首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

1. The current study was conducted to evaluate the influence of high phytase doses and xylanase, individually and in combination, on performance, blood inositol and real-time gastric pH in broilers fed wheat-based diets.

2. In a 42-d experiment, a total of 576 male Ross 308 broiler chicks were allocated to 4 dietary treatments. Treatments consisted of a 2 × 2 factorial arrangement, with 500 or 2500 FTU/kg phytase and 0 or 16 000 BXU/kg xylanase, fed in two phases (starter 0–21; grower 21–42 d). Heidelberg pH capsules were administered to 8 birds from each treatment group, pre- and post-diet phase change, with readings captured over a 5.5-h period.

3. At 21 and 42 d, birds fed 500 FTU/kg phytase without xylanase had on average 127 and 223 g lower weight gain than all other treatments, respectively (P < 0.05). At 42 d, body weight-corrected feed conversion ratio (bwcFCR) was reduced (P < 0.05) by supplementing 2500 FTU/kg phytase or xylanase, with the combination giving a 12 point reduction in bwcFCR compared to birds fed 500 FTU/kg phytase without xylanase. Inositol content of plasma was twice that of the erythrocyte (P < 0.001), with 2500 FTU/kg phytase tending to increase (P = 0.07) inositol content in both blood fractions.

4. Across all treatments, capsule readings ranged from pH 0.54 to 4.84 in the gizzard of broilers. Addition of 2500 FTU/kg phytase to the grower diet reduced (P < 0.05) average gizzard pH from 2.89 to 1.69, whilst feeding xylanase increased (P < 0.001) gizzard pH from 2.04 to 2.40. In contrast, digital probe measurements showed no effect of xylanase on gizzard pH, while addition of 2500 FTU/kg phytase increased (P = 0.05) pH compared to 500 FTU/kg phytase with or without xylanase.

5. These findings suggested that xylanase and high phytase doses have opposite effects on real-time gastric pH, while similarly improving performance of broilers.  相似文献   

2.
1. The current study was conducted to investigate the effect of high phytase doses on growth performance and real-time gastric pH measurements in broiler chickens and pigs.

2. In the first experiment, 576 male Ross 308 broilers were fed in two phases (0–21 and 21–42 d) with 4 treatment groups, with diets meeting nutrient requirements containing 0, 500, 1500 or 2500 FTU/kg phytase. In the second, 64 Landrace weaners were fed on diets meeting nutrient requirements with or without phytase (0 or 2500 FTU/kg) in two phases (0–21 and 21–42 d). Heidelberg pH capsules were administered to 7 broilers and approximately 13 pigs per treatment group, pre- and post-phase change, with readings monitored over several hours.

3. Addition of phytase into an adequate Ca and P diet had no significant effect on broiler performance although phytase tended (< 0.07) to improve feed conversion in pigs over the entire experimental period. Real-time pH capsule readings in broilers demonstrated an increase (< 0.05) in gizzard pH when phytase was dosed at 500 or 1500 FTU/kg, while higher doses of 2500 FTU/kg phytase lowered pH to a level comparable to control birds. Gastric pH increased (< 0.01) when animals were exposed to dietary phase change, signifying a potential challenge period for nutrient digestibility. However, pigs fed 2500 FTU/kg were able to maintain gastric pH levels through diet phase change. In contrast, spear-tip probe measurements showed no treatment effect on gastric pH.

4. These findings demonstrate dietary manipulation of gastric pH and the value of real-time pH capsule technology as a means of determining phytase dose response.  相似文献   

3.
1. In a 42-d feeding trial, 264 one-d-old, as hatched, Cobb 400 broiler chickens (6 pens per group, n = 11 per pen in a 2?×?2 factorial arrangement) were fed on two concentrations of dietary calcium (Ca) (9.0 and 7.5 g/kg in starter, 7.5 and 6 g/kg in grower phases) and supplemental phytase (0 and 500 U/kg diet).

2. During d 0–21, the high Ca + phytase diet improved body weight. During d 0–42, feed intake was increased by the low Ca diet and decreased by phytase supplementation. Feed conversion ratio during d 0–21 was improved by the high Ca + phytase diet.

3. At d 42, Ca in duodenal digesta was reduced by low dietary Ca and supplemental phytase. High dietary Ca reduced P in duodenal and jejunal digesta. Phytase reduced digesta P and increased serum P concentration.

4. Relative tibia length decreased with low dietary Ca and increased with phytase. The robusticity index of tibia was improved by the low Ca diet and phytase supplementation. Phytase supplementation increased tibia ash and concentrations of Ca, magnesium (Mg), manganese (Mn), copper (Cu), zinc (Zn) and iron (Fe) in tibia. The low Ca diet increased Mg, Mn and Fe and reduced Cu and Zn in tibia.

5. It was concluded that 7.5 g Ca/kg during weeks 0–3 and 6 g Ca/kg during weeks 3–6 sustained broiler performance and bone ash, while phytase supplementation facilitated tibia mineralisation, particularly during the grower phase.  相似文献   

4.
An experiment was conducted with broilers from 22 to 33 days of age to evaluate the efficiency of six microbial phytases supplemented in diets (1500 FTU/kg) that were formulated with three different calcium:available phosphorus (Ca:Pavail) ratios (4.5:1.0, 6.0:1.0 and 7.5:1.0). A positive control diet without phytase was formulated with a Ca:Pavail ratio of 7.5:3.4 to meet the nutritional requirements of the broilers. The P and ash contents of the tibia, magnesium in the plasma, performance, balance and retention of phytate phosphorus (Pphyt), intake of total P and nitrogen (N), nitrogen‐corrected apparent metabolizable energy and apparent digestibility of dry matter of the diets were not influenced (p > 0.05) by the type of phytase or the dietary Ca:Pavail ratio. However, there was an interaction (p < 0.05) between the phytase type and the Ca:Pavail ratio for the retention coefficients of total P, Ca and N. Phytase B resulted in the highest Ca deposition in the tibia (p < 0.01). Phytases D, E and F reduced the Ca concentrations in the tibia (p < 0.01) and plasma (p < 0.05). Phytase D increased the P level in the plasma and decreased the total P excretion (p < 0.01). Phytases E and F increased Ca excretion, while phytase A reduced it (p < 0.01). Regardless of the phytase type, increasing the dietary Ca:Pavail ratio reduced (p < 0.05) the plasma P concentration and the excretion of total P and N and, conversely, increased (p < 0.05) the plasma concentration, intake and excretion of Ca. For the rearing period evaluated, it is possible to reduce the Pavail of the diet to 1.0 g/kg when Ca is maintained at 7.5 g/kg, and the diet is supplemented with 1500 FTU of phytase A, C, D or E/kg. This diet allows the maintenance of performance and adequate bone mineralization, and it improves the Ca, total P and Pphyt utilization in addition to reducing the excretion of N and P into the environment.  相似文献   

5.
ABSTRACT

1. The aim of this trial was to determine the optimal supplementation level of a xylanase enzyme from Trichoderma citrinoviride on growth performance, apparent ileal and total tract nutrient retention, intestinal morphology, and intestinal concentration of volatile fatty acids in broiler chickens.

2. A total of 600 broiler chickens (Ross 308) of mixed sex were randomly allotted to four treatments, on the basis of similar body weight. The dietary treatments were made from a corn-wheat-soy based diet supplemented with either 0, 3750, 7500, or 11 250 XU/kg xylanase and were fed to 32 d of age.

3. A linear response to increasing dietary xylanase was demonstrated for overall weight gain (P < 0.05) and feed conversion ratio (P < 0.05). The apparent total tract digestibility of dry matter and gross energy, and the coefficient of apparent ileal digestibility (CIAD) of N and soluble non-starch polysaccharides were linearly improved when xylanase was added to the diet (P < 0.05). Moreover, a linear increase (P < 0.05) was observed in the CIAD of Arg, Lys, and Try with increasing dietary levels of xylanase.

4. The viscosity of digesta in ileum was linearly decreased when dietary xylanase level increased (P < 0.05).

5. An increase in villus height of the duodenum and jejunum were observed with increasing dietary levels of xylanase (linear, P < 0.05).

6. Overall, the results showed that the effects of dietary xylanase supplementation on broiler performance was determined through effects on nutrient availability and intestinal morphology.  相似文献   

6.
Two experiments were conducted to investigate the effect of phytase and/or multienzymes (protease, amyloglucoidase, xylanase, B-glucanase, cellulose, and hemicellulase) on improving the utilization of date pit (DP) in laying hens. In the first one, DP completely replaced corn in four isocaloric and isonitrogenous diets: (1) DP50 without additives, (2) DP50?+?500 FTU phytase/kg, (3) DP50?+?0.1 % multienzymes, and (4) DP50?+?500 FTU phytase/kg?+?0.1 % multienzymes, in addition to the diet without DP. In the second experiment, DP was included at 0 %, 15 %, and 30 % in isocaloric and isonitrogenous diets. Meanwhile, diets containing 15 % and 30 % DP (DP15 and DP30) were fed without or with 500 FTU phytase/kg diet and/or 0.1 % multienzymes. In both experiments, each diet was fed to six groups of five hens housed individually (520 cm2 per hen) during 30–42 and 28–42 weeks in the first and second experiment, respectively. In the first experiment, productive performance and shell quality of laying hens significantly decreased due to complete substitution of corn, but fertility and hatchability were not affected. Phytase, multienzymes supplementation did not restore laying performance to the control level. The results of experiment 2 indicated that DP could be included in laying hens diets up to 30 % when supplemented with multienzymes.  相似文献   

7.
Three experiments were conducted to evaluate the effect of supplementing phytase and xylanase on nutrient digestibility and performance of growing pigs fed wheat-based diets. In Exp. 1, 10 diets were fed to 60 pigs from 20 to 60 kg of BW to determine the effect of combining phytase and xylanase on apparent total tract digestibility (ATTD) of nutrients and growth performance. The 10 diets included a positive control diet (PC; 0.23% available P; 0.60% Ca) and a negative control diet (NC; 0.16% available P; 0.50% Ca) supplemented with phytase at 0, 250, and 500 fytase units (FTU)/kg and xylanase at 0, 2,000, and 4,000 xylanase units (XU)/kg in a 3 x 3 factorial arrangement. In Exp. 2, 6 ileally cannulated barrows (initial BW = 35.1 kg) were fed 4 wheat-based diets in a 4 x 4 Latin square design, with 2 added columns to determine the effect of combining phytase and xylanase on apparent ileal digestibility (AID) of nutrients. The 4 diets were NC (same as that used in Exp. 1) or NC supplemented with phytase at 500 FTU/kg, xylanase at 4,000 XU/kg, or phytase at 500 FTU/kg plus xylanase at 4,000 XU/kg. In Exp. 3, 36 barrows (initial BW = 55.5 kg) were fed 4 diets based on prepelleted (at 80 degrees C) and crumpled wheat for 2 wk to determine the effect of phytase supplementation on ATTD of nutrients. The 4 diets fed were a PC (0.22% available P; 0.54% Ca) and a NC (0.13% available P; 0.43% Ca) alone or with phytase at 500 or 1,000 FTU/kg. All diets in the 3 experiments contained Cr(2)O(3) as an indigestible marker. No synergistic interactions were detected between phytase and xylanase on any of the response criteria measured in Exp. 1 or 2. There were no dietary effects on growth performance in Exp. 1. In Exp. 1, phytase at 250 FTU/kg increased the ATTD of P and Ca by 51 and 11% at 20 kg of BW or by 54 and 10% at 60 kg of BW, respectively, but increasing the level of phytase to 500 FTU/kg only increased (P < 0.05) ATTD of P at 20 kg of BW. In Exp. 2, phytase at 500 FTU/kg increased (P < 0.05) the AID of P and Ca by 21 and 12%, respectively. In Exp. 3, phytase at 500 FTU/kg improved (P < 0.05) ATTD of P by 36%, but had no further effect at 1,000 FTU/kg. Xylanase at 4,000 XU/kg improved (P < 0.05) AID of Lys, Leu, Phe, Thr, Gly, and Ser in Exp. 2. In conclusion, phytase and xylanase improved P and AA digestibilities, respectively, but no interaction between the 2 enzymes was noted.  相似文献   

8.
ABSTRACT

1. The effects of supplementation of broiler chicken diets with pea meal, carbohydrase enzymes and a probiotic were investigated for potential performance improvement.

2. Raw or extruded pea meal (cv Model, grown in Poland) was included in a wheat-soybean meal-based diet at 250 g/kg. The diets were unsupplemented (control) or supplemented with either carbohydrase enzymes (200 U/kg xylanase and 10 U/kg β-glucanase in feed) or a probiotic (Bacillus subtilis), or both. The diets were fed to Ross 308 broilers aged 9–28 days.

3. After two additional days, chick gastrointestinal tracts were excised and analysed for the presence of Bacillus subtilis biofilm; and the ileal and caecal digesta were analysed for bacterial enzyme activities and to determine the concentration of short-chain fatty acids (SCFAs).

4. Feeding the pea-based diet supplemented with the probiotic compromised feed utilisation, due to higher feed intake. The addition of enzymes to the raw, but not the extruded, pea containing diet partially ameliorated this effect (pea form × additives; P < 0.002).

5. In the ileal digesta, interactions between the dietary treatments were observed for the activities of all bacterial glycolytic enzymes and for SCFA concentrations. β-glucosidase, α-galactosidase and β-glucuronidase were highest in birds fed the diet containing extruded pea supplemented with the probiotic and enzymes (pea form x additives; P = 0.018 to P < 0.006). In the caecal digesta, interactions were observed for bacterial enzyme activities, but not for total SCFA concentration. Biofilm formation in the caecum indicated that the probiotic strain was metabolically active in the broiler gut.

6. In conclusion, supplementation of diets containing raw or extruded pea meal with enzymes and a Bacillus subtilis spore-based probiotic modulated microbiota activity but had no clear effects on broiler performance. Probiotic administration did not cause excessive fermentation in the ileum and caecum but enhanced Bacillus subtilis spp. biofilm formation in the caecum, which may be indicative of a beneficial effect on gut health.  相似文献   

9.
One‐hundred and fifty male chickens were used to evaluate the effects of different activities (0, 250, 500, 12 500 FTU/kg) of phytase on their performance and antioxidant concentration in the liver. The chicks were housed in 30 cages and were allocated to six replicates of five dietary treatments. All diets were formulated to be adequate in energy and protein (12.90 MJ/kg metabolizable energy, 214 g/kg crude protein), however, the negative control (NC) was lower in available P compared with the positive control (PC) (2.5 vs. 4.5 g/kg diet). The other three diets were the NC supplemented with phytase at 250, 500 and 12 500 FTU/kg (NC + 250, NC + 500 and NC + 12 500 FTU respectively). The concentration of antioxidants in the liver of the birds was determined using HPLC at 21 days of age. Low P diets (NC) reduced weight gain, however, supplementation with phytase improved weight gain to the extent that it was better than the PC at the 12 500 FTU treatment (p < 0.05). Feed conversion ratio was also improved by the high level of phytase supplement more than other treatments (p < 0.05). Feed consumption was not affected either by dietary phosphorus concentration or by different phytase supplementation. The antioxidant data showed that the unsupplemented diet with low phosphorus (NC) decreased the concentration of coenzyme Q10 and retinol‐linoleate in the liver compared with that of birds on the adequate phosphorus treatment (PC). Phytase supplementation, especially at the higher doses (500 and 12 500 FTU) increased the level of coenzyme Q10 to the same level as the PC treatment. In addition, the highest dose (12 500 FTU) of phytase increased retinol concentration in the liver of chickens compared with those on the NC treatment. The highest inclusion level of phytase increased the α‐tocopherol level in the liver compared with the lower levels of phytase (NC + 250 and NC + 500 FTU).  相似文献   

10.
Four trials investigated the effect of high levels of three phytase enzymes on P and protein utilization in chicks. The three phytases were derived from Aspergillus (Fungal Phytase 1), Peniophora (Fungal Phytase 2), and E. coli. Within each assay, 8-d-old male chicks were given ad libitum access to their experimental diet for 10 to 14 d. For Trials 1, 2, and 3, the basal diet was a corn-soybean meal diet deficient in P that was analyzed to contain 23% CP and 0.38% total P (0.10% estimated available P, as-fed basis). Phytase supplementation levels were based on the assessment of phytase premix activity (i.e., P release from Na phytate at pH 5.5 and 37 degrees C). In Trial 1, supplementation of inorganic P from KH2PO4 (0 to 0.20%) resulted in a quadratic (P < 0.05) response in weight gain, gain:feed, and tibia ash concentration but a linear (P < 0.01) increase in tibia ash weight. Tibia ash was higher (P < 0.01) for chicks fed E. coli phytase than for those fed Fungal Phytase 1 at 500, 1,000, and 5,000 phytase units (FTU)/kg, but did not differ between these two phytases at 10,000 FTU/kg. In Trial 2, E. coli phytase supplementation at 1,000 FTU/kg maximized growth and bone responses, whereas addition of either of the two fungal phytases resulted in increasing responses up to 5,000 and 10,000 FTU/kg. Dietary addition of Fungal Phytase 2 resulted in the poorest (P < 0.01) responses among the three phytases. Escherichia coli phytase supplementation at 10,000 FTU/kg in Trial 3 resulted in tibia ash (millligrams) responses that were greater (P < 0.05) than those resulting from either 0.35% inorganic P supplementation or 10,000 FTU/kg of Fungal Phytase 1 or 2. Trial 4 showed that E. coli phytase supplementation at either 500 or 10,000 FTU/ kg did not improve protein efficiency ratio (gain per unit of protein intake) of chicks fed low-protein soybean meal or corn gluten meal diets that were first-limiting in either methionine or lysine, respectively. These results demonstrate that high dietary levels of efficacious phytase enzymes can release most of the P from phytate, but they do not improve protein utilization.  相似文献   

11.
The objective of these studies was to determine if dietary enzymes increase the digestibility of nutrients bound by nonstarch polysaccharides, such as arabinoxylans, or phytate in wheat millrun. Effects of millrun inclusion rates (20 or 40%), xylanase (0 or 4,375 units/kg of feed), and phytase (0 or 500 phytase units/kg of feed) on nutrient digestibility and growth performance were investigated in a 2 x 2 x 2 factorial arrangement with a wheat control diet (0% millrun). Diets were formulated to contain 3.34 Mcal of DE/kg and 3.0 g of true ileal digestible Lys/Mcal of DE and contained 0.4% chromic oxide. Each of 18 cannulated pigs (36.2 +/- 1.9 kg of BW) was fed 3 diets at 3x maintenance in successive 10-d periods for 6 observations per diet. Feces and ileal digesta were collected for 2 d. Ileal energy digestibility was reduced (P < 0.01) linearly by millrun and increased by xylanase (P < 0.01) and phytase (P < 0.05). Total tract energy digestibility was reduced linearly by millrun (P < 0.01) and increased by xylanase (P < 0.01). For 20% millrun, xylanase plus phytase improved DE content from 3.53 to 3.69 Mcal/kg of DM, a similar content to that of the wheat control diet (3.72 Mcal/kg of DM). Millrun linearly reduced (P < 0.01) ileal digestibility of Lys, Thr, Met, Ile, and Val. Xylanase improved (P < 0.05) ileal digestibility of Ile. Phytase improved ileal digestibility of Lys, Thr, Ile, and Val (P < 0.05). Millrun linearly reduced (P < 0.05) total tract P and Ca digestibility and retention. Phytase (P < 0.01) and xylanase (P < 0.05) improved total tract P digestibility, and phytase and xylanase tended to improve (P < 0.10) P retention. Phytase improved Ca digestibility (P < 0.05) and retention (P < 0.01). The 9 diets were also fed for 35 d to 8 individually housed pigs (36.2 +/- 3.4 kg of BW) per diet. Millrun reduced (P < 0.05) ADFI, ADG, and final BW. Xylanase increased (P < 0.05) G:F; phytase reduced (P < 0.05) ADFI; and xylanase tended to reduce (P = 0.07) ADFI. In summary, millrun reduced energy, AA, P, and Ca digestibility and growth performance compared with the wheat control diet. Xylanase and phytase improved energy, AA, and P digestibility, indicating that nonstarch polysaccharides and phytate limit nutrient digestibility in wheat byproducts. The improvement by xylanase of energy digestibility coincided with improved G:F but did not translate into improved ADG.  相似文献   

12.
We conduct this study to investigate the effects of corn-wheat-soybean meal (SBM)-based diet supplemented with high-dosing Trichoderma reesei phytase on the growth performance, nutrient digestibility, carcass traits, faecal gas emission and meat quality in growing-finishing pigs (29.71–110.58 kg live weight; 70-day-old to 166-day-old). A total of 56 crossbred pigs [(Landrace × Yorkshire) × Duroc] were used in 96-day experiment with a completely randomized block design. The growing period was from day 0 to 42, and the finishing period was from day 43 to 96. Pigs were randomly allocated to one of two treatments with seven replicate pens and four pigs (two barrows and two gilts) per pen and fed corn-wheat-SBM-based nutrient adequate basal diet or the basal diet supplemented with 1500 FTU/kg diet Trichoderma reesei phytase. One phytase unit (FTU) was defined as the amount of enzyme that catalyses the release of one micromole phosphate from phytate per minute at 37°C and pH 5.5. Dietary supplement with Trichoderma reesei phytase had increased body weight on day 96 and average daily gain in days 0–96. Moreover, high apparent total tract digestibility (ATTD) of phosphorus (P) was observed in pigs fed with Trichoderma reesei phytase. However, the carcass traits, faecal gas emission and meat quality of pigs were unaffected by Trichoderma reesei phytase supplementation. In conclusion, supplementation of high-dosing Trichoderma reesei phytase (1500 FTU/kg diet) in the corn-wheat-SBM-based nutrient adequate basal diet increased body weight and the ATTD of P, while no adverse effects were observed on the production characteristics.  相似文献   

13.
1. The objective of this study was to determine the coefficient of pre-caecal digestion of P in maize (3.9 g/kg of total P, 0.83 g/kg of phytate P, 138 FTU [phytase units]/kg) and wheat (3.17 g/kg of total P, 1.94 g/kg of phytate P, 666 FTU/kg) in broilers according to the WPSA protocol.

2. For the diets, monosodium phosphate was used as an additional P supplement. Two sets of diets containing 200, 460 and 740 g/kg of wheat or 200, 500 and 740 g/kg of maize were formulated. A total of 288 21-d-old male broilers (Ross 308) were assigned to 24 cages (8 birds per cage) and the 6 test diets were assigned to cages. The coefficient of pre-caecal digestion of P was determined by the indicator method and linear regression.

3. In both ingredients, pre-caecal digestible P increased linearly with increasing inclusion levels of maize or wheat (P < 0.05). The coefficients of digestion of pre-caecal P were estimated to be 0.18 for wheat and 0.33 for maize.  相似文献   


14.
The effect of phytase and xylanase supplementation of a wheat-based pig diet on the ileal and total tract apparent digestibility of dietary components and minerals were studied in eight growing pigs fitted with a PVTC cannula in a randomized block design experiment. The diets (A and B) were similar in major ingredient composition and in nutrient content. In diet A, part of the limestone was replaced with di-calcium phosphate to increase the content of available phosphorus (P). Diet B was fed without or with supplementation with phytase (500 FTU/kg; diet BP), xylanase (4000 XU/kg; diet BX) and phytase + xylanase (500 FTU and 4000 XU/kg; diet BPX). There were no differences (P > 0.05) between diets in the ileal or total tract digestibility of organic matter (OM), NDF and crude protein (CP). The ileal and total tract digestibility for P and Ca differed (P < 0.05) between diets, while there were no treatment effects for Zn. The ileal and total tract digestibility for P and Ca was higher (P < 0.05) on diets BP and BPX than on the other diets. In conclusion, phytase improved the utilization of dietary P and Ca in a wheat-based diet, while xylanase had no additional benefits in terms of OM and CP digestibility or mineral utilization. Phytase had no effect on the digestibility of OM, CP or NDF.  相似文献   

15.
Two basal diets containing an adequate and a low supply of available P (4.7 vs 2.5 g/kg diet) and three others containing a low available P but supplemented with 250, 500 and 12,500 units of phytase (FTU) per kg diet, respectively, were prepared. Each diet was fed ad libitum to birds in six metabolism cages (five birds in each cage) in a randomised block design. It was found that birds fed a high (12,500 FTU) dosage of phytase grew faster (P < 0.001) and retained proportionally more carotenoids in the liver (P < 0.05) compared to birds fed unsupplemented diet. The results suggest that dietary phytase may improve the anti-oxidative status of birds fed low P diets through enhancing dietary carotenoid availability.  相似文献   

16.
1. In vitro assays provide a rapid and economical tool to evaluate dietary effects, but have limitations. In this study, the effect of phytase supplementation on solubility, and presumed availability, of calcium (Ca) and phosphorus (P) in soya bean meal (SBM) and rapeseed meal (RSM) based diets were evaluated both in situ and by a two-step in vitro digestion assay that simulated the gastric and small intestine (SI) phases of digestion.

2. Comparison of the in vitro findings to in situ findings was used to evaluate the in vitro assay. Ross 308 broilers (n = 192) were fed on one of 6 SBM or RSM diets supplemented with 0, 500 or 5000 FTU/kg phytase from 0 to 28 d post hatch. The 6 diets and raw SBM and RSM were exposed to a two-step in vitro assay. Ca and P solubility and pH in the gizzard and jejunal digesta and in the gastric and SI phase of in vitro digestion were measured.

3. Both in vitro and in situ analyses detected that Ca solubility was lowest when diets were supplemented with 500 FTU/kg phytase, compared to the control diets and diets supplemented with 5000 FTU/kg phytase. Phosphorus solubility increased with increasing phytase level. Both methods also identified that mineral solubility plateaus in the gastric phase.

4. Overall relationship of the two methods was strong for both determination of gastric phase Ca and P solubility (r = 0.96 and 0.92, respectively) and also SI phase Ca and P solubility (r = 0.71 and 0.82, respectively). However, mineral solubility and pH were higher when measured in vitro than in situ, and the in situ assay identified an interaction among the effects of phase, protein source and phytase inclusion level on Ca solubility that the in vitro assay did not detect.

5. This two-step in vitro assay successfully predicted phytase efficacy, but to determine detailed response effects in the animal, in situ data is still required.  相似文献   


17.
This study investigated the influence of pre‐pelleting inclusion of whole wheat (WW) and exogenous enzyme supplementation on growth performance, coefficient of apparent ileal nutrient digestibility (CAID) and apparent metabolizable energy (AME) in broilers fed wheat‐based pelleted diets. A 2 × 3 factorial arrangement of treatments was used with two methods of wheat inclusion [622 g/kg ground wheat (GW) and 250 g/kg WW replaced GW (wt/wt) pre‐pelleting (PWW)] and three enzymes (xylanase, phytase and xylanase plus phytase). A total of 288, one‐day‐old male broilers (Ross 308) were individually weighed and allocated to 36 cages (8 broilers/cage), and the cages were randomly assigned to the six dietary treatments. Birds fed PWW diets gained more (p < 0.05) weight than those fed GW diets. There was no effect (p > 0.05) of WW inclusion on feed intake (FI). Phytase alone increased (p < 0.05) FI compared to xylanase or the combination. Whole wheat inclusion increased (p < 0.05) the gain‐to‐feed ratio (G:F). Feeding xylanase plus phytase and phytase‐added diets resulted in the greatest and lowest G:F, respectively, with xylanase supplemented diets being intermediate. Birds fed PWW diets had greater (p < 0.05) relative gizzard weights than those fed GW diets. There was no effect (p > 0.05) of WW inclusion on the CAID of nitrogen (N), starch and fat. Combination of xylanase and phytase resulted in greater (p < 0.05) digestibility of N, starch and fat than that of individual additions. Feeding PWW diets resulted in greater (p < 0.05) AME values than GW diets. Combination of xylanase and phytase increased (p < 0.05) the AME compared to the diets with individual additions of xylanase or phytase. The current results suggest that the influence of pre‐pelleting WW inclusion and exogenous enzymes on nutrient digestibility and broiler performance is not additive.  相似文献   

18.
Phytase supplementation beyond the standard doses used for phosphorus release has been reported to result in extraphosphoric effects by enhancing nutrient digestibility resulting in improved performance of broilers. A study was conducted to examine the effects of the progressive addition of an enhancedEscherichia Coli phytase (400–1,600 phytase units; FTU) on growth performance and carcass characteristics from 1 to 42 d of age in male broilers. One thousand four hundred Hubbard × Cobb 500 1-d-old chicks were randomly distributed into 56 floor pens (0.08 m2/bird). Seven dietary treatments were provided in a 3-phase feeding program consisting of (1) a positive control (adequate Ca and nonphytate P; PC); (2) 1 negative control (Ca and nonphytate P reduced by 0.14% and 0.13%; NC); (3 to 6) the NC diet with 4 increasing supplemental phytase concentrations (NC + 400 FTU, NC + 800 FTU, NC + 1,200 FTU, and NC + 1,600 FTU, respectively); and (7) a low-energy NC diet without phytase and xylanase (reduced 66 kcal of AMEn/kg). Body weight gain, feed conversion, mortality, weight and yield of whole carcass, abdominal fat, and pectoralis major and minor muscles were evaluated. Progressive supplementation of phytase decreased cumulative FCR linearly. Broilers fed diets containing 1,600 FTU had heavier total breast meat by 49 g compared with birds receiving the PC diets. Broilers consuming the NC + 400 FTU or the low-energy NC diet had similar growth performance and meat yield compared with birds provided PC diet. These data indicated that phytase supplementation beyond the need for phosphorus enhances growth performance and carcass characteristics.  相似文献   

19.
Considering approaches to efficiently produce broiler chickens, an experiment was conducted to describe the manufacturing and feeding effects of a corn, soybean meal, and wheat based diet with varying levels of corn distillers dried grains with solubles (DDGS) and commercial phytase. Treatments were arranged in a 3 × 2 factorial randomized complete block design varying in phytase (zero, 1,000, and 6,000 FTU/kg) and DDGS inclusion (zero or 5%). Phytase inclusion decreased dietary non-phytate phosphorous (nPP) and total Calcium (Ca) in formulation by 0.12 and 0.1%, respectively. Diets were steam conditioned at 82°C for 10 s, extruded through a 4.7 × 38 mm pellet die, and fed as crumbles (starter and grower) or pellets (finisher). Ten replicate pens of straight-run Hubbard × Cobb 500 chicks consumed one of 6 dietary treatments for 38 days. Phytase improved feed conversion ratio (FCR) in the starter period (P = 0.05), but benefits were not apparent in the grower or finisher periods. Phytase and formulation main effects interacted to affect overall FCR (P = 0.05), demonstrating a 0.05 decrease in FCR when birds were fed a diet containing a super-dose of phytase and without DDGS relative to diets containing a super-dose of phytase and DDGS. The DDGS likely provided reduced nutrient availability relative to their nutrient values used for diet formulation or provided non-starch polysaccharides (NSP) at a level that decreased bird performance. Based on tibia ash measures, performance improvement associated with the super-dose of phytase was likely associated with reducing phytate phosphorus gastrointestinal irritation rather than meeting bird phosphorus requirement.  相似文献   

20.
The effect of a novel consensus bacterial 6-phytase variant (PhyG) on apparent ileal digestibility (AID) of amino acids (AA) and phosphorus (P) utilization in young broilers when added to diets with high phytate-P (PP) content without added inorganic phosphate (Pi) and deficient in digestible (dig) AA and metabolizable energy (ME) was investigated. A total of 256 Ross 308 male broilers were assigned to 4 treatments (8 birds/cage, 8 cages/treatment) in a completely randomized design. Treatments comprised a positive control (PC, 2,975 kcal/kg ME, 3.7 g/kg dig P, 2.83 g/kg PP, 8.4 g/kg Ca, 10.6 g/kg dig lysine), a negative control (NC) without added Pi (ME −68 kcal/kg, crude protein −10 g/kg, dig AA −0.1 to −0.4 g/kg, Ca −2.0 g/kg, dig P −2.2 g/kg, Na −0.4 g/kg vs. PC), and NC plus 500 or 1,000 FTU/kg of PhyG. Test diets were corn/soy/rapeseed-meal/rice-bran-based and fed from 5 to 15 d of age. Ileal digesta and tibias were collected on day 15. Excreta was collected during days 12 to 15 to determine P retention. The NC (vs. PC) reduced (P < 0.05) P retention (−10.4% units), tibia ash (−14.3% units), weight gain (−109 g), feed intake (−82 g) and increased FCR (from 1.199 to 1.504), confirming that the NC was extremely deficient in nutrients and energy. Phytase addition to the NC linearly (P < 0.001) improved performance, but did not fully recover it to the level of the PC due to the severe nutrients/energy reduction in NC. Phytase linearly increased P retention (P < 0.001), tibia ash (P < 0.001), AID of dry matter (P < 0.05), nitrogen (P < 0.01), gross energy (P < 0.05), and all 17 individual AA (P < 0.01). At 1,000 FTU/kg, phytase increased (P < 0.05) P retention vs. PC and NC (+14.5 and +24.9% units, respectively) and increased tibia ash vs. NC (+13.8% units), equivalent to PC. The NC decreased AID of Cys, Gly, Thr, and Met vs. PC (P < 0.05). At 1,000 FTU/kg, phytase increased AID of all 17 AA vs. NC (P < 0.01), equivalent to PC. At 1,000 FTU/kg, AID AA responses (above NC) ranged from +4.5% (Met) to +15.0% (Cys), being maximal for essential Thr (+10.4%) and Val (+8.2%) and non-essential Cys (+15.0%) and Gly (+10.4%). The results highlight the efficacy of PhyG at a dose level of 500 to 1,000 FTU/kg in young broilers for improving the ileal digestibility of nitrogen, AA, and energy alongside P retention and tibia ash. The performance data emphasize the need to consider digestible nutrient intake as a response variable in exogenous enzyme studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号