首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of low-grade logs to build spirally wound laminated veneer lumber (LVL) has been studied and improved from the point of view of the gluing process, fiber orientation angle, and end joint of the LVL. The butt joint appears to be the fracture point when the column is submitted to a compressive or bending load. Owing to the complexity of cylindrical LVL, we used a finite element method to simulate the mechanical behavior of part of its wall. This part was small enough to be considered flat but was representative of the structure, especially in the area of the butt joint. This allowed us to test the validity of different settings of the parameters involved in the manufacturing process. To feed data for this model, we used the results established for the linear and nonlinear behavior of raw hinoki in Part I of this series of articles. We then used this numerical model to improve the quality of the butt joint by testing different settings of the joint. We show that reducing the butt joint gap under 0.5 mm, which requires only a few changes in the production line, provides an important increase in the modulus of upture and nonnegligible improvement of the modulus of elasticity compared to that for a ≥ 1 mm butt joint gap.  相似文献   

2.
人工林杨木的用途选择——实木或单板层积材   总被引:9,自引:0,他引:9  
实木材性对单板层积材强度的贡献率可衡量单板层积材强度中源自实木材性的份额,是人工林杨木单项用途选择的基础。本文以3个无性系实体杨木和由3种不同厚度杨木单板分别组配的单板层积材为对象,以由贡献率引出的实木与单板层积材的份率差值为依据,研究得出人工林杨木的最终用途选择。结果表明:69杨、72杨和63杨3个无性系杨木的平均份率差值分别为57%、-15%、-29%,说明69杨宜用作实木,72杨和63杨宜用作单板层积材;杨木用作不同组配结构的单板层积材时,实木与3565mm、2614mm、1545mm3种厚度单板组配的单板层积材的平均份率差值分别为43%、-13%和-43%,说明实木与较厚的3565mm单板组配的单板层积材相比,杨木宜用作实木,与较薄的2614mm和1545mm单板组配的单板层积材相比,杨木宜用作单板层积材。不同荷载作用的结果下用途选择结果显示,在抗剪强度、弹性模量和冲击韧性3项性能上的份率差值为正,此时杨木宜用作实木;在抗弯强度、抗压强度和硬度3项性能上的份率差值为负,此时杨木则宜用作单板层积材。  相似文献   

3.
Creep under fire of laminated veneer lumber (LVL) joined with metal connectors was studied. The fire-resistant performance of LVL butt joints connected with metal plates protected with graphite phenolic sphere (GPS) sheeting was discussed. The GPS sheeting was overlaid on the joint in different sizes and locations. The joint was exposed to a burner with a top flame temperature of 800°C and loaded with a load of 200 N to test for creep under fire. The results showed that the fire-resistant performance of the joint was markedly improved by the sheeting. The size and location of the GPS sheet significantly affected the time to rupture of the specimen, which was six times longer than that without GPS. Temperature measurements at the joint showed that the GPS sheeting distributed the heat along the surface and delayed failure. Thermographic images and analyses clarified the improvement in fire-resistant properties due to GPS.  相似文献   

4.
玻璃纤维增强结构用单板层积材热压工艺研究   总被引:1,自引:0,他引:1  
通过玻璃纤维增强速生杨木制备杨木单板层积材(LVL),可提高杨木的强度等级,使其达到结构集成材层板的使用要求。采用正交实验方法,研究温度、时间、压力、偶联剂浓度、涂胶量对杨木单板层积材弹性模量、静曲强度、剪切强度的影响,其中主要研究热压工艺对力学强度的影响,得出的最优工艺参数为:热压温度130℃、时间100s/mm、压力1.2MPa。  相似文献   

5.
Until now we developed an estimation method for strength distributions of laminated veneer lumber (LVL) element by nonlinear least-squares method (NLM). Estimated strengths by this method were modulus of elasticity (MOE) and modulus of rupture (MOR) in the horizontal use direction and the vertical use direction, tensile strength and compression strength. But to use LVL for structural members, shear strength was also needed. Therefore, we tried to estimate the shear strength distribution of LVL element by NLM same as MOE and MOR in the horizontal use direction and the vertical use direction, the tensile strength of LVL and the compression strength of LVL in the previous reports. We conducted shear strength test for LVL and estimated element shear strength distribution by LVL strength data in the horizontal and vertical use direction. Next, we simulated LVL shear strength distribution using element shear strength distribution and compared with experimental ones in each use direction. They were overlapped in both use direction. Therefore, we could validate NLM for estimating element shear strength distribution.  相似文献   

6.
Laminated products, such as laminated veneer lumber (LVL) or plywood (PW), have become important recently. The objective of this study was to determine and compare properties of panels fabricated with veneers of Gmelina arborea trees in a fast-growth plantation and glued with phenol formaldehyde resin. The results showed that LVL and PW physical and mechanical properties are comparable to those of solid wood with a specify gravity of 0.60. Moreover, these panels can be cataloged into group 2 of PS 1–95 of the Voluntary Products Standard of the United States. The difference in physical properties was not statistically significant between LVL and PW panels, except for water absorption. Some mechanical properties, such as hardness and glue-line shear, modulus of rupture in perpendicular flexure, nail and screw withdrawal parallel, and perpendicular strength, were statistically different between LVL and PW. However, no differences were established for the modulus of elasticity, tensile strength parallel to the surface, or tensile strength perpendicular to the surface. The differences were attributed to the venners’ orientation in the panels studied.  相似文献   

7.
人工林杨木材性对单板层积材强度的贡献率   总被引:3,自引:0,他引:3  
本文提出了衡量单板层积材强度中实木材性所占份额的贡献率概念,以揭示实木材性对单板层积材强度的贡献程度.以人工林杨木为对象,研究了实木材性对单板层积材强度的贡献率.结果表明,实木材性好或单板层积材中的单板较厚时,贡献率较高.材性较优的69杨和材性居中的72杨、材性较差的63杨3个无性系杨木的平均贡献率分别为74.34%、67.48%、64.72%,厚度为3.565mm、2.614mm、1.545mm单板组配的单板层积材中的平均贡献率分别为74.00%、67.48%和58.06%.研究的6项强度性能中,杨木实木材性对抗剪强度、弹性模量和冲击韧性的贡献率较高,约为80%.  相似文献   

8.
人工林杨木材性对单板层积材强度的贡献率   总被引:9,自引:0,他引:9  
本文提出了衡量单板层积材强度中实木材性所占份额的贡献率概念,以揭示实木材性对单板层积材强度的贡献程度。以人工林杨木为对象,研究了实木材性对单板层积材强度的贡献率。结果表明,实木材性好或单板层积材中的单板较厚时,贡献率较高。材性较优的69杨和材性居中的72杨、材性较差的63杨3个无性系杨木的平均贡献率分别为7434%、6748%、6472%,厚度为3565mm、2614mm、1545mm单板组配的单板层积材中的平均贡献率分别为7400%、6748%和5806%。研究的6项强度性能中,杨木实木材性对抗剪强度、弹性模量和冲击韧性的贡献率较高,约为80%。  相似文献   

9.
A study was undertaken to evaluate the effect of glue application and placement of butt-joints on the compressive and tensile properties in a butt-jointed lamination. The aim was to provide background information for producing butt-jointed, glued, laminated timber. Three butt-jointed lamination models were prepared from spruce-pine-fir (S-P-F) dimension lumber with glued and nonglued butt joints, with different placements of the butt joints in the models. The axial stiffness and strength properties were assessed using both compressive and tensile tests. The results of the study indicated that for the compressive lamination model the application of glue at the butt joint gave more stiffness than the nonglued butt joint. Neither glue application nor placement of the joint had a statistically significant effect on the compressive strength. There were no significant differences between the glued and nonglued butt joint for either tensile strength or stiffness.  相似文献   

10.
This paper describes the development of a three-dimensional constitutive model for laminated veneer lumber (LVL) needed for new developments using this material. The LVL was manufactured in New Zealand from Radiata Pine. Experimental testing has been performed according to European timber testing standards. Block compression testing has resulted in modulus of elasticity values in the three material directions. Digital image correlation (DIC) technique has been used to determine the six Poisson’s ratios. Shear testing, whereby timber specimens were glued between two steel plates, has given stiffness values using DIC measurements. Experimental testing results have been compared with values found in literature. Results from this experimental testing programme have made it possible to create a three-dimensional elastic material model of LVL for the use in finite element analysis programmes. Although the material properties do not result in a symmetrical constitutive matrix, only minor adjustments are needed to gain the benefits of a symmetrical matrix.  相似文献   

11.
Summary In order to control the compression effectively, the main processing parameters for hot-pressing of poplar LVL were investigated in this study. Results from an orthogonal experiment show qualitatively that compression of poplar LVL is influenced by pressing pressure and moisture content of the veneers. High press pressure and veneer moisture content lead to high compression during hot pressing. It is shown that compression has significant effects on modulus of elasticity, modulus of rupture, specific gravity and thickness swelling of poplar LVL. Modulus of elasticity, modulus of rupture and specific gravity appear to be directly proportional to compression within the compression range of 5% to 20%. Horizontal shear strength results indicate that, due to inadequate contact, proper glue bond may not be achieved between veneers of LVL with low compression. Thickness swelling appears not sensitive to compression between the compression range of 4% to 10%.The authors wish to acknowledge the financial support from the Natural Sciences and Engineering Research Council of Canada to this study, which was carried out when the first author was a visiting scientist at Wood Science and Technology Centre, University of New Brunswick, Canada. The veneers and adhesive used in this study were provided by Temlam Inc., Ville-Marie, Quebec. Their contribution is gratefully acknowledged.  相似文献   

12.
圆筒形单板层积材(简称圆筒LVL)是一种新型木质工程材料,它是以螺旋缠绕的方式将单板加工成交错层积的构造,从而抑制弹性模量的下降。圆筒LVL具有很好的力学性能和优良的工程性能,可广泛应用于建筑等领域。本文就圆筒LVL的制造方法、研究状况、特点及用途等进行了较为详细的归纳总结。  相似文献   

13.
玻璃纤维增强杨木单板层积材弯曲性能的初步研究   总被引:2,自引:0,他引:2  
研究玻璃纤维对杨木单板层积材弯曲性能的增强效果.试验结果表明:玻璃纤维对杨木单板层积材的纵横向静曲强度(MOR)、弹性模量(MOE)的增强效果显著,特别是横向的MOR、MOE的增强幅度更大,横向的MOE、MOR值分别提高了79.6%、60.2%.  相似文献   

14.
A mill study of 62 trees, in which boards were reassembled into their original logs, permitted the construction of wood quality maps. In this instance stiffness profiles were obtained from butt to upper-top logs, based on machine stress grading of all boards and then averaging values from the 62 trees. Traditionally the butt log has been perceived to be the most valuable log in a tree, because it is bigger and gives a higher recovery of lumber. However, it is shown to contain a wide cone of very low stiffness wood that is confined to the first 2.4–2.7 m above ground level. Above this point stiffness gradients become cylindrical with no noticeable decrease in stiffness up the tree stem. Stiffness in all logs increased radially from pith to cambium with the greatest change being associated with the wood nearest the pith. The low stiffness at the base of the tree suggests that an alternative log bucking strategy should be considered, namely cutting a short 2.4–2.7 m butt log for plywood/LVL or for bolter sawing and only cutting standard length logs above this point.The least stiff logs (lowest 20%) yielded lumber that had an average stiffness that was over 1 GPa less than the average for the population. A case can be made for separating these logs and processing them differently.  相似文献   

15.
采用3.00、4.50、6.00mm厚度小径柚木单板制备单板层积材(LVL),研究单板厚度对单板层积材力学性能的影响。结果表明:单板厚度对于层积材静曲强度和弹性模量有显著影响,随着单板厚度增加,静曲强度与弹性模量减小;强度均达到GB/T20241—2006《单板层积材》中不同等级要求。生产相同厚度单板层积材时应根据耗胶量与所需力学强度选择合适单板厚度,寻求成本与质量的平衡。  相似文献   

16.
To investigate the durability of structural laminated veneer lumber (LVL), outdoor exposure tests have been conducted since 1990 at a field-testing site at the Forestry and Forest Products Research Institute. This article is the second interim report on the results after 9 years of exposure. Seven kinds of structural LVL with no preservative treatment were subjected to the tests. Almost all the exposed specimens were decayed by a kind of brown rot fungi (Pseudomerulius aureus (Fr.) Julich). The degree of decay varied with wood species; grand fir and western hemlock LVL in particular showed weak resistance against the decay. All the specimens were stored for more than 1 year in a testing room conditioned at 20°C and 65% relative humidity. We then measured the ultrasonic velocity of the specimens by the Pundit method, penetration depth by the Pilodyn method, and bending strength by a conventional bending test. Correlation between nondestructive measurement factors and the density was strong even on LVL with many adhesive layers. The nondestructive testing method was found to be applicable to LVL as well as solid lumber. After the nondestructive measurements, each LVL was cut into three types of specimen (top: T, middle: M, and bottom: B) for the bending tests. The bending strength varied with the type of specimens. Correlation between modulus of elasticity and modulus of rupture was strong even in the decayed specimens.  相似文献   

17.
ABSTRACT

A study to determine the quality of laminated veneer lumber (LVL) from samama wood (Anthocephalus macrophyllus) was carried out. Samama is a fast-growing endemic wood in eastern Indonesia. Factorial of three factors in RAL design was used to investigate the influence of veneer thickness, juvenile proportion and veneer lay-up to the quality of the resulted samama LVL. The veneer thicknesses were 1.5 and 3.0?mm. Juvenile proportions were arranged in five levels, which were 100% of juvenile veneer, 100% of mature veneer and combination of both juvenile and mature with juvenile proportion of 14%, 43% and 71%. Two veneer lay-up used in this study were loose side met loose side and tight side met loose side. The result of the study showed various specific gravity of LVL by different proportions of juvenile. This factor also affected the other physical traits. Shear strength of the LVL was equal to the solid wood, yet MOE and MOR were affected by juvenile proportion and veneer lay-up. LVL developed from 100% of mature veneer exhibited the highest MOE and MOR, yet no significant difference was noted in MOE and MOR between LVL 100% of juvenile and other tested juvenile proportions.  相似文献   

18.
The purpose of this study was to develop a cost-effective method to manufacture high-performance laminated veneer lumber (LVL) from mountain pine beetle (MPB)-affected veneers through partial resin impregnation and optimum board layup. Dry MPB-affected veneer sheets were segregated into two stress grades based on dynamic modulus of elasticity (MOE). A new phenol formaldehyde resin with a 30% solids content was formulated for resin impregnation. To reduce resin consumption, only veneer sheets used as outer layers were dipped in the resin for 5?min and then dried to manufacture 13-ply LVL. The bending properties, shear strength and dimensional stability of these LVL billets were examined and compared to those from the controls made from entirely untreated veneers. The results demonstrated that high-grade (E1) MPB-affected veneers had lower resin solids uptake than low-grade (E2) counterparts based on a 5?min dipping. Compared with the controls, the LVL billets made from resin-impregnated veneers for outer layers yielded increased surface hardness, significantly improved dimensional stability, shear strength and modulus of rupture on both edgewise and flatwise as well as better appearance with no cosmetic concerns. However, the improvement in LVL bending MOE was dependent on initial veneer stress grade. For high-grade (or density) E1 veneers, the use of impregnated veneers resulted in insignificant improvement in bending MOE. The optimum product layup was to place one ply of impregnated E1 grade veneer each for product face and back. By contrast, for low-grade (or density) E2 veneers, the use of impregnated veneers yielded a significantly higher flatwise bending MOE compared to the controls. The recommended product layup was the placement of two plies of impregnated E2 grade veneer sheets each for product face and back.  相似文献   

19.
对杨木单板湿热处理后制造单板层积材进行了初步研究。研究表明:对单板进行调湿热压预处理,降低了单板的吸水性,降低了单板层积材的吸水厚度膨胀率,使其弹性模量增加;同时随着处理单板的含水率和热压温度的增加,这些变化呈现出了加强的趋势。  相似文献   

20.
ABSTRACT

Certain important quality parameters of red maple (Acer rubrum) laminated veneer lumber (LVL) impregnated with three waterborne formulations: copper azole (CA-B), micronized copper azole (MicroCA or MCA) and alkaline copper quaternary (ACQ-D) bonded with phenol formaldehyde or cross-linked polyvinyl acetate (XPVAc) adhesives were evaluated. Pre-dipping of veneers before LVL production and two post-manufacturing procedures, viz., vacuum-pressure and post-dipping of LVL, were applied. Maximum copper retention in pre-dip-treated, vacuum-pressure and post-dip-treated LVL was 1.4, 9.7 and 1.7?kg/m3, respectively. Copper retention in MCA-treated LVL was relatively lower than soluble formulations. Various physical, mechanical and bonding properties of treated LVL such as density, water absorption, swelling, flexural properties, hardness, tensile shear strength, delamination and wood failure (%) were studied and compared with untreated LVL. Little to negligible deleterious effect was observed on properties of LVL due to these chemical treatments. Analysis of variance results showed that most of properties of red maple LVL were not significantly different compared with those of untreated LVL. Therefore, vacuum-pressure impregnation process can be used to treat the red maple LVL with novel micronized copper formulations for increasing the service life of such products against biodegradation without affecting techno-mechanical quality parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号