首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Knowing the concentrations of the nutrient elements in soils is important due to their toxic effect on humans and the environment. The aims of this study were to assess the effects of water quality, depths, and distances of lateral installation on soil chemical properties during turfgrass cultivation. A field experiment was conducted using a Split-Split-Plot design based on the randomized complete block (RCB) design with two treatments (well water and wastewater) and eight sub-treatments (45 and 60 cm distance of the laterals and 15, 20, 25, and 30 cm depths of laterals) in three replicates on a sandy loam soil, in Shahrekord, Iran. Soil samples were collected from 0 to 30 and 30 to 60 cm depth for measuring nitrate (NO3?), electrical conductivity (EC), and pH at the end of the experiment. During the experiment, fecal coliform was also measured at the soil surface. Results indicated that by increasing lateral distance, NO3? level increased in both layers. With installing laterals in deeper levels, NO3? concentration decreased at the beginning, then increased in the first layer, whereas in the second layer, NO3? concentration decreased. In addition, installing laterals in deeper depth caused an increase in soil EC in the top layer, but a decrease in the lower layer. However, the results showed that there was no significant effect of the treatments (well water and wastewater) and the sub-treatments (distance and depths of laterals) on soil pH. The results also show that with increasing laterals depth, fecal coliform level decreased at the soil surface.  相似文献   

2.
The objective of this study was to investigate changes in the composition of the soil microbial community brought about by urea application and differences in the incorporation of urea-derived C into the soil phospholipid fatty acid (PLFA) pool at differing soil pH. We selected four soils which ranged in pH from 3.9 to 7.8. 13C-labeled urea was applied at two concentrations 100 and 200 mg N kg?1 which represents commonly used and high levels of application. Significant hydrolysis of applied urea occurred within 2 h; less than 2 % of urea-C was retained in the soil with one exception, the fluvo-aquic soil at pH 7.8 amended with 200 mg kg?1 urea-N 3 days after urea application. According to principal component analysis (PCA), the effect of urea and incubation time on microbial community composition was far weaker than differences between the four soils due to their large differences in basic properties; the scores of PC2 were significantly correlated with pH values. The incorporation of 13C-urea to PLFAs increased with soil pH; this may be related to increases in the speciation of inorganic C into bicarbonate.13C label was primarily incorporated into 16:1ω5c, 16:0, and cy19:0 in red soil, pH 3.9; and into 16:1ω7c, 16:0, and 16:1ω5c in fluvo-aquic soil, pH 7.8. A wider range of PLFAs became labeled in the two paddy soils at pH 5.2 and 6.7. This suggests that the profile of PLFAs labeled from the application of 13C-urea may be affected by redox potential.  相似文献   

3.
Recently, large areas of tropical peatland have been converted into agricultural fields. To be used for agricultural activities, peat soils need to be drained, limed and fertilized due to excess water, low nutrient content and high acidity. Water depth and amelioration have significant effects on greenhouse gas (GHG) production. Twenty-seven soil samples were collected from Jabiren, Central Kalimantan, Indonesia, in 2014 to examine the effect of water depth and amelioration on GHG emissions. Soil columns were formed in the peatland using polyvinyl chloride (PVC) pipe with a diameter of 21 cm and a length of 100 cm. The PVC pipe was inserted vertically into the soil to a depth of 100 cm and carefully pulled up with the soil inside after sealing the bottom. The treatments consisting of three static water depths (15, 35 and 55 cm from the soil surface) and three ameliorants (without ameliorant/control, biochar+compost and steel slag+compost) were arranged using a randomized block design with two factors and three replications. Fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from the soil columns were measured weekly. There was a linear relationship between water depth and CO2 emissions. No significant difference was observed in the CH4 emissions in response to water depth and amelioration. The ameliorations influenced the CO2 and N2O emissions from the peat soil. The application of biochar+compost enhanced the CO2 and N2O emissions but reduced the CH4 emission. Moreover, the application of steel slag+compost increased the emissions of all three gases. The highest CO2 and N2O emissions occurred in response to the biochar+compost treatment followed by the steel slag-compost treatment and without ameliorant. Soil pH, redox potential (Eh) and temperature influenced the CO2, CH4 and N2O fluxes. Experiments for monitoring water depth and amelioration should be developed using peat soil as well as peat soil–crop systems.  相似文献   

4.
Batch experiments were performed to denitrify groundwater using sawdust as a carbon source at Marydale, South Africa. Alkalinity, pH, electrical conductivity, nitrate, nitrite, ammonia, SO 4 2? , heterotrophic plate count (HPC), dissolved organic carbon (DOC), potassium and chloride were monitored. Two soil depths, 75 to 100 and 165 to 200 cm, respectively, from the Marydale area were used as matrix material during denitrification based on contrasting chemical composition with respect to major ion composition and moisture to consider different denitrification rates for varying soil depths. Different N to C ratios were used to evaluate the denitrification efficiency and the least undesirable products, e.g., elevated SO 4 2? , H2S and other reduced compounds. DOC is directly proportional to the N to C ratio used. Nitrite was produced for most of the treatments as incomplete denitrification occurred. The incubation periods were 28 and 43 days, respectively. N to C ratios were 12.6:1, 24:1, 34:1 and 54:1. Longer incubation period and higher N to C ratio resulted in total removal of both nitrate and nitrite. The reaction was carbon-limited for lower N to C ratios. The denitrification rate was proportional to the carbon availability at any time during the experiment. There was no significant difference in denitrification using heterogeneous and homogeneous particle sizes for sawdust. Soil depth of 75–100 cm displayed a greater denitrification rate than 165–200-cm soil depth due to higher initial soil nitrate concentration. The method showed some specificity, as DOC, nitrite, nitrate, alkalinity and HPC were the only parameters that showed a change in concentration over the duration of the denitrification experiment under constant temperature and nitrogen gas atmosphere. DOC and HPC were unacceptable for domestic use, but methods such as boiling or chlorinating water can rid it of bacteria.  相似文献   

5.
Two acidic soils (initial pH, 4.6) with contrasting soil organic C (SOC) contents (11.5 and 40 g C kg?1) were incubated with 13C-labelled lime (Ca13CO3) at four different rates (nil, target pH 5, 5.8 and 6.5) and three application depths (0–10, 20–30 and 0–30 cm). We hypothesised that liming would stimulate SOC mineralisation by removing pH constraints on soil microbes and that the increase in mineralisation in limed soil would be greatest in the high-C soil and lowest when the lime was applied in the subsoil. While greater SOC mineralisation was observed during the first 3 days, likely due to lime-induced increases in SOC solubility, this effect was transient. In contrast, SOC mineralisation was lower in limed than in non-limed soils over the 87-day study, although only significant in the Tenosol (70 μg C g?1 soil, 9.15%). We propose that the decrease in SOC mineralisation following liming in the low-C soil was due to increased microbial C-use efficiency, as soil microbial communities used less energy maintaining intracellular pH or community composition changed. A greater reduction in SOC mineralisation in the Tenosol for low rates of lime (0.3 and 0.5 g column?1) or when the high lime rate (0.8 g column?1) was mixed through the entire soil column without changes in microbial biomass C (MBC) could indicate a more pronounced stabilising effect of Ca2+ in the Tenosol than the Chromosol with higher clay content and pH buffer capacity. Our study suggests that liming to ameliorate soil acidity constraints on crop productivity may also help to reduce soil C mineralisation in some soils.  相似文献   

6.
This study evaluated physical properties of selected soil series and their implications on the soil compaction and erosion in Abeokuta, southwestern Nigeria. Daily rainfall data (1999–2007) were collected to estimate the rainfall erosivity. Seven soil series (Iwo, Iseyin, Ekiti, Jago, Okemesi, Apomu, and Egbeda) were sampled from 0–15, 15–30, and 30–50 cm depths for particle size distribution, organic carbon, pH, upper plastic limit, and compactibility (Proctor test). Microtopographical changes along and across toposequences of two farmers’ fields cleared mechanically and manually, respectively, were monitored using the erosion pin method. Mean annual erosivity (EI30) was high (7646 MJ mm ha?1 hr?1). Particle size, organic carbon, and pH were similar (p ≥ 0.05), while upper plastic moisture was ≤?2% among different soil series. Soil-moisture density curves indicated a maximum bulk density of 1.77–1.99 g cm?3 for a moisture range of 7.6–14%; while the soils were prone to compaction at low moisture content. Microtopographic changes were found between –2 and 0 cm and –8 and –2 cm on mechanically and manually cleared farmland, respectively. Spatial dependence showed that the soil erosion could be predicted within 5–8 m distance. To avoid erosion and compaction, soil water content should be less than 7.6% before the introduction of mechanical tillage.  相似文献   

7.
The activities of three extracellular hydrolytic enzymes, soil invertase, urease, and alkaline phosphatase (AlP), were measured across seasons and with the experimental addition of nitrogen (N) in the soil of the Gurbantunggut Desert, Northwest China. Seasonal fluctuations in hydrolytic enzyme activities were not correlated with seasonal variations in soil temperature, water content, pH, conductance, and organic carbon. Invertase and AlP activities increased with low rates of N addition, peaked at a N addition rate of 3.0 g N m?2 y?1, and then decreased at higher N addition rates. Urease activity decreased with increasing N addition. Higher organic matter content in the upper depths of soil resulted in higher hydrolytic enzyme activity at depths of 0–5 cm in soil samples and hydrolytic enzyme activity at that depth was more sensitive to N addition and seasonal environmental factors than that at depths of 5–10 cm in soil samples.  相似文献   

8.
The concentrations of As and Zn in 100 georeferenced soils uniformly distributed throughout the area affected by the spill from the Aznalcóllar mine (April 1998) were analysed at three depths (0–10, 10–30, and 30–50 cm) and on four dates (autumn–winter 1998, 1999, 2001, and 2004). For an estimate of the geochemical background, 30 unaffected soils near the edge of the spill were also analysed at the same depths. The soils were contaminated before the spill and, the accident seriously increased the concentration of As and Zn in the first 10 cm of almost all the affected soils. After the enormous efforts of cleaning up the tailings, around 45% of the soils had a concentration higher than 100 mg As kg?1 dry soil, and some 35% had a concentration higher than 1,000 mg Zn kg?1 dry soil. Both As and Zn penetrated between 10 and 30 cm in 25% and 45% of the soils, respectively, but reached 30 cm in only 12% of the soils. The remediation actions, especially the tilling and homogenisation of the uppermost 25 cm of the all soils, caused the As and Zn concentrations to decline in the soils, but this change was not very effective from the standpoint of pollution. Thus, 6 years after the spill, the uppermost 10 cm of 30% of the soils continued to have an As concentration higher than 100 mg As kg?1, while the Zn concentration diminished considerably on the surface due to its greater mobility, accumulating between 10 and 30 cm in depth, where 20% of the soils continued to register more than 1,000 mg Zn kg?1 dry soil.  相似文献   

9.
Biochar can play a key role in nutrient cycling, potentially affecting nitrogen retention when applied to soils. In this project, laboratory experiments were conducted to investigate the adsorption properties of bamboo charcoal (BC) and the influence of BC on nitrogen retention at different soil depths using multi-layered soil columns. Results showed that BC could adsorb ammonium ion predominantly by cation exchange. Ammonium nitrogen (NH4 +-N) concentrations in the leachate of the soil columns showed significant differences at different depths after ammonium chloride application to the columns depending on whether BC had been added. Addition of 0.5% BC to the surface soil layer retarded the downward transport of NH4 +-N in the 70-day experiment, as indicated by measurements made during the first 7 days at 10 cm, and later, in the experimental period at 20 cm. In addition, application of BC reduced overall cumulative losses of NH4 +-N via leaching at 20 cm by 15.2%. Data appeared to suggest that BC could be used as a potential nutrient-retaining additive in order to increase the utilization efficiency of chemical fertilizers. Nonetheless, the effect of BC addition on controlling soil nitrogen losses through leaching needs to be further assessed before large-scale applications to agricultural fields are implemented.  相似文献   

10.
Abstract

The use and disposal of biosolids, or wastewater treatment sludge, as a fertilizer and soil amendment is becoming increasingly widespread. We evaluated the multiyear use of biosolids in apricot (Prunus armeniaca L.) production, grown on productive agricultural soils. Class A biosolids were initially applied annually at rates of 0, 1.9, 5.8, and 11.7 Mg · ha?1 (dry basis) to a 2‐year‐old apricot orchard on the USDA‐ARS research site on the eastern side of the San Joaquin Valley, CA. These application rates provided estimated rates of 0 (control), 57, 170, and 340 kg total N · ha?1 yr?1, respectively. Compared to the control treatment, the applications of biosolids significantly increased soil salinity (electrical conductivity from 1:1 soil–water extract) and total concentrations of nutrients [e.g., calcium (Ca), magnesium (Mg), sulfur (S), phosphorus (P), zinc (Zn), and copper (Cu)] after 7 years but did not increase the concentrations of selected metals [cadmium (Cd), chromium (Cr), cobalt (Co), nickel (Ni), and lead (Pb)] between 0‐ and 60‐cm soil depths. Mean concentrations of total nitrogen (N) and carbon (C) in soils (0‐ to 15‐cm depth) ranged from a low of 1.3 g kg?1 to a high of 5.2 g · kg?1 and from 14.1 g · kg?1 to 45.7 g · kg?1 for the control and high biosolids treated soils, respectively.

Biosolids applications did not lead to fruit yield reductions, although fruit maturation was generally delayed and more fruits appeared at picking times at the high rate of application. Yellow fruits collected from all biosolids applications were significantly firmer than were fruit collected from control trees, and they had higher concentrations of Ca, potassium (K), S, iron (Fe), and Zn in the fruit. Among the fruit quality parameters tested, the juice pH, total acidity, and fruit skin color were not significantly affected by biosolids applications. Malic acid concentrations decreased most of the time, while citric acid concentrations increased with increasing rates of biosolids applications. Overall, our results suggest that nonindustrial biosolids applied at an annual rate at or less than 11.7 Mg N · ha?1 (340 kg N · ha?1) can be safely used for apricot production on sandy loam soils.  相似文献   

11.
A laboratory column experiment was conducted to investigate the effects of 400°C biochar at application rate of 15 g kg?1 (21.9 t ha?1) with different particle sizes (<0.5 mm (S1), 0.5–1 mm (S2) and 1–2 mm (S3)) and application depths (0–2 cm depth (D0), 4–6 cm depth (D5) and 8–10 cm depth (D10)) on hydro-physical properties of sandy loam soil. The results indicated that applying biochar decreased the waterfront and saturated hydraulic conductivity of sandy loam soil. The cumulative evaporation was the highest and amounted to 40.9 mm in the non-treated soil, but it recorded the lowest amount of 32.2–35.5 mm in the biochar-treated soil. Applying biochar caused significant increases in the amount of conserved and retained water with the highest amount of water conserved in soil treated with S2 biochar at D5. Moreover, the cumulative water infiltration through the soil was significantly reduced by S1 and S2 biochars at D0. The values of saturated hydraulic conductivity for biochar treatments were significantly lower than those for the control, with the lowest values for S1 at D0 and D5. These results suggest positive improvement for the hydro-properties of coarse-textured soils following biochar addition, especially with finer particles of biochar.  相似文献   

12.

Purpose

With the increase of surfactant usages, more and more concerns were paid on their effects on the physicochemical characteristics of soils. Up to now, only few researches have examined the effects of ionic surfactants on the stability of soil structure and soil water repellency.

Materials and methods

Cetyltrimethyl ammonium bromide (CTAB) as cationic surfactant and sodium dodecyl sulfate (SDS) as anionic surfactant were adopted to investigate their effects on the aggregate stability and water repellency of a silt loam soil which was sampled in Corn High-Tech Park, Huang-Huai-Hai region, China. (1) Aggregate stability: 50 g soil was mixture with 100 mL surfactant solution in a beaker. The concentrations of surfactant solutions were 0 (the blank), 200, 400, 600, 800, 1000, and 2000 mg L?1, respectively. After 30 min, the soil was sieved and divided into four fraction aggregates. (2) Soil water repellency: the concentrations of surfactant solutions were the same as experiment 1. Forty grams of soil was blended with 80 mL surfactant solution in an aluminum specimen. Drying the water by oven of 40 °C firstly and then by air, the whole period was about 1 week. After that, soil water infiltration and sorptivity were measured.

Results and discussion

Compared to the blank, surfactants increased the amounts of 2–0.25 and <0.053 mm aggregates of the soil and decreased the amounts of 0.25–0.053 mm aggregates of the soil. Surfactants also increased the mean weight diameter (MWD) of the soil. Except the 200 mg L?1 treatment, CTAB promoted the soil water infiltration. All SDS treatments impeded the soil water infiltration. The soil repellency factor (R) value of the blank was 1.22, lower than the critical value of 1.95, which implied that the soil of blank treatment was free of soil water repellency. For CTAB, only 200 and 400 mg L?1 treatment’s R were higher than 1.95 while for SDS, all the treatment’s R were higher than 1.95.

Conclusions

Surfactants improved the stability of soil aggregates. Soil treated with CTAB did not show the repellency, whereas SDS treatment resulted in intense water repellency compared with the wettable blank soil. Findings of this study can be used to explain the role of ionic surfactants on soil structure stability as well as on the development of water repellency in lower soil depths.
  相似文献   

13.
Straw mulching has been used to conserve soil water and sustain dryland crop yields, but the impact of the quantity and time of mulching on soil C fractions are not well documented. We studied the effects of various amounts and times of wheat (Triticum aestivum L.) straw mulching on soil C fractions at 0–10- and 10–20-cm depths from 2009 to 2017 in the Loess Plateau of China. Treatments were no mulching (CK), straw mulching at 9.0 (HSM) and 4.5 Mg ha?1 (LSM) in the winter wheat growing season, and straw mulching at 9.0 Mg ha?1 in the summer fallow period (FSM). Soil C fractions were soil organic C (SOC), particulate organic C (POC), microbial biomass C (MBC), and potential C mineralization (PCM). All C fractions at 0–10 and 10–20 cm were 8–27% greater with HSM and LSM than FSM and CK. Both SOC and POC at 0–10 cm increased at 0.32 and 0.27 Mg ha?1 year?1 with HSM and at 0.40 and 0.30 Mg C ha?1 year?1 with LSM, respectively, from 2009 to 2017. Winter wheat grain yield was lower with HSM and LSM, but total aboveground biomass was greater with HSM than other treatments. All C fractions at most depths were correlated with the estimated wheat root residue returned to the soil and PCM at 0–10 and 0–20 cm was correlated with wheat grain yield. Wheat straw mulching during the growing season increased soil C sequestration and microbial biomass and activity compared with mulching during the fallow period or no mulching, regardless of mulching rate, due to increased C input, although it reduced wheat grain yield. Continuous application of straw mulching over time can increase soil C sequestration by increasing nonlabile C fractions while decreasing labile fractions. Straw mulching at higher rate and mulching during the summer fallow period had no additional benefits in soil C sequestration.  相似文献   

14.
Abstract

In the course of a series of studies conducted to investigate the long-term behavior of 129I (which has a half-life of 16 million years) in the environment, seasonal variation in the concentration of stable iodine (127I) in precipitation and soil water to a depth of 2.5 m in a forest plot, an upland field and a paddy field in the upland area of Tsukuba, Japan, were determined. Iodine concentration in precipitation tended to increase during the summer (high air temperature) season and low-rainfall period, and a positive high correlation was observed between annual rainfall and the annual amount of iodine supplied by precipitation. No seasonal variations in iodine concentration in soil water were observed at any depth in the forest plot and upland field unlike at shallow depths (0.2 and 0.5 m) in the paddy field. In the paddy field, from the beginning of summer irrigation, under flooding conditions, iodine concentration in soil water at shallow depths (0.2 and 0.5 m) continuously increased, and immediately before mid-summer (intermittent) drainage and drainage, the maximum iodine concentration (approximately 50 µg L?1) and lowest Eh values (approximately ?150 to ?200 mV) were recorded. These high iodine concentration levels and low Eh values were ascribed to high air temperature (approximately > 25°C on average every 10 days) and the continuation of the groundwater level above the ground surface. As for the temporary winter irrigation period (mean daily air temperature 2?4°C), the iodine concentration was low (1.7–3.7 µg L?1) at all depths, as was the case in the non-irrigation period. After mid-summer drainage, and drainage, the iodine concentration in soil water at depths of 0.2 and 0.5 m decreased drastically as the groundwater level decreased. The mean annual amount of iodine accumulated in the surface soil horizons (0–0.67 m) in the forest plot was estimated to be approximately 2.9 mg m?2 (7.5 µg kg?1 dry soil), which coincided with the mean annual amount of iodine supplied to the earth surface by precipitation. A mildly oxidative subsurface 2Bw horizon (0.60–0.89 m) in the paddy field was estimated to illuviate approximately 3.1 mg m?2 (20 µg kg?1 dry soil) of iodine annually by retaining iodine in the soil water percolated to this horizon.  相似文献   

15.
Two sets of column (70 cm)-leaching experiments were carried out by using pyritic marine sediments of Kojima lake (Okayama, Japan) to evaluate the influence of soil microorganisms (SMO), duration of oxidation, intensity of rainfall, and groundwater level on the changes in soil pH and dynamics of associated elements. The soil contained 6.5 g kg-1 pyrite, 43 g kg-1 organic carbon, and had a pH value of 8.0 determined by the sticky point method. The pH of the non-sterile soils (with SMO=set I) showed an acidic range (pH <6.5) after 2 weeks of incubation. A pronounced decrease of the pH (3–4) was detected during the 32-week period of incubation, while a more alkaline range of pH (>8.5) was recorded at the lower depths (40–50 cm) with the passage of time in most of the soils initially sterilized (without SMO=set II). When the water (25±2% air v.) content was about 200%, the pH of the non-sterile soils was less than 6 after 16 weeks of incubation, while for the same water content at 32 weeks after incubation, the pH of the soils was about 1 unit lower than that of the 16 weeks after incubation. However, the pH in sterilized soils was less than 6 after 32 weeks of incubation for a water content of about 150% (40±2% air v.), whereas, at such (40±2% air v.) levels of water or oxygenation, the pH of the soils decreased to about 3 in all the treatments with SMO. Application of rainfall and changes in the groundwater significantly (p≤0.01) enhanced the development of acidity in the top soils (0–15 cm) through leaching losses of Ca2+ and Mg2+, and led to a substantial increase of the amounts of water-extractable Fe3+ and A13+, indicating that the soils may have become permanently acidic through leaching.  相似文献   

16.
Abstract

In Oxisols, acidity is the principal limiting factor for crop production. In recent years, because of intensive cropping on these soils, deficiency of micronutrients is increasing. A field experiment was conducted on an Oxisol during three consecutive years to assess the response of common bean (Phaseolus vulgaris L.) under a no‐tillage system to varying rates of lime (0, 12, and 24 Mg ha?1) and boron (0, 2, 4, 8, 12, 16, and 24 kg ha?1) application. Both time and boron (B) were applied as broadcast and incorporated into the soil at the beginning of the study. Changes in selected soil chemical properties in the soil profile (0- to 10‐ and 10- to 20‐cm depths) with liming were also determined. During all three years, gain yields increased significantly with the application of lime. However, B application significantly increased common bean yield in only the first crop. Only lime application significantly affected the soil chemical properties [pH; calcium (Ca2+); magnesium (Mg2+); hydrogen (H+)+ aluminum (Al3+); base saturation; acidity saturation; cation exchange capacity (CEC); percent saturation of Ca2+, Mg2+, and potassium (K+); and ratios of exchangeable Ca/Mg, Ca/K, and Mg/K] at both soil depths (0–10 cm and 10–20 cm). A positive significant association was observed between grain yield and soil chemical properties. Averaged across two depths and three crops, common bean produced maximum grain yield at soil pHw of 6.7, exchangeable (cmolc kg?1) of Ca2+ 4.9, Mg2+ 2.2, H++Al3+ 2.6, acidity saturation of 27.6%, CEC of 4.1 cmolc kg?1, base saturation of 72%, Ca saturation of 53.2%, Mg saturation of 17.6%, K saturation of 2.7%, Ca/Mg ratio of 2.8, Ca/K ratio of 25.7, and Mg/K ratio of 8.6. Soil organic matter did not change significantly with addition of lime.  相似文献   

17.
Abstract

Porous plates or cups are commonly used to collect soil solution samples in field studies or from intact soil columns. Some commonly used materials for porous plates may adsorb soil solution constituents such as phosphorus (P). An alternative to using a porous plate is to use a membrane filter with a known pore size and bubble point. The objective of this study was to evaluate the utility of polyethersulfone membranes (pore size 0.45 µm and bubble point >200 kPa) to extract soil solution from in situ soils and intact soil columns for phosphate analysis. In situ soil solution samplers were constructed from modified reusable polysulfone membrane filter holders equipped with polyethersulfone membranes (47 mm diameter). A ?10 kPa vacuum was maintained in the samplers, which enabled soil solution collection at soil water potentials of 0 to ?4 kPa in loamy sand, 0 to ?10 kPa in sandy loam, and 0 to ?12 kPa in sandy clay loam soils. In a laboratory study, soil solution samplers continued to hold a vacuum to ?77 kPa soil water potential. Soil solution samplers were further evaluated in a field study at 45‐, 90‐, and 135‐cm depths in two soils. Samplers operated with relatively few difficulties for the first 12 months of field evaluation. Membranes apparently dried during periods of low soil water potential but increases in soil moisture were sufficient to rewet the membrane. Sampler failures in the field increased during 13–18 months because aged vacuum tubing and root interferences with samplers at 45 cm. Improvements in sampler design may improve the durability for implementation in long‐term field experiments. Membrane filters worked near flawlessly to maintain unsaturated conditions in intact soil columns. The filter units facilitated easy collection of soil water from the intact soil columns without altering the chemical composition of the percolate.  相似文献   

18.
The objective of this study was to quantify inherent spatial variability and spatial cross-correlation of the van Genuchten retention parameters and saturated hydraulic conductivity (Ks) of surface and subsurface layers in a calcareous Inceptisols (Khuzestan province, Iran) under sugarcane cropping. Measurements were performed on 100-cm3 undisturbed soil cores collected at 94 locations along a 30-m-long transect with horizontal sampling distance intervals of 0.3 and 1 m at soil depths of 0–40 and 40–80 cm, respectively. Spatial variability was investigated using conventional statistics and geostatistical techniques. Coefficient of variation (CV) varied from 8.2% (for shape parameter, n at 40–80 cm depth) to 256.7% (for Ks at 0–40 cm depth). The n parameter and saturated water content, θs, showed a small-scale spatial heterogeneity with a maximum CV of 11.3% for the first depth and 9.2% for the second depth. Most of the hydraulic parameters at both depths showed a spatial structure and convex experimental semivariograms with dominant spherical models with the influence range of 3.2–41 m. In most cases, the extent of spatial correlation scales of cross-semivariograms for pairs of cross-correlated hydraulic variables was found to be different with reference to those relating to the direct semivariograms of correlated variables.  相似文献   

19.

Purpose

The concept of irrigating crops with saline irrigation water is not new, but impacts of this practice on soil properties remain debatable, particularly the use of highly saline water. In this work, key soil chemical properties were assessed to a depth of 300 cm following 2.5 years of application of highly saline irrigation to a sodic texture-contrast soil (Brown Sodosol) in south-eastern Tasmania, Australia.

Materials and methods

Control plots (rainfall only) were compared to irrigation treatments of low (0.8 dS/m) and high salinity (16 dS/m) waters at application rates of both 200 and 800 mm/year.

Results and discussion

Whilst significant increases in both electrical conductivity and chloride concentration occurred throughout the soil profile in the high salinity treatment, these values were well below those of the irrigation water, indicating effective deep leaching. In the upper soil profile, 0–50 cm, of the high salinity treatments both the exchangeable Na+ and its ratio to total base cations (ESP) were significantly increased whilst the lower soil profile between 50 and 200 cm, was improved via both reduced alkalinity and sodicity. Leaching of the exchangeable base cations Ca2+, Mg2+ and K+ was significant in the upper soil profile (0–50 cm). As expected, the low salinity treatment (0.8 dS/m) had minimal impacts on soil chemical properties. The upper topsoil (0–10 cm) total organic carbon was significantly reduced in the high salinity plots and was negatively correlated with Cl? concentration.

Conclusions

The data confirms the general concerns about application of saline irrigation, namely increased whole profile salinisation and upper soil profile (0–50 cm) sodicity, but they also show unexpected and desirable reductions in the lower soil profile (>?50 cm) alkalinity and sodicity. It appears the Na+ ions present in the saline waters led to differential leaching of base cations from the rooting zone, especially Ca2+ which then ameliorate the alkalinity and sodicity deeper in the soil profile (>?50 cm). Thus, surface application of gypsum may help sustain the application of highly saline waters; alternatively, subsurface irrigation above the sodic clayey subsoils could be trailed.
  相似文献   

20.
The acidification of the soil and percolation water at soildepths from 150 to 500 cm was studied at the Solling spruce sitefrom 1991 to 1996. NH4Cl exchangeable cations of the fineearth and bedrock fractions were obtained from different depthsand the soil solution composition was monitored at 150, 200,300, 400 and 500 cm depths using seven suction lysimeters at each depth.In the seepage water collected from 150 and 200 cm depth, pHvalues decreased in the period 1991 to 1996, but no significantchanges were observed in solutions collected below 200 cm depth.Element budgets of Al and Mb (Na, K, Mg, Ca) cationsindicated that buffering by exchange of Al with Mb cationsoccurred mainly in surface 200 cm soil depth. High variabilities in concentrations of SO4 (at 150 cm) andMa (Al, Mn, H, Fe) cations (at 300 and 500 cm) wereobserved. High variabilities in Ma cations could beassigned to one of the lysimeters at each depththat extracted low pH solutions. The amount of exchangeablecations in the fine earth and the bedrock fractions indicatedthat the acidification front (exchangeable Mb cations < 80equivalent percent) had occurred to soil depth of more than 360cm, but the extent of acidification that might have occurred inthe preindustrial period is not known. In both fine earth andbedrock fractions, depthwise changes of exchangeable Ma andMb cations were quite similar, suggesting that rockfractions have contributed to proton buffering not only bysilicate weathering but also by cation exchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号