied using stopped flow absorption spectroscopy. The reaction occurs by direct bimolecular electron transfer with (2.7 +/- 0.3) x 10(3) M(-)(1).s(-)(1) at 25.0 degrees C (DeltaH( )(#) = 59 +/- 6 kJ.mol(-)(1), DeltaS(#) = 15 +/- 22 J. mol(-)(1).K(-)(1)) for protonated ferrylmyoglobin (pK(a) = 4.95) and with 216 +/- 50 M(-)(1).s(-)(1) (DeltaH( )(#) = 73 +/- 8 kJ. mol(-)(1), DeltaS( )(#) = 41 +/- 30 J.mol(-)(1).K(-)(1)) for nonprotonated ferrylmyoglobin in parallel with reduction of a chlorogenate/ferrylmyoglobin complex by a second chlorogenate molecule with (8.6 +/- 1.1) x 10(2) M(-)(1).s(-)(1) (DeltaH( )(#) = 74 +/- 8 kJ.mol(-)(1), DeltaS( )(#) = 59 +/- 28 J.mol(-)(1).K(-)(1)) for protonated ferrylmyoglobin and with 61 +/- 9 M(-)(1).s(-)(1) (DeltaH( )(#) = 82 +/- 12 kJ.mol(-)(1), DeltaS( )(#) = 63 +/- 41 J. mol(-)(1).K(-)(1)) for nonprotonated ferrylmyoglobin. Previously published data on ascorbate reduction of ferrylmyoglobin are reevaluated according to a similar mechanism. For both protonated and nonprotonated ferrylmyoglobin the binding constant of chlorogenate is approximately 300 M(-)(1), and the modulation of ferrylmyoglobin as an oxidant by chlorogenate (or ascorbate) leads to a novel antioxidant interaction for reduction of ferrylmyoglobin by ascorbate in mixtures with chlorogenate.  相似文献   

2.
The inactivation kinetics of polyphenol oxidase (PPO) in freshly prepared grape must under high hydrostatic pressure (100-800 MPa) combined with moderate temperature (20-70 degrees C) was investigated. Atmospheric pressure conditions in a temperature range of 55-70 degrees C were also tested. Isothermal inactivation of PPO in grape must could be described by a biphasic model. The values of activation energy and activation volume of stable fraction were estimated as 53.34 kJ mol(-1) and -18.15 cm3 mol(-1) at a reference pressure of 600 MPa and reference temperature of 50 degrees C, respectively. Pressure and temperature were found to act synergistically, except in the high-temperature-low-pressure region where an antagonistic effect was found. A third-degree polynomial model was successfully applied to describe the temperature/pressure dependence of the inactivation rate constants of the stable PPO fraction in grape must.  相似文献   

3.
The scope of this study is the effect of ohmic heating thermal treatment on liquid fruit juice made of oranges. Effects of ohmic heating on the quality of orange juice were examined and compared to those of heat pasteurization at 90 degrees C for 50 s. Orange juice was treated at temperatures of 90, 120, and 150 degrees C for 1.13, 0.85, and 0.68 s in an ohmic heating system. Microbial counts showed complete inactivation of bacteria, yeast, and mold during ohmic and conventional treatments. The ohmic heating treatment reduced pectin esterase activity by 98%. The reduction in vitamin C was 15%. Ohmic-heated orange juice maintained higher amounts of the five representative flavor compounds than did heat-pasteurized juice. Sensory evaluation tests showed no difference between fresh and ohmic-heated orange juice. Thus, high-temperature ohmic-heating treatment can be effectively used to pasteurize fresh orange juice with minimal sensory deterioration.  相似文献   

4.
Five red shikonin pigments, deoxyshikonin, shikonin, acetylshikonin, isobutylshikonin, and beta-hydroxyisovalerylshikonin, were isolated from the roots of Lithospermum erythrorhizon cultivated in Korea. The purified pigments were red, purple, and blue at acidic, neutral, and alkaline pH values, respectively. Physical stability of the purified pigments against heat and light in an aqueous solution was examined for possible value-added food colorants. The thermal degradation reactions were carried out at pH 3.0 (50 mM glycine buffer) in 50% EtOH/H(2)O. Deoxyshikonin (t(1/2) = 14.6 h, 60 degrees C) and isobutylshikinin (t(1/2) = 19.3 h, 60 degrees C) are relatively less stable than other shikonin derivatives (t(1/2) = 40-50 h, 60 degrees C). Activation energies of thermal degradation of the isolated pigments were calculated. The activation energy of deoxyshikonin was the highest (12.5 kcal mol(-)(1)) and that of beta-hydroxyisovalerylshikonin was the lowest (1.71 kcal mol(-)(1)) value. Light stabilities of the pigments were similar to each other in that the half-life values of photodegradation for 20000 lx light intensity were 4.2-5.1 h.  相似文献   

5.
Hydrolysis of beta-lactoglobulin (in an equimolar mixture of the A and B variant) by trypsin in neutral aqueous solution [pH 7.7 at 25 degrees C, ionic strength 0.08 (NaCl)] was followed by capillary electrophoresis and thermodynamic parameters derived from a Michaelis-Menten analysis of rate data obtained at 10, 20, 30, and 40 degrees C for disappearance of beta-lactoglobulin. Enthalpy of substrate binding to the enzyme and the energy of activation for the catalytic process were found to have the values, DeltaH(bind) = -28 +/- 4 kJ mol(-)(1) and E(a) = 51 +/- 18 kJ mol(-)(1), respectively. Thus, beta-lactoglobulin shows an enthalpy of activation for free substrate reacting with free enzyme of about 21 kJ mol(-)(1), corresponding to a transition state stabilization of 60 kJ mol(-)(1) when compared to acid-catalyzed hydrolysis. The catalytic efficiency of trypsin in hydrolysis of beta-lactoglobulin is increased significantly by temperature; however, this effect is partly counteracted by a weaker substrate binding resulting in an increase by only 25%/10 degrees C in overall catalytic efficiency.  相似文献   

6.
Kinetics of chlorophyll degradation and color loss in heated broccoli juice   总被引:2,自引:0,他引:2  
Degradation of chlorophyll in broccoli juice occurred at temperatures exceeding 60 degrees C. Chemical analysis revealed that degradation of chlorophyll a and b to pheophytin a and b, respectively, followed first-order kinetics and that chlorophyll a was more heat sensitive than chlorophyll b. Temperature dependencies of chlorophyll a and b degradation rate constants could be described by Arrhenius equations with activation energies (E(a)) of 71.04 +/- 4.89 and 67.11 +/- 6.82 kJ/mol, respectively. Objective greenness measurements, using the -a value as the physical property, together with a fractional conversion kinetic analysis, indicated that green color degradation followed a two-step process. Kinetic parameters for the first degradation step were in accordance with the kinetic parameters for pheophytinization of the total chlorophyll content, as determined by chemical analysis (E(a) approximately 69 kJ/mol). The second degradation step, that is, the subsequent decomposition of pheophytins, was characterized by an activation energy of 105.49 +/- 4.74 kJ/mol.  相似文献   

7.
The inactivation of apple pectin methylesterase (PME) with dense phase carbon dioxide (DPCD) combined with temperatures (35-55 degrees C) is investigated. DPCD increases the susceptibility of apple PME to the temperatures and the pressures have a noticeable effect on apple PME activity. A labile and stable fraction of apple PME is present and the inactivation kinetics of apple PME by DPCD is adequately described by a two-fraction model. The kinetic rate constants k L and k S of labile and stable fractions are 0.890 and 0.039 min (-1), and the decimal reduction times D L and D S are 2.59 and 58.70 min at 30 MPa and 55 degrees C. Z T representing temperature increase needed for a 90% reduction of the D value and the activation energy E a of the labile fraction at 30 MPa is 22.32 degrees C and 86.88 kJ /mol, its Z P representing pressure increase needed for a 90% reduction of the D value and the activation volume V a at 55 degrees C is 21.75 MPa and -288.38 cm (3)/mol. The residual activity of apple PME after DPCD exhibits no reduction or reactivation for 4 weeks at 4 degrees C.  相似文献   

8.
The effect of storage temperature on dimethoate degradation in fortified orange and peach juices was studied. The insecticide was aseptically injected into packed orange and peach juices and stored at 40, 15, and 0 degrees C. Samples were taken at regular time intervals and were examined for dimethoate residues. The residues were determined with a simple gas chromatographic method; the recoveries of dimethoate from orange and peach juices were found to be from 88 to 114% for both products. The limits of determination were 0.004 and 0.003 mg/kg, respectively. From the experimental data, rate constants, half-lives, and activation energies for the decomposition of dimethoate in orange and peach juices were evaluated. During the storage of fruit juices in refrigerated rooms (0 degrees C) half-lives of dimethoate were found to be largely extended, being 1733 days for orange juice and 2310 days for peach juice. Corresponding times for storage at 15 degrees C were 533 days for both juices and for storage at 40 degrees C 24 days for orange juice and 24.6 days for peach juice. The activation energy for dimethoate in orange juice was 22.3 kcal/mol and for peach juice, 21. 2 kcal/mol.  相似文献   

9.
Pressure and/or temperature inactivation of orange pectinesterase (PE) was investigated. Thermal inactivation showed a biphasic behavior, indicating the presence of labile and stable fractions of the enzyme. In a first part, the inactivation of the labile fraction was studied in detail. The combined pressure-temperature inactivation of the labile fraction was studied in the pressure range 0.1-900 MPa combined with temperatures from 15 to 65 degrees C. Inactivation in the pressure-temperature domain specified could be accurately described by a first-order fractional conversion model, estimating the inactivation rate constant of the labile fraction and the remaining activity of the stable fraction. Pressure and temperature dependence of the inactivation rate constants of the labile fraction was quantified using the Eyring and Arrhenius relations, respectively. By replacing in the latter equation the pressure-dependent parameters (E(a), k(ref)(T)()) by mathematical expressions, a global model was formulated. This mathematical model could accurately predict the inactivation rate constant of the labile fraction of orange PE as a function of pressure and temperature. In a second part, the stable fraction was studied in more detail. The stable fraction inactivated at temperatures exceeding 75 degrees C. Acidification (pH 3.7) enhanced thermal inactivation of the stable fraction, whereas addition of Ca(2+) ions (1 M) suppressed inactivation. At elevated pressure (up to 900 MPa), an antagonistic effect of pressure and temperature on the inactivation of the stable fraction was observed. The antagonistic effect was more pronounced in the presence of a 1 M CaCl(2) solution as compared to the inactivation in water, whereas it was less pronounced for the inactivation in acid medium.  相似文献   

10.
Effects of pulsed electric fields (PEF) at 35 kV/cm for 59 micros on the quality of orange juice were investigated and compared with those of heat pasteurization at 94.6 degrees C for 30 s. The PEF treatment prevented the growth of microorganisms at 4, 22, and 37 degrees C for 112 days and inactivated 88% of pectin methyl esterase (PME) activity. The PEF-treated orange juice retained greater amounts of vitamin C and the five representative flavor compounds than the heat-pasteurized orange juice during storage at 4 degrees C (p < 0.05). The PEF-treated orange juice had lower browning index, higher whiteness (L), and higher hue angle (theta) values than the heat-pasteurized orange juice during storage at 4 degrees C (p < 0. 05). The PEF-treated orange juice had a smaller particle size than the heat-pasteurized orange juice (p < 0.05). degrees Brix and pH values were not significantly affected by processing methods (p > 0. 05).  相似文献   

11.
The effect of manothermosonication (MTS), an emergent technology for food preservation, on thiamin, riboflavin, carotenoids, and ascorbic acid was evaluated in milk and orange juice. The effect of both heat treatment and MTS on several compounds produced in nonenzymatic browning in model systems was also studied. MTS does not affect significantly the nutrient content studied. However, it changes the behavior of nonenzymatic browning. No formation of 5-(hydroxymethyl)-2-furfuraldehyde (HMF) was detected in fruit juice model systems after heat and MTS treatments at the experimental conditions used. In a milk-resembling system, free HMF formation by MTS is higher compared to that by heat treatment. As the MTS temperature increases, free HMF production by both treatments equaled on another. For bound HMF the production rate is lower by MTS than by heat treatment under the experimental conditions used. Formation kinetics of brown pigments and that of fluorescent compounds are different for both treatments. Fluorescence and brown pigment production are faster in MTS.  相似文献   

12.
The influence of sucrose (0--40 wt %) on the thermal denaturation and gelation of bovine serum albumin (BSA) in aqueous solution has been studied. The effect of sucrose on heat denaturation of 1 wt % BSA solutions (pH 6.9) was measured using ultrasensitive differential scanning calorimetry. The unfolding process was irreversible and could be characterized by a denaturation temperature (T(m)), activation energy (E(A)), and pre-exponential factor (A). As the sucrose concentration increased from 0 to 40 wt %, T(m) increased from 72.9 to 79.2 degrees C, E(A) decreased from 314 to 289 kJ mol(-1), and ln(A/s(-1)) decreased from 104 to 94. The rise in T(m) was attributed to the increased thermal stability of the globular state of BSA relative to its native state because of differences in their preferential interactions with sucrose. The change in preferential interaction coefficient (Delta Gamma(3,2)) associated with the native-to-denatured transition was estimated. The dynamic shear rheology of 2 wt % BSA solutions (pH 6.9, 100 mM NaCl) was monitored as they were heated from 30 to 90 degrees C, held at 90 degrees C for either 15 or 120 min, and then cooled to 30 degrees C. Sucrose increased the gelation temperature due to thermal stabilization of the native state of the protein. The complex shear modulus (G) of cooled gels decreased with sucrose concentration when they were held at 90 degrees C for 15 min because the fraction of irreversibly denatured protein decreased. On the other hand, G of cooled gels increased with sucrose concentration when they were held at 90 degrees C for 120 min because a greater fraction of irreversibly denatured protein was formed and the strength of the protein-protein interactions increased.  相似文献   

13.
Pesticide sorption or binding to soil is traditionally characterized using batch slurry techniques. The objective of this study was to determine linuron sorption in field-moist or unsaturated soils. Experiments were performed using low-density (i.e., 0.25 g mL(-)(1)) supercritical carbon dioxide to remove linuron from the soil water phase, thus allowing calculation of sorption coefficients (K(d)) at low water contents. Both soil water content and temperature influenced sorption. K(d) values increased with increased water content, if less than saturated. K(d) values decreased with increased temperature. K(d) values for linuron sorption on silty clay and sandy loam soils at 12% water content and 40 degrees C were 3.9 and 7.0 mL g(-)(1), respectively. Isosteric heats of sorption (DeltaH(i)) were -41 and -35 kJ mol(-)(1) for the silty clay and sandy loam soils, respectively. The sorption coefficient obtained using the batch method was comparable (K(f) for sandy loam soil = 7. 9 microg(1)(-)(1/)(n)() mL(1/)(n)() g(-)(1)) to that obtained using the SFE technique. On the basis of these results, pesticide sorption as a function of water content must be known to more accurately predict pesticide transport through soils.  相似文献   

14.
Malted cereals are rich sources of alpha-amylase, which catalyzes the random hydrolysis of internal alpha-(1-4)-glycosidic bonds of starch, leading to liquefaction. Amylases play a role in the predigestion of starch, leading to a reduction in the water absorption capacity of the cereal. Among the three cereal amylases (barley, ragi, and jowar), jowar amylase is found to be the most thermostable. The major amylase from malted jowar, a 47 kDa alpha-amylase, purified to homogeneity, is rich in beta structure ( approximately 60%) like other cereal amylases. T(m), the midpoint of thermal inactivation, is found to be 69.6 +/- 0.3 degrees C. Thermal inactivation is found to follow first-order kinetics at pH 4.8, the pH optimum of the enzyme. Activation energy, E(a), is found to be 45.3 +/- 0.2 kcal mol(-)(1). The activation enthalpy (DeltaH), entropy (DeltaS*), and free energy change (DeltaG) are calculated to be 44.6 +/- 0.2 kcal mol(-)(1), 57.1 +/- 0.3 cal mol(-)(1) K(-)(1), and 25.2 +/- 0.2 kcal mol(-)(1), respectively. The thermal stability of the enzyme in the presence of the commonly used food additives NaCl and sucrose has been studied. T(m) is found to decrease to 66.3 +/- 0.3, 58.1 +/- 0.2, and 48.1 +/- 0.5 degrees C, corresponding to the presence of 0.1, 0.5, and 1 M NaCl, respectively. Sucrose acts as a stabilizer; the T(m) value is found to be 77.3 +/- 0.3 degrees C compared to 69.6 +/- 0.3 degrees C in the control.  相似文献   

15.
The formation of 2-furoylmethyl derivatives of GABA (2-FM-GABA) and arginine (2-FM-Arg) as early indicators of nonenzymatic browning in different types of orange juice was studied. In dehydrated orange juice, the presence of 2-FM-GABA and 2-FM-Arg was detected from the first day of storage at 30 degrees C. In this type of juice, the content of these two compounds increased with temperature (30, 50 degrees C) and time (1-7 days) of storage. A noticeable increase in 5-hydroxymethylfurfural was only observed after 4 days of storage at 50 degrees C. No formation of 2-FM-GABA and 2-FM-Arg was detected in liquid orange juice heated under conditions similar to those used in the industry. These furoylmethyl derivatives were also found in commercial orange juice made from concentrates. A slight increase in their concentration was observed in the two samples stored during 8 months at room temperature. According to the results obtained, 2-FM-GABA and 2-FM-Arg contents could be suitable indicators to assess the main modifications due to Maillard reaction produced during the manufacture and/or storage of orange juice concentrates.  相似文献   

16.
A comparative study was made of the evolution and modification of various carotenoids and vitamin A in untreated orange juice, pasteurized orange juice (90 degrees C, 20 s), and orange juice processed with high-intensity pulsed electric fields (HIPEF) (30 kV/cm, 100 micros), during 7 weeks of storage at 2 and 10 degrees C. The concentration of total carotenoids in the untreated juice decreased by 12.6% when the juice was pasteurized, whereas the decrease was only 6.7% when the juice was treated with HIPEF. Vitamin A was greatest in the untreated orange juice, followed by orange juice treated with HIPEF (decrease of 7.52%) and, last, pasteurized orange juice (decrease of 15.62%). The decrease in the concentrations of total carotenoids and vitamin A during storage in refrigeration was greater in the untreated orange juice and the pasteurized juice than in the juice treated with HIPEF. During storage at 10 degrees C, auroxanthin formed in the untreated juice and in the juice treated with HIPEF. This carotenoid is a degradation product of violaxanthin. The concentration of antheraxanthin decreased during storage, and it was converted into mutatoxanthin, except in the untreated and pasteurized orange juices stored at 2 degrees C.  相似文献   

17.
A comparative study on the pressure and temperature stability of 5-methyltetrahydrofolic acid (5-CH(3)-H(4)folate) was performed in model/buffer systems and food products (i.e., orange juice, kiwi puree, carrot juice, and asparagus). Effects of pH and ascorbic acid (0.5 mg/g) on 5-CH(3)-H(4)folate stability in buffer systems were studied on a kinetic basis at different temperatures (from 65 to 160 degrees C) and different pressure/temperature combinations (from 100 to 700 MPa/from 20 to 65 degrees C). These studies showed that (i) the degradation of 5-CH(3)-H(4)folate in all model systems could be described by first-order reaction kinetics, (ii) the thermostability of 5-CH(3)-H(4)folate was enhanced by increasing pH up to 7, (iii) 5-CH(3)-H(4)folate was relatively pressure stable at temperatures lower than 40 degrees C, and (iv) ascorbic acid enhanced both the thermo- and barostabilities of 5-CH(3)-H(4)folate. In food products, temperature and pressure stabilities of 5-CH(3)-H(4)folate were studied at different temperatures (70-120 degrees C) and different pressure/temperature combinations (from 50 to 200 MPa/25 degrees C and 500 MPa/60 degrees C). 5-CH(3)-H(4)folate in orange juice and kiwi puree was relatively temperature (up to 120 degrees C) and pressure (up to 500 MPa/60 degrees C) stable in contrast to carrot juice and asparagus. Addition of ascorbic acid (0.5 mg/g) in carrot juice resulted in a remarkable protective effect on pressure (500 MPa/60 degrees C/40 min) and temperature degradation (120 degrees C/40 min) of 5-CH(3)-H(4)folate.  相似文献   

18.
In vitro availability of flavonoids and other phenolics in orange juice   总被引:4,自引:0,他引:4  
Hand-squeezed navel orange juice contains 839 mg/L phenolics, including flavanones, flavones, and hydroxycinnamic acid derivatives. The flavanones are the main phenolics in the soluble fraction (648.6 mg/L) and are also present in the cloud fraction (104.8 mg/L). During refrigerated storage of fresh juice (4 degrees C), 50% of the soluble flavanones precipitate and integrate into the cloud fraction. Commercial orange juices contain only 81-200 mg/L soluble flavanones (15-33%) and the content in the cloud is higher (206-644 mg/L) (62-85%), showing that during industrial processing and storage the soluble flavanones precipitate and are included in the cloud. An in vitro simulation of orange juice digestion shows that a serving of fresh orange juice (240 mL) provides 9.7 mg of soluble hesperidin (4'-methoxy-3',5,7-trihydroxyflavanone-7-rutinoside) and 4.7 mg of the C-glycosylflavone vicenin 2 (apigenin, 6,8-di-C-glucoside) for freshly squeezed orange juice, whereas pasteurized commercial juices provide 3.7 mg of soluble hesperidin and a higher amount of vicenin 2 (6.3 mg). This means that although orange juice is a very rich source of flavanones, only a limited quantity is soluble, and this might affect availability for absorption (11-36% of the soluble flavanones, depending on the juice). The flavanones precipitated in the cloud are not available for absorption and are partly transformed to the corresponding chalcones during the pancreatin-bile digestion.  相似文献   

19.
Star Ruby grapefruit [Citrus paradisi (Macf.)] were harvested in November, February, and May, treated with ultraviolet C (UV-C) light at 0.5, 1.5, or 3.0 kJ.m(-)(2), and then stored at 7 degrees C and 90-95% relative humidity (RH) for 4 weeks with 1 additional week at 20 degrees C and approximately 80% RH. Untreated fruits were used as control. UV-C irradiation at 0.5 kJ.m(-)(2) effectively reduced decay development as compared to nontreated fruit without causing damage. Irradiation at dosages >0.5 kJ.m(-)(2) did not further improve decay control and caused rind browning and necrotic peel, the extent of damage depending on treatment dosage and harvest date. The percentage of damaged fruit after irradiation at the higher UV-C dosages was significantly higher in fruit harvested in November; differences between fruits harvested in February and May were negligible. After UV-C irradiation, the phytoalexins scoparone and scopoletin accumulated in flavedo tissue, their amounts depending on harvest date and UV-C dosage. Both phytoalexins showed similar accumulation patterns, although the concentrations of scoparone were much lower than those of scopoletin. Phytoalexin levels increased in most samples as the treatment dosage increased. No detectable levels of scoparone and scopoletin could be found in nonirradiated fruit. The influence of UV-C treatments on soluble solids concentration and titratable acidity of juice was negligible.  相似文献   

20.
Spin probes based on the 1,1,3,3-tetramethylisoindolin-2-yl structure have been used, in conjunction with electron spin resonance spectroscopy (ESR), to study the physical changes occurring in ice cream during freezing and melting. The ESR measurements allowed the rotational correlation times, tau(B), of the spin probes to be determined. Two probes were used together in a given sample of ice cream, namely, 1,1,3,3-tetramethylisoindolin-2-yl (TMIO), which samples the fat phase, and the sodium salt of 1,1,3,3-tetramethylisoindolin-2-yloxyl-5-sulfonate (NaTMIOS), which samples the aqueous phase. Data from the TMIO probe showed that when ice cream is cooled, the fat phase is a mixture of solid and liquid fat until a temperature of approximately -60 degrees C is reached. The water-soluble probe NaTMIOS showed that the aqueous phase changes completely from liquid to solid within 1 degrees C of -18 degrees C. On cooling further to -24.7 degrees C and then allowing it to warm to +25.0 degrees C, the rotational correlation times of the NaTMIOS were slow to recover to their previous values. For the lipid phase, tau(B)(298) was found to be 65.7 +/- 2.0 ps and the corresponding activation enthalpy, DeltaH, was 32.5 +/- 0.9 kJ mol(-)(1): These values are typical of those expected to be found in the type of fat used to make ice cream. The water phase gave corresponding values of 32.2 +/- 0.5 ps and 24.5 +/- 0.4 kJ mol(-)(1) values, which are those expected for a sucrose concentration of 24%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号