首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most of the research comparing the effect of different row spacing on seed yield in soybeans [Glycine max (L.) Merr.] has been focused on row spacing effects on aboveground crop characteristics such as leaf area, right interception, pod number, or biomass accumulation and their relationships with seed yield. Little work has been done on the effects of narrow‐row spacing on root distribution. Plant distribution may also affect root distribution and interroot competition, and therefore, exploration and use of soil resources. A field experiment was carried out on the Pampas (Argentina) to determine the effect of narrow‐row spacing on root distribution within the topsoil in soybean, and whether different root distributions affect phosphorus uptake. In December 1993, soybeans were planted at two row spacings, narrow rows (0.35 m) and wide rows (0.70 m). Root density was measured during seed filling (92 days after planting) at several points within the inter‐row space down to a soil depth of 30 cm. Aboveground biomass was harvested at maturity and phosphorus (P) uptake was measured. Below the row line, narrow‐row soybeans showed a greater root density than the wide row treatment at 5–10 cm depth, while roots of the wide‐row soybeans had more lateral growth. Root density at both sides of the row down to a depth of 5 cm was greater for the wide‐row treatment. Average root density for each depth for a section of 70 cm wide across the row line indicated there was no significant difference between treatments at any depth. The fewer number of rows for the wide‐row spacing was compensated by a greater lateral extension of roots within the interrow space. This compensation resulted in a similar root density at each depth for both planting patterns, narrow and wide rows. Aboveground biomass and phosphorus concentration in plant tissue at maturity were not affected by row spacing. A similar phosphorus uptake for both treatments was consistent with the lack of effect of the different plant distribution on soil exploration by roots and on aboveground biomass accumulation.  相似文献   

2.
探讨株行距配置调整后密度对旱地覆膜春玉米连作稳产和水分利用的影响,为旱地雨养区春玉米高产稳产栽培提供依据。试验于2014—2017年在黄土旱塬区甘肃省镇原县(35°30′N,107°39′E)进行,以紧凑型耐密高产春玉米品种"先玉335"为试验材料,设55,75 cm 2种等行距垄沟覆盖种植方式,6.0,7.5,9.0,10.5万株/hm~2 4个种植密度水平,采用裂区设计,连作定位观测。使用烘干法测定不同处理春玉米生育期0—200 cm土层土壤水分,研究黄土旱塬连作春玉米籽粒产量和土壤剖面水分变化。结果表明,在试验设计行距下,在干旱年份55,75 cm行距0—200 cm土层土壤剖面水分均有低湿区形成,2种行距40—200 cm土层最低含水率均出现在160 cm土层剖面,55 cm行距土壤含水量为8.9%,75 cm行距土壤含水量为8.7%,受降水及植株生育耗水的影响,20—120 cm土层土壤水分变化较为剧烈。不论降水年型如何,2种行距下0—200 cm土壤深层水分均未产生土壤干层,75 cm行距低湿区较55 cm行距随年份变化有不同程度扩大,但2种行距下7.5~10.5万株/hm~2相同密度耗水量没有显著差异。4年平均产量75 cm行距相同密度均高于55 cm行距,9.0万株/hm~2及以下种植密度处理稳产性较好,密度由低到高产量分别增加2.2%,5.8%,4.1%和3.0%,平均水分利用效率分别提升1.1%,5.9%,0.3%和-1.5%,不同行距相同密度产量和水分利用效率没有显著差异。研究表明,在黄土旱塬区55,75 cm行距配置7.5万株/hm~2种植密度连作具有稳定产量,并且不会导致土壤深层水分亏缺至产生土壤干层,是较为理想的连作稳产株行距配置种植模式。  相似文献   

3.
《Journal of plant nutrition》2013,36(7):1383-1402
Abstract

Narrow‐row soybean [Glycine max (L.) Merr.] production in corn [Zea mays L.]–soybean rotations results in various distances of soybean rows from previous corn rows, yet little is known about soybean responses to proximity to prior corn rows in no‐till systems. The objective of this study was to evaluate the impacts of preceding corn rows on potassium (K) nutrition and yield of subsequent no‐till soybeans. Four field experiments involving a corn–soybean rotation were conducted on long‐term no‐till fields with low to medium K levels from 1998 to 2000 near Paris and Kirkton, Ontario, Canada. In the corn year, treatments included K application rate and placement in conjunction with tillage systems or corn hybrids. Before soybean flowering, soil exchangeable K concentrations (0–20 cm depth) in previous corn rows were significantly higher than those between corn rows. At the initial flowering stage, trifoliate leaf K concentrations of soybeans in preceding corn rows were 2.0 to 5.3 g kg?1 higher than those from corresponding plants between corn rows. Yield of no‐till soybeans in previous corn rows increased 10 to 44% compared to those between previous corn rows. Positive impacts of prior corn rows on soil K fertility, soybean leaf K, and soybean yield occurred even when K fertilizer was not applied in the prior corn season. Deep banding of K fertilizer tended to accentuate row vs. between‐row effects on soybean leaf K concentrations in low‐testing soils. Corn row effects on soybeans were generally not affected by either tillage system or corn hybrid employed in the prior corn crop. Potassium management strategies for narrow‐row no‐till soybeans should take the potential preceding corn row impacts on soil K distribution into account; adjustments to current soil sampling protocols may be warranted when narrow‐row no‐till soybeans follow corn on soils with low to medium levels of exchangeable K.  相似文献   

4.
14C and 15N-labelled immature wheat straw was incubated in the laboratory for 450 days in either a sandy soil or a clay soil, under controlled conditions of temperature and humidity. One-half of the treatments were cropped 4 times in succession with spring wheat. After each harvest, the roots and shoots were removed from the soil. The remaining treatments were kept bare, without plants. After 277 days, 1% unlabelled wheat straw was again mixed with the soils. Microbial biomass was measured after 0, 25, 53, 80, 185, 318 and 430 days, using the fumigation technique. This paper presents the 14C-data.The half-life of the labelled compounds in soil was from 60 to 70 days. After 430 days about 10% more labelled C remained in bare soil than in cropped soil. Labelled biomass carbon reached its maximum before day 25. By then 50% of the biomass-C was labelled and the biomass represented 20% of the total labelled C remaining in the soils. This percentage decreased slowly to 15% after 430 days in bare sandy soil and to 17% in bare clay soil. A second incorporation of plant material, this time unlabelled, did not appreciably alter the shape of the curve representing the decrease of labelled C in biomass, expressed as % of the total remaining labelled C. Total biomass-C (labelled + unlabelled) in cropped soil was sometimes higher and sometimes lower than in bare soil. However, the labelled C/total C ratio in biomass was always lower; in cropped soils than in soils without plants, clearly showing the effect of rhizodeposition. From days 25 to 430 an increasing difference appeared between the ratio labelled C/total and C in CO2 and the corresponding ratio labelled C/total C in biomass. In CO2-C the ratio diminished rapidly, in biomass-C it remained at a high level, most probably indicating a lower turnover of C in resting but living microorganisms. Other explanations are also discussed. The amount of CO2-C released mg?1 of biomass-C was higher in cropped than in bare soil, presumably because the microorganisms were activated by the living (or dying) root system.  相似文献   

5.
The emission of CO2 from Galician (NW Spain) forest, grassland and cropped soils was studied in a laboratory experiment, at different temperatures (10-35 °C) and at moisture contents of 100% and 160% of the field capacity (FC) of each soil (the latter value corresponds to saturated conditions, and represents between 120% and 140% of the water holding capacity, depending on the soil). In the forest soil, respiration in the flooded samples at all temperatures was lower than that at 100% field capacity. In the agricultural (grassland and cropped) soils the emission was higher (particularly at the highest incubation temperatures) in the soils wetted to 160% of the field capacity than in those wetted to 100% of the field capacity. In all cases the emission followed first order kinetics and the mineralization constants increased exponentially with temperature. In the forest soil, the Q10 values were almost the same in the soils incubated at the two moisture contents. The grassland and cropped soils displayed different responses, as the Q10 values were higher in the soils at 160% than in those at 100% of field capacity. In addition, and particularly at the highest temperatures, the rate of respiration increased sharply 9 and 17 days after the start of the incubation in the grassland and in the cropped soil, respectively. The above-mentioned anomalous response of the grassland and cropped soils under flooding conditions may be related to the agricultural use of the soils and possibly to the intense use of organic fertilizers in these soils (more than 150 kg N ha−1 year−1 added as cattle slurry or manure, respectively, in the grassland and cropped soils). The observed increase in respiration may either be related to the development of thermophilic facultative anaerobic microbes or to the formation during the incubation period of a readily metabolizable substrate, possibly originating from the remains of organic fertilizers, made accessible by physicochemical processes that occurred during incubation under conditions of high moisture.  相似文献   

6.
Ridge and furrow systems as well as the wide-narrow row spacing are recognized as good management practices in crop production. To obtain some available information concerning the suitable agricultural practices for buckwheat cultivation in arid and semi-arid area, a two-year field study was conducted to investigate the performance of common buckwheat grown under six cropping patterns: conventional flat single/double row planting (NS/ND); furrow single/double row planting (FS/FD); ridge single/double row planting (RS/RD); single row planting with equal row spacing and double row planting with wide-narrow row spacing practice. Plants grown under the FD system exhibited higher water use efficiency (WUE) and rainfall use efficiency (RUE) than plants cultivated with the NS system, increases with 13.7% and 21.9%, respectively, in 2014, while 9.8% and 14.0%, respectively, in 2015. Plants of the FD system also displayed the greatest leaf area index and canopy openness at growth stage of 40, 60, and 80 days after sowing, maximum biomass production (13.96 t ha?1) and grain yield (3486.2 kg ha?1) in 2014, and the least pronounced soil nitrate consumption as compared to plants from other tillage systems. We conclude that FD is the optimum planting pattern for common buckwheat cultivation in semi-arid and arid environments.  相似文献   

7.
Shrinkage cracks in clayey paddy fields are major pathways for the drainage of excess water through tile drainage. In this study, the factors that affect the cracking pattern were investigated in a paddy field where paddy-rice was planted in rows. The factors examined included 1) the existence of transpiration, 2) row spacing, and 3) the puddling intensity. The experiment was designed according to the Taguchi method of experimental design. Shrinkage cracks were induced by drying the field after the release of the ponding water in mid-summer. The cracking patterns between the rows were recorded on transparent sheets, and their geometry was quantified using the crack direction index (CDI), which represents the direction of cracks relative to the rows of rice, as well as the equivalent width (EW) and compactness (CP) which represent the average width of the cracks and the complexity of the cracking patterns, respectively. Variations in the degree of desiccation affected the cracking patterns; these effects were taken into account in the analyses. ANOVA was performed on the variables CDI, EW, and CP, and the following conclusions were drawn: 1) transpiration from the crops planted in rows induces significant straight cracks along the rows; 2) row spacing exerts a significant effect on the EW of cracks, for example, when the spacing doubled from 30 cm (the conventional spacing in Japan), the cleavage became more concentrated and the cracks became wider; 3) repeated puddling also induces wider straight cracks along the rows and makes the cracking patterns simpler.  相似文献   

8.
Abstract

Alley cropping may promote greater sequestration of soil organic carbon. The objective of this study was to examine spatial variability of soil organic carbon (C) and nitrogen (N) fractions relative to tree rows in established alley cropping systems in north central Missouri. Soils were collected to a depth of 30 cm from two alley cropped sites, a 19‐yr‐old pecan (Carya illinoinensis)/bluegrass (Poa trivialis) intercrop (pecan site) and an 11‐yr‐old silver maple (Acer saccharinum)/soybean (Glycine max)–maize (Zea mays) rotation (maple site). Particulate organic matter (POM) C constituted 15–65% and 14–41% of total organic C (TOC) at the pecan and maple sites respectively, whereas POM N comprised 3 to 24% of total N (TKN). TOC and TKN were on average 13% and 18% higher at the tree row than at the middle of the alley for surface soils (0–10 cm) at the pecan site, respectively. Similarly, POM C was two to three times higher at the tree row than the alley for subsurface soils at the maple site. No differences in microbial biomass C and N between positions were observed. Observed results suggest the existence of spatially dependent patterns for POM C, TOC, and TKN, relative to tree rows in alley cropping.  相似文献   

9.
ABSTRACT

There is a need both in organic farming and on farms using integrated pest management for non-chemical measures that control the perennial weed flora. The effect of mechanical weeding and fertilisation on perennial weeds, fungal diseases and soil structure were evaluated in two different experiments in spring cereals. Experiment I included six strategies. The first strategy was (1) without specific measures against perennial weeds. The other strategies encompassed one or two seasonal control measures; (2) rhizome/root cutting with minimal soil disturbance in autumn, (3) hoeing with 24?cm row spacing, (4) combined hoeing and disc harrowing in autumn, (5) ‘KvikUp’ harrowing in spring, and (6) ‘KvikUp’ harrowing in spring and autumn. Experiment II included factor (i) inter-row hoeing and (ii) fertilisation level. This experiment included the comparison between normal row spacing (12?cm) with weed harrowing versus double row spacing (=24?cm) in combination with inter-row hoeing and 4 fertilisation levels (50–200?kg N ha?1). In experiment I the strategies consisting of no or one direct weed control measure (1, 2, 3 and 5) clearly did not control the perennial weeds. The two seasonal control measures (4 and 6) gave a satisfactory weed control and highest crop yield. The combination of best weed control and no measured harmful effects on soil structure or increase of fungal diseases may explain the highest yields for these strategies. In Experiment II, hoeing and 24?cm spacing gave less perennial biomass compared to 12?cm spacing. Grain yields increased linearly with increasing nitrogen input. The study shows that both inter-row hoeing and weed harrows, are important elements in integrated pest management practice and organic farming. In addition, our results indicate that efficient mechanical weeding is possible without harmful effects in crop rotation consisting of various spring cereals as regards soil structure and plant health.  相似文献   

10.
In current study, dry–matter accumulation (DMA), pre– and post–anthesis nitrogen (N) accumulation, N translocation (NT) and dry–matter partitioning by sunflower seeds was investigated under three sowing dates (January 20, February 10 & March 2), two intra–row spacings (30 & 24 cm) and four nitrogen doses (0, 45, 60 & 75 kg ha–1) in two alluvial soils. Early sowing resulted in higher DMA and NT; leading to higher nitrogen use efficiency (NUE) that could be associated with higher pre–anthesis N accumulation. The closer intra–row spacing resulted in higher DMA by all plant parts except seed. Each graded N dose improved DMA, but improvement in dry–matter partitioning to seed was significant up to 60 and 75 kg N ha–1 during 2014 and 2015, respectively owing to higher NT under respective treatments. NUE was highest at 60 kg N ha–1 during both years.  相似文献   

11.
Abstract

Grain deficits frequently occur in the Southeastern Atlantic Coastal Plain because erratic rainfall patterns and soil properties often limit corn (Zea mays L.) yields, however, harvesting corn for silage may enable farmers to produce a second grain crop during the same calendar year. Effects of row spacing, plant population, and fertilizer program on yield, quality, and mineral concentrations of corn silage grown with irrigation on Typic Paleudult soils were therefore investigated. Two plant population treatments which averaged 7.0 and 10.1 plants m‐2 were evaluated with two fertilizer programs that differed in N, N and K, and N, P, and K in 1980, 1981, and 1982, respectively. Each plant density by fertilizer combination was evaluated in single rows spaced 96 cm apart and in twin rows which approximately doubled the intrarow plant spacing. Plot size for the 2×2×2 factorial experiment ranged from 30 to 44 m2. Yield, quality, and mineral concentrations of corn silage grown in single rows spaced 96 or 75 cm apart and twin rows were also evaluated in large (185 m2) plots under center pivot irrigation during 1981 and 1982.

Dry matter yields of 22 to 26 Mg ha‐1 were achieved with plant densities of 6.7 to 13.5 plants m‐2 at both experimental sites. Highest silage yields were produced with stand densities of 9 m or more planted in single 75 cm or twin rows, but yield differences were statistically significant at P(0.05) in only two of five site years. Increasing total N‐P‐K application beyond 200–30–167 kg ha”; increased crude protein slightly in 1980 and significantly in 1981 and 1982. Concentrations of Mn and Zn in silage were increased by higher fertilization, presumably because nitrification reduced surface soil pH and increased their availability. Dry matter yield, fiber, energy, and other mineral nutrients were not significantly influenced by fertilizer program. These experiments identified management practices for the Atlantic Coastal Plain which resulted in corn silage yields equal to those produced in the cooler mountain region of Georgia and that exceeded current average production in South Carolina by approximately 40% without reducing apparent feed quality.  相似文献   

12.
In the daily and final landfill cover barrier system, the hydraulic properties of compacted soil liners and the strength of soil can be adversely affected by desiccation cracking, resulting in the loss of effectiveness and integrity of the containment system as a barrier. Recently, there is an interest of using fiber additive to overcome the desiccation cracking problem. In this study, the desiccation crack test was conducted to investigate the effect of fiber additive on suppressing desiccation cracks in compacted Akaboku soils. Polypropylene (C3H6) fiber was used as an additive material for soil sample. The percentages of fiber used were varied as 0.0%, 0.2%, 0.4%, 0.6%, 0.8%, 1.0% and 1.2% (by dry weight of samples). The soil specimens were compacted under the conditions of maximum dry density and optimum water content. The surficial cracking area was measured to determine the crack intensity factor (CIF) of the soil samples. The desiccation crack test results indicated that the percentage of volume change of the compacted soil specimen decreased with addition of fiber. The change in the soil surface area decreased with increasing in the fiber content (FC), and consequently, the volumetric shrinkage strain decreased. The CIF for the soil without fiber (FC?=?0.0%) were significantly higher than the soil with fiber additive. The CIF of soil at FC?=?0.0% decreased from 2.75% to 0.6% for the soil at FC?=?0.2%. It was also found that the maximum crack depth reaches almost 50% of the thickness of the soil without fiber additive. This study suggests the potential application of the fiber additives to soils as an available method to suppress desiccation cracks encountered in landfill cover barriers.  相似文献   

13.
The concentrations of organic C, labile organic fractions and the size and activity of the microbial community were measured to a depth of 30 cm below the plant row and at distances of 30 and 60 cm into the inter-row area under sugarcane under pre-harvest burning or green cane harvesting with retention of a crop residue (trash) mulch. Total root mass was similar under burning and trashing but under trashing there was a redistribution of roots towards the surface 0-10 cm in the inter-row space as roots proliferated beneath the trash mulch. Soil organic C content decreased in response to both increasing distance from the plant row (to a depth of 20 cm) and burning rather than trashing (to a depth of 10 cm). Declines in K2SO4-extractable C, light fraction C, microbial biomass C, basal respiration and aggregate stability in response to distance and burning were much more marked than those for organic C and occurred to a depth of 30 cm. Bulk density was greater under burnt than trashed sugarcane and was greater in the inter-row than row, particularly under burning. Heterotrophic functional diversity (measured by analysis of catabolic response profiles to 36 substrates) was also investigated. Principal component analysis of response profiles demonstrated that soils below the row and those under trashing at 30 cm out from this row were separated from the other soils on PC1 and the sample from the inter-row centre (60 cm out) under burning was separated from the others on PC2. Catabolic evenness was least for the latter soil. It was concluded that soil in the inter-row of burnt sugarcane receives few inputs of organic matter and that conversion to green cane harvesting with retention of a trash mulch greatly improves the organic matter, microbial and physical status of the inter-row soil.  相似文献   

14.
This study was undertaken to determine the influence of previous crop sequences on soil compression behaviour. Soil compression tests were performed on undisturbed soil samples of a Kamouraska clay which had been cropped continuously for 4 years to barley, corn, alfalfa, or timothy. Samples were taken from the surface soil in the non-trafficked zone, five times during the season. Cropping treatments had small but significant effects on soil compression characteristics. Soils on which crops were grown presented lower bulk density under standard compression (300 kPa) and higher pre-compression pressure values than the soil left unplanted (fallow). These effects were attributed to water content at time of sampling which was lower in the cropped than in the bare soils. Seasonal variations of these two virgin compression parameters were important and were related to soil moisture. Conversely, the soil compression index (slope of the virgin compression line) was not affected by crops or water content and seems to be a characteristic dependent on soil constituents.  相似文献   

15.
Many soil properties influence earthworm populations and activity. To determine which properties are of significance, a broad collection of soils was investigated. Samples from these different soils were kept bare at one site in large plots (3 Mg soil per plot) to liminate crop and weather interference and to isolate the dominating mechanisms of earthworm effects. Earthworm density, biomass, and tunnelling activity were assessed after 5 years of bare fallow. All earthworm parameters varied strongly. Earthworms increased soil respiration by their tunnelling activity, and in turn increased microbial activity and propagated the loss of organic C. Earthworm abundance ranged from 12 to 274 m-2 and was about 10 times greater than on cropped soils. The range in abundance was mainly caused by variations in the numbers of juveniles. The average soil moisture content was the only soil property among the many properties investigated that was consistently correlated with earthworm abundance and biomass. Even after 5 years of bare fallow with almost no addition of fresh plant biomass and with little water loss by plant transpiration, the earthworm population was controlled by water stress and not by food stress. We therefore conclude that high water consumption by productive crops may degrade the habitat for geophagous earthworms.  相似文献   

16.
Hypothetically, humic substances (HSs) can improve the response of plants in sandy soils. The objective was to assess the effect of applying an organomineral fertilizer enriched with HSs on soybean plants grown with and without water stress. The experimental design was entirely randomized, in a greenhouse, in a 2 × 5 factorial setup (two moisture levels and five fertilizer doses: 0, 1, 2, 4, and 8 mL dm?3), for a total of 10 treatments, with eight repetitions, using as substrate a Psamment. The organomineral fertilizer was applied in the soil 21 days after plant emergence, and the water regimes were established 1 week thereafter. Plant height, shoot and root dry mass, mineral nutrition, and grain yield were evaluated. There was a positive response to the doses, with the most efficient one under water stress being 6.5 mL dm?3 and HSs favored the uptake of micronutrients.  相似文献   

17.
Sarpagandha (Rauvolfia serpentinaBenth. Ex Kurz.), a natural source of the alkaloid reserpine, is generally found growing under partial shade of deciduous forests in the tropics and subtropics. To promote its commercial cultivation under subtropical environment of the north Indian plains, a field trial was conducted during 2006–2009 to optimize the plant populations (row ratios) of pigeon pea and sarpagandha for higher productivity, land utilization efficiency and economic return in an intercropping system. Intercropping of two rows of sarpagandha with pigeon pea sown at a row distance of 90 cm proved highly beneficial in terms of total production (5.15 t ha?1 grain and 10.27 t ha?1 straw + stalk of pigeon pea and an additional dry root yield of 2.56 t ha?1 of sarpagandha) from a unit area and time. The highest land equivalent ratio, LER (2.21), area time equivalent ratio, ATER (1.76), monetary equivalent ratio, MER (2.0), land-use efficiency, LUE (198%) and net return (Rs. 273,810 ha?1) were obtained for the combination of pigeon pea and sarpagandha in 1:2 row ratio. Integration of two rows of sarpagandha as an intercrop with pigeon pea sown at 90 cm row distance is recommended for sustainable crop production.  相似文献   

18.
Understanding phosphorus (P) release under different climatic or moisture regimes will facilitate effective management of plant nutrition. The objective of this study is to evaluate the effect of two soil moisture regimes on P release from Ogun rock phosphate (ORP) and Sokoto rock phosphate (SRP) in two soil types. Soil was poured into soil columns to form lower and top layers. Top layer was mixed with 400 kg ha?1 P from ORP, SRP, single super phosphate (SSP) and leached with 35.4 cm3 water representing low moisture regime (LMR; 400 mm rainfall) and 106.1 cm3 water for high moisture regime (HMR; 1200 mm rainfall). P concentrations of leachates, available P in soil and soil pH were determined. Cumulative P leached was higher under HMR than LMR in both soils. There was more leaching with SSP (0.41–0.97 mg P) than both phosphate rocks (0.008–0.19 mg P) indicating leaching potential of SSP. Cumulative P leached from SSP treated Olokemeji soils was twice that of acidic Sapoba under LMR while they were similar (Olokemeji, 0.97 mg P; Sapoba, 0.94 mg P) under HMR suggesting that LMR enhances fixation of P in acidic soils. Irrigation of P fertilized soils may reduce P sorption in acidic soils.  相似文献   

19.
Abstract

Greenhouse experiment was conducted to evaluate the effect of arbuscular mycorrhizal fungi (AMF) on plant growth, and nutrient uptake in saline soils with different salt and phosphorus (P) levels. The following treatments were included in this experiment: (i) Soil A, with salt level of 16.6 dS m?1 and P level of 8.4 mg kg?1; (ii) Soil B, with salt level of 6.2 dS m?1 and P level of 17.5 mg kg?1; and (iii) Soil C, with salt level of 2.4 dS m?1 and P level of 6.5 mg kg?1. Soils received no (control) or 25 mg P kg?1 soil as triple super phosphate and were either not inoculated (control) or inoculated with a mixture of AM (AM1) and/or with Glomus intraradices (AM2). All pots were amended with 125 mg N kg?1 soil as ammonium sulfate. Barley (Hordeum vulgar L., cv. “ACSAD 6”) was grown for five weeks. Plants grown on highly saline soils were severely affected where the dry weight was significantly lower than plants growing on moderately and low saline soils. The tiller number and the plant height were also lower under highly saline condition. The reduced plant growth under highly saline soils is mainly attributed to the negative effect of the high osmotic potential of the soil solution of the highly saline soils which tend to reduce the nutrient and water uptake as well as reduce the plant root growth. Both the application of P fertilizers and the soil inoculation with either inoculum mixture or G. intraradices increased the dry weight and the height of the plants but not the tiller number. The positive effect of P application on plant growth was similar to the effect of AM inoculation. Phosphorus concentration in the plants was higher in the mycorrhizal plant compared to the non mycorrhizal ones when P was not added. On the other hand, the addition of P increased the P concentration in the plants of the non mycorrhizal plants to as high as that of the mycorrhizal plants. Iron (Fe) and zinc (Zn) uptake increased with AM inoculation. The addition of P had a positive effect on micronutrient uptake in soil with low level of soil P, but had a negative effect in soil with high level of soil P. Micronutrient uptake decreases with increasing soil salinity level. Inoculation with AMF decreases sodium (Na) concentration in plants grown in soil of the highest salinity level but had no effect when plants were grown in soil with moderate or low salinity level. The potassium (K) concentration was not affected by any treatment while the K/Na ratio was increased by AM inoculation only when plant were grown in soil of the highest salinity level.  相似文献   

20.
Copper/zinc bioaccumulation and the effect of phytotoxicity on the growth of lettuce (Lactuca sativa L.) were studied in plastic vessels containing (i) non-contaminated soil, (ii) copper-contaminated soils at concentrations of 75.0 and 125.0 mg kg?1, (iii) zinc-contaminated soils at concentrations of 1200 and 2400 mg kg?1, and (iv) soil enriched with swine manure. Copper and zinc concentrations in lettuce leaves were determined by flame atomic absorption spectrometry during 42 days of growth. Copper concentrations from 0.92 to 13.06 mg kg?1 were found in lettuce leaves grown in copper-contaminated soils and zinc concentrations from 58.13 to 177.85 mg kg?1 were found in lettuce leaves grown in zinc-contaminated soils. Copper and zinc concentrations in lettuce leaves grown in swine manure-enriched soils ranged from 0.82 to 8.33 and 0.68 to 13.27 mg kg?1, respectively. Copper and zinc bioaccumulation caused a decrease in lettuce growth in metal-contaminated soils and an increase in phytotoxicity effects when compared to growth in non-contaminated and manure-enriched soils. These findings were confirmed by measuring leaf areas and biomasses. Copper was less toxic to lettuce than zinc due to the different concentrations in the soil. Lettuce growth and development was better in the swine manure-enriched soil than non-contaminated soil, which indicates that swine manure is a safe agricultural biofertilizer when used in appropriate amounts to avoid metal bioaccumulation in soil and plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号