首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Iodine is an essential microelement for human health, and the recommended daily allowance (RDA) of such element should range from 40 to 200 μg day?1. Because of the low iodine contents in vegetables, cereals, and many other foods, iodine deficiency disorder (IDD) is one of the most widespread nutrient-deficiency diseases in the world. Therefore, investigations of I uptake in plants with the aim of fortifying them can help reach the important health and social objective of IDD elimination. This study was conducted to determine the effects of the absorption of iodine from two different chemical forms—potassium iodide (I?) and potassium iodate (IO? 3)—in a wide range of wild and cultivated plant species. Pot plants were irrigated with different concentrations of I? or IO? 3, namely 0.05% and 0.1% (w/v) I? and 0.05%, 0.1%, 0.2%, and 0.5% (w/v) IO? 3. Inhibiting effects on plant growth were observed after adding these amounts of iodine to the irrigation water. Plants were able to tolerate high levels of iodine as IO? 3 better than I? in the root environment. Among cultivated species, barley (Hordeum vulgare L.) showed the lowest biomass reductions due to iodine toxicity and maize (Zea mays L.) together with tobacco (Nicotiana tabacum L.) showed the greatest. After the screening, cultivated tomato and potato were shown to be good targets for a fortification-rate study among the species screened. When fed with 0.05% iodine salts, potato (Solanum tuberosum L.) tubers and tomato (Solanum lycopersicum L.) fruits absorbed iodine up to 272 and 527 μg/100 g fresh weight (FW) from IO? 3 and 1,875 and 3,900 μg/100 g FW from I?. These uptake levels were well more than the RDA of 150 μg day?1 for adults. Moreover, the agronomic efficiency of iodine accumulation of potato tubers and tomato fruits was calculated. Both plant organs showed greater accumulation efficiency for given units of iodine from iodide than from iodate. This accumulation efficiency decreased in both potato tubers and tomato fruits at iodine concentrations greater than 0.05% for iodide and at respectively 0.2% and 0.1% for iodate. On the basis of the uptake curve, it was finally possible to calculate the doses of supply in the irrigation water of iodine as iodate (0.028% for potato and 0.014% for tomato) as well as of iodide (0.004% for potato and 0.002% for tomato) to reach the 150 μg day?1 RDA for adults in 100 g of such vegetables, to efficiently control IDD, although these results still need to be validated.  相似文献   

2.
Iodine in each of the forms iodide, elemental iodine, and iodate was added, at a rate of 5 mg/kg to a sandy loam and to mixtures of the soil with composted grass roots, chalk and sesquixoides, and its solubility determined after various periods of incubation. With iodide, solubility in both 0.01 M CaCl2 and 1.0 M NK4 acetate (pH 4.8) declined rapidly over the period o to 3 days and subsequently reached approximate equilibrium levels of 2.8 per cent solubility in CaCl2 and 7.8 per cent in NH4 acetate, these values being the means of samples incubated for 48, 103, and 160 days. The partial (5 per cent) replacement of the soil by composted grass roots had no appreciable effect on the solubility of added iodide, while chalk, incorporated at a rate of 5 per cent, depressed the solubility of iodide in CaCl2 to 1.8 per cent but caused a slight increase in solubility in NH4 acetate. The incorporation of 2 per cent hydrated ferric oxide or of 2 per cent hydrated aluminium oxide reduced the solubility of iodide in CaCl2 to 0.1 and 0.3 per cent, and in NH4, acetate to 3.8 and 5.7 per cent respectively. Elemental iodine was similar to iodide in its solubility in the two extractants and in its response to the various soil treatments. Iodate, however, differed considerably from the other two forms of iodine. With soil alone, and with the soil/chalk mixture, its decline in solubility with increasing incubation time was relatively slow, although after 160 days its solubility was similar to that of iodide and elemental iodine. The incorporation of composted grass roots caused a rapid reduction in iodate solubility, suggesting that the organic matter accelerated the reduction of iodate to elemental iodine or iodide. With the treatments involving the incorporation of ferric and aluminium oxides, there appeared to be considerable sorption of iodate during the 16 h extraction period and the effects of these materials on iodate solubility during incubation were therefore difficult to assess.  相似文献   

3.
In order to analyze the behavior and phytoxicity of iodine in soil, the chemical forms of soil iodine must be identified. Therefore, a method for quantitative speciation of iodine in soil was proposed. Iodine extracted from soil samples with tetrametBPyIammonium hydroxide (TMAH) was separated into humic and fnalvic acid fractions at pH4 1.5 after the addition of ascorbic acid into the TMAH extract to reduce iodate into iodide. Since the iodide in the TMAH extract was recovered in the fdvic acid fraction by this procedure, iodine contained in the haamic acid fraction was considered to be organically bound. Podine in the fulvic acid fraction was separated into organic iodine bound to fnlvic acids and the total inorganic iodine. Furthermore, iodine soluble from soil in 0.1 mol L-1 potassium chloride was assumed to correspond to the amount of total iodide in soil, and from the difference in the concentration of total inorganic iodine and soluble iodide, the amount of iodate was calculated. By the application of this method, iodine in soil was separated into four fractions: organic iodine bound to humic acids, organic iodine bound to fulvic acids, iodate, and iodide. This speciation method was applied to two soils. It was found that s Barge proportion of iodine in soil occurred in an organicalPy bound form.  相似文献   

4.
通过温室盆栽试验,以普通碘肥为对照,研究了包膜控释碘肥对生菜富碘及某些生理特性的影响。结果表明, 施碘处理与不施碘相比显著提高生菜叶片的碘含量。在两种施碘水平下(I 10和20 mg/kg,土),与普通碘肥相比,控释碘酸钾和控释碘化钾均显著提高生菜叶片的碘含量,分别提高了46.60%~61.16%、 46.59%~58.53%; 同时提高了生菜生物量、 叶片叶绿素含量、 维生素C含量及抗氧化酶活性[超氧化物歧化酶(SOD)、 过氧化物酶(POD)和过氧化氢酶(CAT)],降低了生菜叶片硝态氮和丙二醛(MDA)含量; 碘酸根离子处理的土壤碘的淋失率高于碘离子处理; 施用控释碘酸钾和控释碘化钾后,土壤淋溶液中碘淋失量峰值出现时间延后,碘淋失率较普通碘肥分别降低了45.99%~50.97%、 39.18%~46.29%,差异显著。碘肥用量试验的结果表明,与施碘10 mg/kg相比,施碘20 mg/kg时显著提高了生菜叶片的碘含量,但对生菜品质及生理指标无显著影响。与普通碘肥相比,控释碘肥不仅显著提高了生菜叶片对碘的富集,还减少了碘素从土壤中的流失量,提高了碘肥的利用率。施用控释碘肥是培育富碘蔬菜的有效途径之一。  相似文献   

5.
Five common fungal strains, Cladosporium cladosporioides, Aspergillus clavatus, Penicillium citrinum, Fusarium oxysporum, and Alternaria alternata, were cultivated in presence of iodide and iodate to evaluate their efficiency in iodine biovolatilization and bioaccumulation. Our results suggest that iodide and iodate bioaccumulation by microscopic filamentous fungi is similar although the biological transformation into volatile iodine compounds is driven by various pathways resulting in higher volatilization efficiency of iodate. Thus, the mobilization of iodate by filamentous fungi is superior to iodide mobilization. Our paper is also the first to compare the iodide and iodate volatilization efficiency by microorganisms. Our results highlight the significant role of filamentous fungi in biogeochemistry of iodine, especially in formation of environmentally reactive volatile forms that may contribute to ozone layer destruction.  相似文献   

6.
A pot experiment was carried out on a marine saline soil to study the effect of initial soluble Na/Ca ratio of saline soil on the salinity tolerance of barley plant.The results showed that (1) the Na/Ca ratio affected significantly the dry weight of the plant at an earlier stage of growth,the critical values of initial Na/Ca ratio at which the plant could grow normally on soils containing salts of 2.5,3.5 and 4.5g kg^-1 were 30,20 and 15,respectively;(2)smaller Na/Ca ratio resulted in a considerable decrease in Na accumulation but a great increase in K accumulation in the barley plant;and (3) the plasmallema of barley leaf were badly injured when the Na/Ca ratio was more than 30 and the increase of Na content of plant caused an exudation of K from the leaf cells.Some critical indexes were suggested for the cultivation of barley plant on marine saline soils and could be used as reference in the biological reclamation of marine saline soils.  相似文献   

7.
The application of hydrochars as soil amendments could be an option to ameliorate soil quality by enhancing nutrient and water‐holding capacity of sandy soils. But when hydrochar application is directly followed by sowing, it can decrease the soil mineral‐N concentration and the germination rate of crops. We currently lack evidence, whether these effects are persistent or transient and thus can be avoided by adjusting the application strategy, e.g., by prolonging the period between application and sowing. A set of pot trials with spring barley (Hordeum vulgare L.) was performed to study the initial and subsequent effects of different hydrochar amendments on germination, biomass production, and plant N availability. To this end, two subsequent cultivations of barley were grown on hydrochar‐amended soil–peat substrates. The first barley cultivation was sown directly after hydrochar application. After the harvest, the same substrates were cultivated with barley again. Germination, biomass production, and N concentration in the biomass were reduced when sowing directly followed the application of hydrochars. Differences in germination rate and biomass production between hydrochar treatments depended on the hydrochar feedstock. A recultivation of the hydrochar‐amended substrates 9 weeks after hydrochar application showed no significant effects on germination and biomass production. The N concentration in plants was still lower in the hydrochar treatments despite additional fertilization. The N immobilized during the first cultivation period was not released in the following weeks. We conclude that the germination‐inhibiting substances in hydrochars were removed in the weeks after soil incorporation. This is probably due to microbial degradation of hydrochar components and a consecutive immobilization of mineral N. Hydrochar amendment had only short‐term effects on germination and biomass production of barley that can be avoided by applying hydrochar at least 4 weeks prior to sowing. The N concentration in plants was persistently low even 4 months after hydrochar application which can only be redeemed by adjusting the fertilization strategy.  相似文献   

8.
Summary This paper presents soil biological data from a study on the functioning of three soil-plant systems on a Gray Luvisol in Cryoboreal Subhumid central Alberta. The systems were (1) an agroecological 8-year rotation, (2) a continuous grain system, both established in 1981, and (3) a classical Breton 5-year rotation established in 1930. The objectives were to (1) determine whether changes in vesicular-arbuscular mycorrhizae (VAM) populations occurred in soil under these cropping systems, (2) discover whether these cropping systems and/or VAM infection influenced the incidence of common root rot (Bipolaris sorokiniana), and (3) use nutrient translocation indices to test the hypothesis that soil quality influences non-specific physiological conditions in barley (Hordeum vulgare L.). VAM fungal propagules in soil samples and VAM infection under controlled conditions were significantly affected by the cropping system. VAM infection accounted for more than 85% of the variability in grain yield, plant biomass yield, and plant uptake of K, S, Ca, Fe, and Zn under controlled conditions. Backward-elimination regression analyses showed that under these conditions of high available P, plant P uptake was governed by the quantity of extractable P in the soil (r 2=0.82); the VAM infection contributed practically nothing when combined with available P (R 2=0.84). Neither VAM infection nor the cropping system were related to the B. sorokiniana infection in the barley. The growth of B. sorokiniana was equal, and its sporulation superior, when grown on residues of the non-host fababean (Vicia faba L.), compared with growth on residues of barley. Higher translocation of plant nutrients to the grain in the agroecological compared with the continuous grain treatments suggested that VAM and/or the soil history affected plant physiology, possible through hormonal effects. Superior barley yields in the agroecological compared with the continuous grain treatments were partly due to increased VAM colonization, greater nutrient accumulation and translocation to the grain, but not to a reduced disease incidence. These results demonstrate the benefits of a holistic systems approach while studying biological interactions involving plants and groups of soil microorganisms.(ICRISAT journal article number 1161)  相似文献   

9.
Abstract

The main objective of this work was to determine whether nitrogen-use efficiency was affected by the application of different forms (iodide vs iodate) and dosages (20, 40 and 80 µM) of iodine, to ascertain the influence of this trace element in a biofortification programme in lettuce plants. The parameters analysed were root and shoot biomass, nitrate concentration, and organic and total nitrogen as well as those defining nitrogen-use efficiency in plants: total nitrogen content, total nitrogen accumulation, nitrogen-uptake efficiency and nitrogen-utilization efficiency. In addition to decreasing shoot biomass, iodide treatments reduced leaf levels of nitrates, organic nitrogen, and total nitrogen content. Iodate treatments did not affect the concentration of nitrogen in its different forms. The application of iodide caused total nitrogen accumulation and nitrogen-uptake efficiency to decrease, iodate application improved the latter. Both iodide and iodate applications significantly improved nitrogen-utilization efficiency in comparison to the control. The results obtained show that iodate application rates of 40 µM or lower significantly improved all nitrogen parameters analysed, making it possible to increase lettuce productivity and quality.  相似文献   

10.
Nitrate leaching as influenced by soil tillage and catch crop   总被引:1,自引:0,他引:1  
Because of public and political concern for the quality of surface and ground water, leaching of nitrate is of special concern in many countries. To evaluate the effects of tillage and growth of a catch crop on nitrate leaching, two field trials were conducted in spring barley (Hordeum vulgare L.) under temperate coastal climate conditions. On a coarse sand (1987–1992), ploughing in autumn or in spring in combination with perennial ryegrass (Lolium perenne L.) as a catch crop was evaluated. Furthermore, rotovating and direct drilling were included. The experiment was conducted on a 19-year-old field trial with continuous production of spring barley. On a sandy loam (1988–1992), ploughing in autumn or in spring in combination with stubble cultivation and perennial ryegrass, in addition to minimum tillage, was evaluated in a newly established field trial. For calculation of nitrate leaching, soil water isolates from depths of 0.8 or 1.0 m were taken using ceramic cups. No significant effect of tillage was found on the coarse sand; however, a significant effect of tillage was found on the sandy loam, where leaching from autumn ploughed plots without stubble cultivation was 16 kg N ha−1 year−1 higher than leaching from spring ploughed plots. Leaching was significantly less when stubble cultivation in autumn was omitted. Leaching on both soil types was significantly reduced by the growth of a catch crop which was ploughed under in autumn or in spring. It was concluded that soil cultivation increased leaching on the sandy loam but not on the coarse sand, and that the growth of perennial ryegrass as a catch crop reduced leaching on both soil types, particularly when ryegrass was ploughed under in spring.  相似文献   

11.
Summary It is commonly assumed that the adverse effect of plant residues on crop yields is largely or partly due to phytotoxic compounds leached from these residues or produced by their decomposition. There has been substantial support for the hypothesis that the phytotoxic compounds responsible for reduced crop yields are phenolic acids such as p-coumaric acid, p-hydroxybenzoic acid, and ferulic acid. To test the validity of this hypothesis, we studied the effects of nine phenolic acids (caffeic acid, chlorogenic acid, p-coumaric acid, ellagic acid, ferulic acid, gallic acid, p-hydroxybenzoic acid, syringic acid, and vanillic acid) on (1) seed germination of corn (Zea mays L.), barley (Hordeum vulgare L.), oats (Avena sativa L.), rye (Secale cereale L.), sorghum [Sorghum bicolor (L.) Moench], wheat (Triticum aestivum L.), and alfalfa (Medicago sativa L.) on germination paper and soil, (2) seedling growth of alfalfa, oats, sorghum, and wheat on germination paper and soil, and (3) early plant growth of corn, barley, oats, rye, sorghum, and wheat in soil. The results showed that although the phenolic acids tested affected germination and seedling growth on germination paper, they had no effect on seed germination, seedling growth, or early plant growth in soil even when the amounts applied were much greater than the amounts detected in soil. We conclude that the adverse effect of plant residues on crop yields is not due to phenolic acids derived from these residues.  相似文献   

12.
Iodine biofortification of butterhead lettuce (Lactuca sativa) via foliar sprays was investigated in field trials, focusing on assessing the influence of the time and application method. The iodine (I) concentrations in the edible plant parts increased when potassium iodide (KI) and potassium iodate (KIO3) solutions were sprayed at doses up to 0.25 kg I ha?1 on different dates close to harvest. Crop yield and marketable quality were not significantly affected by I treatments. A greater efficacy of KI was frequently observed and probably related to its lower point of deliquescence and smaller anion size in comparison with KIO3. KI sprays on butterhead lettuce at different times of the day resulted in a higher I enrichment when applied at 11:00 and 15:00 h. The diurnal variation in I uptake may reflect the impact of fluctuating climatic conditions at the time of application. Iodine treatments at different application dates near harvest led to an increasing I concentration in the vegetable produce that could be related to the rising shoot fresh mass and leaf area. When KI and KIO3 were sprayed simultaneously with commercial calcium fertilizers, fungicides or insecticides, I accumulation in butterhead lettuce was not negatively affected or in some cases even significantly enhanced. The results show that foliar sprays of KI and KIO3 are an effective method to biofortify butterhead lettuce with I and this approach may easily be implemented as a routine method in commercial cultivation.  相似文献   

13.
Iodine is an essential element in the human diet, and iodine deficiency is a significant health problem. No attempts to increase iodine content in plant‐derived food (biofortification) have so far been particularly effective. We studied iodine uptake in tomato (Solanum lycopersicum L.) to evaluate whether it is possible to increase the iodine concentration in its fruits. Iodine translocation and storage inside tomato tissues were studied using radioactive iodine. Potassium iodide was also supplied at different concentrations to tomato plants to evaluate the resulting iodide concentration both in the vegetative tissues and the fruits. The results indicate that iodine was taken up better when supplied to the roots using hydroponically grown plants. However, a considerable amount of iodine was also stored after leaf treatment, suggesting that iodine transport through phloem also occurred. We found that tomato plants can tolerate high levels of iodine, stored both in the vegetative tissues and fruits at concentrations that are more than sufficient for the human diet. We conclude that tomato is an excellent crop for iodine‐biofortification programs.  相似文献   

14.
The different oxidation species of iodine have markedly different sorption properties. Hence, changes in iodine redox states can greatly affect the mobility of iodine in the environment. Although a major microbial role has been suggested in the past to account for these redox changes, little has been done to elucidate the responsible microorganisms or the mechanisms involved. In the work presented here, direct microbial reduction of iodate was demonstrated with anaerobic cell suspensions of the sulfate reducing bacterium Desulfovibrio desulfuricans which reduced 96% of an initial 100 µM iodate to iodide at pH 7 in 30 mM NaHCO3 buffer, whereas anaerobic cell suspensions of the dissimilatory Fe(III)-reducing bacterium Shewanella putrefaciens were unable to reduce iodate in 30 mM NaHCO3 buffer (pH 7). Both D. desulfuricans and S. putrefaciens were able to reduce iodate at pH 7 in 10 mM HEPES buffer. Both soluble ferrous iron and sulfide, as well as iron monosulfide (FeS) were shown to abiologically reduce iodate to iodide. These results indicate that ferric iron and/or sulfate reducing bacteria are capable of mediating both direct, enzymatic, as well as abiotic reduction of iodate in natural anaerobic environments. These microbially mediated reactions may be important factors in the fate and transport of129 I in natural systems.  相似文献   

15.
The use of leaf symptoms and plant analysis in diagnosing and predicting yield depressions associated with boron (B) toxicity in barley was examined. Barley (Hordeum vulgare L., cv. Stirling) was grown in pots of a sandy soil to which six levels of B were added. With increasing additions to the soil, B accumulated in the older leaves, increasing leaf injury and senescence. Leaf injury symptoms at high levels of B supply appeared in time well before dry mailer was depressed. Root weight was decreased more than shoot weight. Grain filling was affected only at severe levels of B toxicity. Critical toxic concentrations (CTC) of B in shoots were found to vary between approximately 40 and 150 μg, depending on the stage of plant growth at the lime of B analysis and the yield parameter chosen. A distinction is made between CTC values of B that are diagnostic or prognostic.  相似文献   

16.
Summary Five bacterial strains capable of Mn reduction were isolated from the rhizosphere of plants growing in different South Australian soils. They differed in their Mn-reducing capacity. The antagonism of these strains compared to the imported strain 2–79 (from the United States) against Gaeumannomyces graminis var. tritici was tested in agar and in a soil sandwich experiment at different Mn2+ concentrations in the soil. In addition, wheat seeds were coated with the different strains and with MnSO4 or with MnSO4 only in order to investigate their effect on plant growth and Mn uptake. With one exception, all strains inhibited the growth of G. graminis in agar, but to different degrees. In contrast, only two strains significantly inhibited the growth of the fungus in the soil. The hyphal density was decreased more than the hyphal length. The Mn2+ concentration in the soil also had a marked effect on fungal growth; low Mn concentrations slightly increased while high Mn concentrations strongly decreased the fungal growth. Seed treatment with MnSO4 only (+Mn) increased Mn uptake above that of the control (no seed treatment). Only the weakest Mn reducer on agar significantly increased plant growth and Mn uptake from soil in comparison with the Mn treatment. One strain was tested as seed coating without adding MnSO4; it increased the plant growth to an extent similar to the Mn treatment. Increasing the Mn uptake by plants may be one of the growth-promoting effects exerted by rhizosphere bacteria.  相似文献   

17.
The effects of mouldboard ploughing, shallow tined cultivation and direct drilling on yields of winter wheat, barley, oats and oilseed rape were compared over 10 years. Three field experiments were conducted on two non-calcareous clays (stagnogleys) and a weakly structured silty soil (argillic brown earth). Two spring N levels were applied to the winter wheat plots on the clay soil in three years and to the winter barley plots on the silty soil in one year. This paper reports the soil bulk density and water content at sowing and the crop growth, yield components and yields obtained during the later years of the study: 1979–1984 on the clayey soils and 1981–1984 on the silty soil.

In the years when cereals were grown, differences in yield between cultivation treatments were small and inconsistent. Oilseed rape yielded significantly more after direct drilling than ploughing because of better establishment and uniformity of growth.

The success of continuous reduced tillage depended on both burning crop residues and good weed control.  相似文献   


18.
In acid soil, low pH, reduced availability of nutrients, and toxicity of Al and Mn limit plant growth and the survival and effectiveness of rhizobia. The symbiosis between legumes and rhizobia is particularly sensitive to acid soil stress. A pot experiment evaluated whether Bradyrhizobium japonicum strain growth on acidic agar media would predict ability to colonize the rhizosphere and form effective nodules in acidic soils. Three Indonesian strains of B. japonicum with similar effectiveness at neutral pH in sand culture but with different tolerance of acid soil stress factors in agar media, and an acid-tolerant commercial strain (CB1809) of comparable effectiveness, were tested in three acid soils using the Al tolerant soybean (Glycine max cv PI 416937). At 7 days after inoculation all strains had achieved large rhizosphere populations, but by day 14 the rhizosphere population of the acid-sensitive strain had decreased, while the more acid-tolerant strains increased. The acid-tolerant strains had significantly greater nodulation and symbiotic effectiveness than plants inoculated with the acid-sensitive strain. Laboratory prescreening of B. japonicum for acid, Al and Mn tolerance in acid media successfully identified strains which were symbiotically competent in low pH soils.  相似文献   

19.
Abstract

Biofertilizers are an alternative to mineral fertilizers for increasing soil productivity and plant growth in sustainable agriculture. The objective of this study was to evaluate possible effects of three mineral fertilizers and four plant growth promoting rhizobacteria (PGPR) strains as biofertilizer on soil properties and seedling growth of barley (Hordeum vulgare) at three different soil bulk densities, and in three harvest periods. The application treatments included the control (without bacteria inoculation and mineral fertilizers), mineral fertilizers (N, NP and P) and plant growth promoting rhizobacteria species (Bacillus licheniformis RC04, Paenibacillus polymyxa RC05, Pseudomonas putida RC06, and Bacillus OSU-142) in sterilized soil. The PGPR, fungi, seedling growth, soil pH, organic matter content, available P and mineral nitrogen were determined in soil compacted artificially to three bulk density levels (1.1, 1.25 and 1.40 Mg m?3) at 15, 30, and 45 days of plant harvest. The results showed that all the inoculated bacteria contributed to the amount of mineral nitrogen. Seed inoculation significantly increased the count of bacteria and fungi. Data suggest that seed inoculation of barley with PGPR strains tested increased root weight by 9–12.2%, and shoot weight by 29.7–43.3% compared with control. The N, NP and P application, however, increased root weight up to 18.2, 25.0 and 7.4% and shoot weight by 31.6, 43.4 and 26.4%, respectively. Our data show that PGPR stimulate barley growth and could be used as an alternative to chemical fertilizer. Soil compaction hampers the beneficial plant growth promoting properties of PGPR and should be avoided.  相似文献   

20.
More than 10 million metric tons of spent mushroom compost (SMC), which is a by-product of Agaricus bisporus mushroom, is produced in the world. Adding the compost to the soil resulted in improving the nutritional status of the plants. This study aims experiment is to study the effect of SMC on cucumber plant growth. A basic property of SMC and high concentrations of soluble salts restricted its implementation in the agricultural arena. The SMC was leached in order to reduce its salinity. Leached spent mushroom compost has less salinity while carbon and nitrogen content as well as inorganic cation components did not change significantly when compared to non-leached SMC. To study the effects of SMC on plant growth, leached SMC in rates of 15, 25, 35, and 45% were added to a sandy-loam soil medium. Cucumber plant growth rate was evaluated based on fruit number and plant height. Results showed that additions of 15% and 25% leached SMC to growing media significantly improved the cucumber plants growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号