首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deficient trace elements concentration in soils, forages, and animals have been reported in several areas of Balkan region. Main challenge in overcoming low productivity of forage and animal production in this region is the lack of data on the nutritional status of the pastures and soils. This study examined the nutrient and pseudo total concentration of trace elements in soil and herbage plants, and the potential deficiency or excess with regards to crop and livestock production. Soil and plant samples from 100 sampling points were collected in the mountainous grasslands of Manja?a (between longitudes 16°56′ and 17°8′ east; and latitudes 44°33′ and 44°42′ north) and Vla?i? (between longitudes 17°14′ and 17°29′ east; and latitudes 44°25′ and 44°37′ north). Soil samples were analysed for soil texture, pseudo total concentration (5?ml HNO3) of trace elements (TE), pH, soil organic carbon (SOC), while plant samples were analysed for TE. The soil pH varied from strongly acidic to moderately alkaline. The concentration of SOC varied from 0.5% to 12.3%. Most of the soil samples were finer-textured soils high in silt content. The average concentrations of Na, P, Zn, Se, Cu, Co, and B were low in both soil and herbage plants. Plant K, Ca, Mg, Mo, and Mn concentrations were sufficiently high to meet the requirements of grazing animals, while Fe concentrations was elevated in certain areas. High levels of Mo were found in both soil and plants. The results suggest that imbalances observed in natural pastures of Manja?a and Vla?i? area, caused by low soil TE concentration and other soil and plant properties, could contribute to poor animal nutrition.  相似文献   

2.
The use of organic materials as a source of nutrients on agricultural lands ameliorates soil physical properties as well as being an environmentally friendly way of disposing of their wastes. This study was conducted to determine effects of three organic materials (poultry litter, cattle manure, leonardite) on yield and nutrient uptake of silage maize. Poultry litter and cattle manure were applied based on phosphorus (P) or nitrogen (N) requirements of the crop whereas leonardite was applied only one dose (500 kg ha?1) and also combined with three inorganic fertilizer doses (100%, 75%, 50% of recommended inorganic fertilizer dose). According to the results, the highest green herbage yield and nutrient uptake values were observed in LEO-100 whereas N-based treatments significantly decreased yield and nutrient uptake of silage maize. The use of organic materials as a combination with inorganic fertilizer in silage maize cultivation is highly beneficial for sustainable forage production.  相似文献   

3.
Background : Manganese deficiency often becomes a yield limiting factor, particularly on calcareous soils, even though the total soil manganese content is usually sufficient. Although it is known that acidifying N fertilizers can improve Mn availability, the reason of this effect is still unknown. Aim : Our aim was to investigate the effect of stabilized ammonium fertilizers as a tool to distinguish between physiological‐ and nitrification‐induced acidification. Method : Two pot experiments with Triticum aestivum L. and one soil incubation experiment using different nitrogen forms (CN = calcium nitrate, AN = ammonium nitrate, AS = ammonium sulfate, ATS = ammonium thiosulfate) with and without addition of nitrification inhibitors (DCD, Nitrapyrin, Piadin, DMPP) were conducted to examine the effect on Mn availability in the soil and Mn uptake by the plants at different development stages (EC 31 und 39). Results : With increasing fertilizer NH 4 + content a higher Mn concentration was detected: CN: 32 µg Mn g?1 DM, AN: 39 µg Mn g?1 DW, AS: 55 µg Mn g?1 DM, ATS: 109 µg Mn g?1 DM. The addition of a nitrification inhibitor resulted in a significantly lower rhizosphere pH compared to the non‐stabilized fertilizer. Surprisingly, the use of different nitrification inhibitors led to unchanged (CN, AN) or lower Mn concentrations of wheat. Especially in the NH 4 + treatments (AS and ATS), this negative effect was very evident (AS+DCD: 42 µg Mn g?1 DM; ATS+DCD: 55 µg Mn g?1 DM). Conclusions : Mn availability was enhanced by ongoing nitrification process rather than physiological acidification. Compared to other N forms, ammonium thiosulfate led to the highest Mn availability in bulk soil.  相似文献   

4.
A field experiment was conducted at Rani Chandramma Agricultural University (Arabhavi, Belgaum), Karnataka, India, in basic soil to study the nutrient availability in soil, yield and yield attributes of the medicinal plant stevia (Stevia rebaudiana). The results showed that the availability of nutrients such as nitrogen (N), phosphorus (P) and potassium (K) in the soil increased up to the fifth month; and thereafter, decreased by the same amount with the progress of the plant growth up to the sixth month, irrespective of treatments. Results also showed that the fresh and dry biomass yields significantly increased up to the sixth month with different treatments, but the yield attributes like plant height and the number of branches were observed to be varied with various treatments, being highest in the combined application of biofertilizers over that of their corresponding sole applications.  相似文献   

5.
Studies have shown that biochar amendment could increase soil nutrient availability and crop production, but the contributions of nutrients including nitrogen (N), phosphorus (P), and potassium (K) in the biochar to plant production need to be tested. A pot experiment was conducted to identify the effects of maize straw-based biochar (BC) amendment on spinach fresh yield and dry biomass production, compared with non-biochar non-fertilization control (CT) and non-biochar chemical fertilization (NBF, equivalent amounts of N, P, and K). After 50-day growth, fresh leaf yield was increased by 63.7% or 38.0% under BC or NBF than under CT, and by 18.7% under BC than under NBF. Meanwhile, both leaf dry biomass and total plant (leaves + roots) biomass were similar between BC and NBF, but significantly higher under BC (47.5% in total) and NBF (56.2% in total) than under CT. In addition, root dry biomass was similar between BC and CT, but significantly higher under NBF than under BC or CT. These results indicated that about 60% of the contributions to yield/biomass increase might be from nutrients in the biochar. On the one hand, plant N and K uptake was highest, but P uptake was lowest, under BC than under CT and NBF. On the other hand, significantly higher soil available N ranked as CT ≈ BC > NBF, soil available P as CT ≈ BC ≈ NBF, and soil available K as BC ≈ NBF > CT. In conclusion, our results demonstrated that nutrients in the biochar could contribute to plant growth significantly.  相似文献   

6.
微肥对玉米生长发育、养分吸收及产量的影响   总被引:2,自引:1,他引:2  
通过田间小区试验,研究了覆膜滴灌条件下施用铁、锰、锌等微肥对玉米生长发育、养分吸收及产量的影响。结果表明:玉米干物质累积最快的时期是在播种后62~99 d,NPK+Fe、NPK+Mn和NPK+Zn处理的玉米单株干物质的积累量分别比NPK处理增加8.84、4.74、15.69 g。NPK+Zn处理的玉米吸N量比NPK处理提高了3.07%,达到了显著差异,而NPK+Fe和NPK+Mn处理的玉米吸N量与NPK处理没有显著差异。NPK+Fe、NPK+Mn和NPK+Zn处理的玉米吸P量和吸K量与NPK处理相比均没有显著差异。施用铁、锌肥可以显著提高玉米的产量,增加玉米的百粒重,增产率分别为6.61%和4.46%,但施用锰肥效果不显著。  相似文献   

7.
Farmyard manure (FYM) improves various soil parameters and to a large extent, the availability of water and nutrient to crops when it is applied to the soil. This study aims to further investigate the short-term effects of different levels of FYM on maize plants and soil parameters. Maize plants grown in pot culture were treated with no FYM (control), recommended NPK (inorganic fertilizers), and FYM at 2, 4, 6, 8, and 10 t ha?1 along with recommended NPK, and the cultures were analyzed 8 weeks after germination. Soil bulk density and soil pH decreased with the increasing levels of FYM, whereas soil porosity, soil organic matter (SOM), soil water content, plant height, root and shoot yield, and NPK uptake of maize were increased compared with the control or recommended NPK, respectively. The present results indicate that short-term application of higher FYM levels improves soil properties. Furthermore, the application of FYM at only higher rates significantly increases the nutrient uptake of maize plants due to improved soil properties. The supply of different amounts of nutrients increases biomass and nutrient uptake in plants.  相似文献   

8.
Abstract

A pot experiment was conducted to determine most limiting nutrients for maize performance using nutrient omission treatments in three soil types of southwestern Nigeria. There were six treatments; full nutrient [120?kg nitrogen (N)/ha, 40?kg phosphorus (P)/ha, 80?kg potassium (K)/ha, 10?kg molybdenum (Mo)/ha, and 5?kg zinc (Zn)/ha]; full nutrient minus N, P, K, Mo, and Zn including control was replicated thrice. Treatments were arranged as split plot in a complete randomized design. Data were collected on growth parameters, shoot, root dry weights, and NPK uptakes. Data were subjected to analysis of variance and means separated using LSD0.05. Majeroku and Egbeda soils and full nutrient supported better maize growth and NPK uptakes. Shoot weight was higher in Egbeda while root weight was higher in Itagunmodi soil. Phosphorus was the most limiting in Egbeda and Itagunmodi soils, and nitrogen in Majeroku soil. In conclusion, maize growth, nutrient uptake and most limiting nutrient varied with soil types.  相似文献   

9.
Little information is available regarding the effect of sewage sludge biochar on soil properties and crop yield. Thus, our objective was to evaluate the effect of sewage sludge (S) and its biochar (B) on maize shoot yield, nutrients and heavy metals uptake in two calcareous soils. The amendments were applied at the rates of 0, 10, 20 and 40 Mg ha?1. Moreover, NK treatment was included to compare the effects of S and B with conventional fertilization. At harvest time, plant shoots and soil samples were collected for yield, nutrients uptake and chemical analyses. The highest shoot dry matter was obtained in the S treatment. The B application in the clay loam and loam soils resulted in 5.2% increment and 17.7% decrement of shoot dry matter relative to the control, respectively. Shoot dry matter in the NK treatment was significantly higher than in the control. B application decreased Fe, Zn, Mn, Cu and Pb uptake by maize shoot. DTPA-extractable Pb in B-amended soils was lower than in control, while an inverse trend was obtained for available Fe, Zn, Mn and Cu. Biochar application at the rate of 7.3 Mg ha?1 might be suggested for maize cultivation in clay loam soils.  相似文献   

10.
The use of maize (Zea mays L.) genotypes that are able to utilize nutrients efficiently is an important strategy in the management of plant nutritional status; it is of particular importance with regard to potassium (K) and magnesium (Mg), due to their high requirement and influence on plant growth. The influence of K and Mg fertilizers on certain growth parameters of maize genotypes TM.815 and KL.72.AA, including length, seed in ear, seed weight growth, and nutrient concentration, was determined under field conditions over two successive years. The aim of the experiment was to study the effect of different rates of K and Mg fertilizers on maize genotype plant growth parameters, grain yield, and nutrient accumulation under field conditions.

A split plot design with three replicates was used and each block contained three treatments of 0, 100, and 200 kg ha?1 of K2O and 0, 10, and 20 kg ha?1 of Mg; K2SO4 was used to supply K, and MgSO4 was used for Mg.

Plants that responded to the K fertilizer had an increase in height, yield, and the concentration of K in the leaves and seeds. The addition of K fertilizer increased the concentration of nitrogen (N), iron (Fe), zinc (Zn), manganese (Mn), and K in the plant leaves and increased seed K concentration. Mg fertilizer increased the concentration of N, Fe, copper, and Mn in the leaves; however, it exerted no significant influence on K concentration. The KL.72.AA maize genotype had a higher mean plant height, number of seeds in ear, yield, and N, K, Fe, and Zn concentrations compared to the TM.815 maize genotype. In the experiment, the K fertilizer exerted a statistically significant effect on the leaf and seed K concentration; however, on a statistical basis, the Mg fertilizer did not affect the Mg concentration.  相似文献   

11.
耕作土壤释钾速率及其与钾有效性的关系研究   总被引:2,自引:0,他引:2  
对 1 0个不同母质土壤进行生物吸钾试验和化学测定 .结果表明 ,二级动力学方程dkt/dt=k(k0 -kt) 2 可以很好地描述连续提取条件下土壤释钾特性。初始释钾速率与有效钾含量呈极显著正相关 ,与黑麦草生物总量及吸钾总量均呈极显著正相关 .2mol/LHNO3提取的释钾速率相关显著性明显高于氢质树脂法 ,其中 0~ 2h的土壤释钾速率能较好地描述土壤钾的有效性  相似文献   

12.
控释氮肥不同用量对移栽玉米幼苗生长及养分吸收的影响   总被引:3,自引:0,他引:3  
通过盆栽试验,研究了控释氮肥不同用量对移栽玉米幼苗生长及养分吸收的影响。结果表明,玉米育苗期内适宜的控释氮素用量可形成健壮幼苗; 其最大安全控释氮素用量为N 200400 mg/plant,该用量下,移栽时单株可携带N 137290 mg。随控释氮肥用量的增加,植株地上部氮素浓度及氮素累积量增加; 磷素的浓度及累积量与控释氮肥的用量没有显著相关性; 控释氮肥的供应抑制了植株对钾的吸收。  相似文献   

13.
Abstract

The iron status of soils and its relation to iron uptake and iron‐chlorosis is discussed. In many soils, the soluble iron level is so low that rather than having to screen against iron uptake, plants are likely limited in their iron uptake by diffusion. The relationship between the plant root‐soil‐iron environment and the plant's ability to alter this environment is related to the development of iron‐chlorosis.  相似文献   

14.
氮磷钾配施对青贮玉米生物产量和营养品质的影响   总被引:2,自引:1,他引:2  
采用二次回归正交组合设计,通过田间小区试验,研究了氮磷钾配合施用对青贮玉米产量和营养品质的影响。结果表明,综合考虑青贮玉米最大生物产量和经济效益,其适宜的氮肥(N)用量范围为308.4—365.0培柑,磷肥(P2O5)适宜用量范围为100.1—117.0kg/hm^2,钾肥适宜用量(K2O)范围为65.5~89.8kg俯。不同施氮和施磷水平对青贮玉米中粗蛋白含量有一定的影响。磷和钾的施用有助于干物质含量和钙的提高。  相似文献   

15.
土壤磷有效性及其与土壤性质关系的研究   总被引:18,自引:0,他引:18  
选取我国14个不同地点土样,测定理化性质、全磷、速效磷、水溶性磷含量,采用通径分析研究土壤磷有效性与土壤性质的关系。结果表明,土壤磷有效性是各个土壤性质综合作用的结果。土壤CEC、有机碳、粘粒、砂粒、碳酸钙含量对土壤速效磷比例影响显著,土壤CEC、粘粒、砂粒含量对土壤速效磷比例贡献为正值,而土壤有机碳对土壤速效磷比例贡献为负值;土壤pH和CEC含量对土壤水溶性磷含量影响显著,土壤pH对水溶性磷比例贡献为正值,土壤CEC对土壤水溶性磷比例贡献为负值。本文所选土样基本符合土壤磷有效性与土壤性质之间通径分析的结果。  相似文献   

16.
为比较不同栽培方式下冬小麦、夏玉米的养分利用效率,于2005~2007年在河南省浚县农业科学研究所试验站,采用大田试验,研究了传统平作与垄作两种栽培方式下冬小麦、夏玉米的养分吸收及利用情况。结果表明,与传统平作相比,一体化垄作栽培,有利于作物的养分吸收,提高了产量和收获指数,改善了土壤肥力。一体化垄作全年作物氮、磷、钾吸收量分别增加14.18%、9.20%和5.90%,冬小麦、夏玉米收获指数分别提高2.13%和2.42%,产量分别提高4.23%和9.61%,全年产量平均提高7.33%。2年试验看出,一体化垄作土壤肥力状况优于传统平作。  相似文献   

17.
18.
Abstract. The effect of humic acids on transformation of phosphorus fertilizer was studied in an alkaline soil. Soil P was fractionated following 4 and 15 days incubation after humic acids were applied with phosphorus fertilizer to the soil. The availability of phosphate in the soil and total phosphorus in plants were determined at earing stage and at maturity in a pot experiment, and wheat yield was examined in a field trial. Addition of humic acids to soil with P fertilizer significantly increased the amount of water soluble phosphate, strongly retarded the formation of occluded phosphate and increased P uptake and yield by 25%.  相似文献   

19.
褐煤腐殖酸对不同土壤上小麦生长的影响   总被引:6,自引:0,他引:6  
Humic acid(HA),a fairly stable product of decomposed organic matter that consequently accumulates in ecological systems,enhances plant growth by chelating unavailable nutrients and buffering pH.We examined the effect of HA derived from lignite on growth and macronutrient uptake of wheat(Triticum aestivum L.) grown in earthen pots under greenhouse conditions.The soils used in the pot experiment were a calcareous Haplustalf and a non-calcareous Haplustalf collected from Raisalpur and Guliana,respectively,in Punjab Province,Pakistan.The experiment consisted of four treatments with HA levels of 0(control without HA),30,60,and 90 mg kg -1 soil designated as HA 0,HA 1,HA 2,and HA 3,respectively.In the treatment without HA(HA 0),nitrogen(N),phosphorus(P),and potassium(K) were applied at 200,100,and 125 mg kg -1 soil,respectively.Significant differences among HA levels were recorded for wheat growth(plant height and shoot weight) and N uptake.On an average of both soils,the largest increases in plant height and shoot fresh and dry weights were found with HA 2(60 mg kg -1 soil),being 10%,25%,and 18%,respectively,as compared to the control without HA(HA 0).Both soils responded positively towards HA application.The wheat growth and N uptake in the non-calcareous soil were higher than those of the calcareous soil.The HA application significantly improved K concentration of the non-calcareous soil and P and NO 3-N of the calcareous soil.The highest rate of HA(90 mg kg -1 soil) had a negative effect on growth and nutrient uptake of wheat as well as nutrient accumulation in soil,whereas the medium dose of HA(60 mg kg -1 soil) was more efficient in promoting wheat growth.  相似文献   

20.
Overuse of fertilizers and the resultant pollution and eutrophication of surface and groundwater is a growing issue in China. Consequently, improved management strategies are needed to optimize crop production with reduced nutrient inputs. Conventional fertilization (CF), reduced fertilization (RF), and reduced fertilization with maize (Zea mays L.) as a summer catch crop (RF+C) treatments were evaluated in 2008 and 2009 by quantifying tomato (Lycopersicon esculentum) fruit yield and soil nutrient balance in a greenhouse tomato double-cropping system. Fertilizer nitrogen (N) application was reduced by 37% in the RF and RF+C treatments compared to the CF treatment with no significant reduction in fruit yield. Mean soil mineral N (Nmin) content to a depth of 180 cm following tomato and maize harvest was lower in the RF and RF+C treatments than in the CF treatment. Residual soil Nmin content was reduced by 21% and 55% in the RF and RF+C treatments, respectively, compared to the CF treatment. Surplus phosphorus (P) and potassium (K) contents in the RF+C treatment were significantly lower than those in the RF treatment, mainly due to additional P and K uptake by the catch crop. We concluded that for intensive greenhouse production systems, the RF and RF+C treatments could maintain tomato fruit yield, reduce the potential for nitrate (NO3--N) leaching, and with a catch crop, provide additional benefits through increased biomass production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号