首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Surfactants in herbicide formulations eventually enter soil and may disrupt various processes. Research examined effects on nutrient uptake in corn caused by surfactants, herbicides, and surfactant-herbicide combinations applied to silt loam and silty clay loam soils in the greenhouse. Surfactants evaluated were Activator 90, Agri-Dex, and Thrust; herbicides were glyphosate, atrazine, and bentazon. Corn was planted in fertilized soils with moisture content maintained for optimum growth. Foliage (V8 growth stage) was collected for elemental analyses. Nutrient uptake differed with soil texture. Nutrient uptake from silty clay loam was more affected by surfactants and/or herbicides than in silt loam. Potassium uptake was significantly (P = 0.05) decreased in silt loam only by Thrust but uptake of phosphorus (P), potassium (K) calcium (Ca), sulfur (S), copper (Cu), and zinc (Zn) decreased by ≤30% in silty clay loam treated with surfactants. Surfactants and/or herbicides may interact with soil texture to affect nutrient uptake. Long-term field studies to validate changes in nutrient uptake and grain yields after annual applications of surfactants plus herbicides are needed.  相似文献   

3.
To investigate the effect of Spent Mushroom Compost (SMC) as an organic fertilizer on German chamomile (Matricaria recutita L.) nutrient, growth, yield, essential oil and osmolytes a greenhouse experiment was conducted through a randomized complete design in six replications. A mixture of sandy loam soil with 5, 10 and 15% volume rates of spent mushroom compost was used as the partial substrate for German chamomile pot culture. Finding of results revealed that usage of SMC in the growing media increased significantly plant growth, flower yield, essential macro nutrient uptake, sodium concentration, proline and soluble sugars content as well as essential oil percentages in compared to control. Comparison between the treatments indicated that addition of 10% SMC to the plant soil substrate cause to higher growth and addition of higher rates of SMC (10% and 15%) led to better yield. The obtained results showed that absorption of K and Na enhanced significantly by increasing of SMC percentage in growing media but there was no significant difference in N and P uptake in SMC treatments. The results of GC and GC-MS analysis presented that the main compositions of essential oil extracted from German chamomile flowers accounted for 83.99–99.84% of total essential oil in SMC treatments. Regarding important role of SMC on the essential oil yield, we can consider SMC could be a suitable substitute for chemical fertilizers as environmentally friendly material in cultivation medicinal plant German chamomile.  相似文献   

4.
An experiment was conducted under greenhouse conditions to test the symbiotic performance and plant nutrient uptake of the twelve nationally registered chickpea cultivars (‘Çak?r’, ‘I??k-05’, ‘Can?tez-87’, ‘Hisar’, ‘Ya?a-05’, ‘Azkan’, ‘Küsmen-99’, ‘Gökçe’, ‘Damla-89’, ‘Diyar-95’, ‘Aziziye-94’, and ‘?zmir-92’) in Turkey. Inoculation with Mesorhizobium ciceri increased the average nodule number by 687%, nodule weight by 257%, plant height by 6%, shoot dry weight by 12%, root dry weight by 21%, chlorophyll content by 4.2%, nitogen (N)% by 7.9%, and total N by 22.7%. Averaged across chickpea cultivars, inoculation also significantly increased sulfur (S) by 14.4%, phosphorus (P) by 1.9%, magnesium (Mg) by 13.8%, potassium (K) by 6.2%, calcium (Ca) by 17.4%, copper (Cu) by 4.5%, iron (Fe) by 16.5%, manganese (Mn) by 10.9% and zinc (Zn) uptake by 9.4%. The macro- and micronutrient uptake of cultivars significantly correlated with their nitrogen content and the magnitude of response to inoculation in relation to nodulation, plant growth, nitrogen fixation, and nutrient uptake significantly varied among cultivars. Based on the amount of fixed N and plant nutrient uptake, ‘Azkan’, ‘Aziziye-94’, ‘Küsmen-99’, ‘Diyar-95’, and ‘Hisar’ were the genotypes with the most positive response to inoculation. Our data showed that nodulation, nitrogen fixation, plant dry matter production, and macro- and micronutrient uptake of the inoculated chickpea can be improved by selecting the best compatible cultivar.  相似文献   

5.
A pot experiment was conducted in the wire house of Department of Crop Physiology, University of Agriculture, Faisalabad to evaluate the effect of salinity stress on water relations, nutrient uptake and yield of six local spring wheat cultivars. The seeds were sown in plastic pots (25 × 15 cm) and experiment was laid out in a randomized complete block design in factorial arrangement with three repeats. De-ionized water was used as control treatment while salinity stress was imposed by irrigating plants with sodium chloride (NaCl) solution of 10 mM at tillering, stem elongation, anthesis, and grain development stages. Results of the study demonstrated that salinity stress decreased water potential by 32%, osmotic potential by 12%, and relative water contents by 20% as compared to control treatment. The nitrogen (N) uptake was decreased by 36% under salinity stress, while phosphorous (P) and potassium (K) uptake were decreased by 56% and 42%, respectively. The yield of wheat plants was also significantly reduced under salinity stress. It reduced grain yield by 25% and grain weight by 7%. The response of different cultivars was also different to salinity stress as cultivars ‘Lasani-08’ and ‘FSD-08’ were found to be more tolerant as compared to other cultivars.  相似文献   

6.
为高效提取黄秋葵中黄酮类化合物,本试验以黄秋葵中的4种主要黄酮类化合物和黄秋葵总黄酮含量为响应值,通过单因素试验和Box-Behnken响应面试验进行提取工艺优化,并采用牛津杯法考察黄秋葵总黄酮对6种常见致病菌的抑菌活性.结果表明,在提取温度37℃、提取时间20 min、乙醇浓度70%、料液比1:25 g·mL-1的条...  相似文献   

7.
The present investigation was conducted on a laterite soil to study biomass partitioning and nutrient-uptake pattern in the aboveground parts of arecanut palm and their relationships to yield. Total biomass production was significantly greater in high-yielding plants (43.6 kg palm?1) than in low-yielding plants (30.8 kg palm?1). Total standing biomass of trunk accounted for 69–74% of the total aboveground biomass in arecanut palm. Dry-matter partitioning to kernel was only 4–10% of the total biomass. The uptake of major nutrients varied significantly between low- and high-yielding plants. Calcium (Ca) uptake was greater by trunk than by other parts, while magnesium (Mg) accumulation was similar in trunk and leaf. The uptake of micronutrients by aboveground parts except leaf was significantly different between low- and high-yielding plants. The present study indicated that combined effect of greater biomass production and nutrient uptake had direct impact on marketable yield of arecanut.  相似文献   

8.
Low availability of phosphorus (P) and potassium (K) in acidic soil is a major constraint for crop production. Therefore, a field study was conducted to determine the effects of K and P on nodulation, productivity, and nutrient uptake of cowpea (Vigna unguiculata L. Walp) under rainfed conditions. The K and P were subjected to main and subplots, respectively with 100, 75, and 50% of fertilizer application. The growth and yield attributes were better using 100% K with 100% P. However, 100% K resulted in 20.9 and 16.9% greater green pod and stover yield than 50% K. Similarly, 100% P recorded 20.2 and 15.6% greater green pod and stover yield than 50% P. Uptake of nutrients such as nitrogen (N), P, and K followed the trend of greater to lower, 100% > 75% > 50%, in order for K and P. Similarly, nutrient-use efficiencies and production efficiency followed the trend of nutrient uptake.  相似文献   

9.
Field experiments were conducted for 6 years on a silty clay loam to study the effect of soil management on soil physical properties, root growth, nutrient uptake and yield of rainfed maize (Zea mays L.) and wheat (Triticum aestivum L.) grown in a sequence. Treatments were: no-tillage (NT), NT+pine needle mulch at a rate of 10 t ha−1 (NT+M), conventional tillage (CT), CT+pine needle mulch at a rate of 10 t ha−1 (CT+M) and deep tillage (DT). The soil is classified as a Typic Hapludalf and has compact sub-surface layers. The NT treatment increased the bulk density of the surface layer but this problem was not observed in the no-tilled treatment having mulch at the surface (NT+M). The CT+M and NT+M treatments favourably moderated the hydro-theregime resulting in greater root growth, nutrient uptake and grain yields of maize and wheat. The DT treatment, imposed only once, at the beginning of the study, also enhanced root growth and grain yields. The yields were similar to the mulched treatments for maize and somewhat less than the mulched treatments for wheat. Mulched treatments generally showed significantly greater total uptake of N, P and K than corresponding unmulched ones. Since NT+M was comparable to CT for maize and superior for wheat, the latter is preferable since it does not require ellaborate tillage.  相似文献   

10.
ABSTRACT

Plant residue material produced compost is an organic fertilizer source and it is commonly used for soil amendments. Also in order to reduce the amount of chemical fertilizers need mycorrhizal inoculation can be used as an agricultural strategy. Thus, the aim of the research is to examine the effect of several residue materials produced compost and mycorrhizae fungi with two growth media on leek plant growth, nutrient uptake, and mycorrhizae spores’ production.

Eight different row organic materials and animal manures were used as compost production during 8 months. Leek (Allium porrum L.) plants were inoculated with Funneliformis mosseae and Claroideoglomus etunicatum with a level of 1000-spore per pot. The leek plant was analyzed for determination of nutrient concentration, root colonization, spore production, and shoot/root dry weight.

The composts were made from domestic waste, animal manure (bovine animal), animal manure (ovine animal), and different plant materials were determined to be the most suitable compost material for plant growth and mycorrhizal spore production compared to the rest of compost material. Mycorrhizal inoculation significantly increased leek plant growth and nutrient uptake especially phosphorus (P), potassium (K), copper (Cu) and zinc (Zn). Plants grown in 5:3:2 (volume/volume) growth media was responded better to the mycorrhizal inoculation than grown in 1:1:1 (v/v) growth media. Funneliformis mosseae inoculated plants have higher plant growth and nutrient uptake than that of Claroideoglomus etunicatum inoculation.  相似文献   

11.
A field experiment was conducted in a phosphorus (P)–deficient acidic Alfisol in northwestern Himalayas to study the effect of three vesicular arbuscular mycorrhizae (VAM) cultures [VAML, local VAM culture (Glomus mosseae) developed by CSK Himachal Pradesh Agricultural University, Palampur, India; VAMT, VAM culture (Glomus intraradices) developed by Centre for Mycorrhizal Research, The Energy and Resources Institute (TERI), New Delhi, India; and VAMI, VAM culture (Glomus mosseae) developed by Indian Agricultural Research Institute (IARI), New Delhi, India] on growth, productivity, and nutrient dynamics in rainfed soybean. Plant height, aboveground dry matter, root dry matter, total dry matter, root length, root weight density, Rhizobium root nodule count, root colonization, yield attributes, yield, and nutrient uptake of soybean increased consistently and significantly with increase in inorganic P levels from 25 to 75% of recommended P2O5 dose based on targeted yield precision model coupled with various VAM cultures. VAMT (Glomus intraradices) at each P level showed its superiority over VAMI and VAML. Sole application of any of the three VAM cultures produced similar growth and development parameters as well as grain yield (18.68 to 19.08 q ha?1) as produced through farmers’ practice (nitrogen at 20 kg ha?1), indicating that VAM has a vital role in root morphology and nutrient dynamics in a soil–plant system, though significantly greater productivity was obtained with 100% of the recommended P2O5 dose based on soil-test crop response (STCR) precision model without VAM inoculation. Targeted grain yield of soybean (25 q ha?1) was achievable with 75% of the recommended P2O5 dose applied with any of the three VAM fungi cultures without impairing soil fertility, thereby indicating that VAM fungi can save about 25% P fertilizer in soybean in P-deficient acidic Alfisols of northwestern Himalayas.  相似文献   

12.
The Czech Republic is characterized by a low Se soil content, resulting in Se deficiency in crops, humans, and animals. This study investigated the response of oilseed rape to foliar application of selenate solution in a microscale field experiment conducted at two locations differing in soil and climatic conditions but with comparable total Se contents. Sodium selenate (Na2SeO4) was applied at two rates (25 and 50 g Se ha?1). The potential effect of Se application on the uptake of essential elements was also evaluated. The foliar Se application resulted in an effective stepwise increase in the Se contents of all the plant components studied (leaves > stems > roots > siliques ~ seeds), as expected. No significant influence of Se fortification on the other investigated macro- and microelements was observed. However, the soil and climatic conditions influenced the Se uptake, such that a higher Se content was observed in plants grown in the most acidic location (Cambisol soil) that had a higher oxidizable carbon content and higher average annual rainfall compared to the less acidic location (Luvisol soil). These observations indicated the necessity to optimize the Se application for the particular soil and climatic conditions to achieve a maximum biofortification effect.  相似文献   

13.
探讨施氮量与灌水上下限对黄秋葵养分吸收的交互作用,为黄秋葵的水肥管理提供理论及参数依据。采用土壤盆栽试验,设置田间持水量的45%~55%即45%~55% FC(W1)、35%~65% FC(W2)、25%~75% FC(W3) 3种灌水上下限及0 kg/hm2(N0)、110 kg/hm2(N1)、330 kg/hm2(N2) 3个氮水平,观测不同施氮量和灌水上下限对黄秋葵生长发育、生理响应及养分吸收的影响。结果表明,相同施氮水平下,黄秋葵不同器官生物量、果实产量、灌溉水分生产率及氮磷钾养分积累量以W1最高。相同灌水上下限,黄秋葵不同器官生物量、果实产量、谷氨酰胺合成酶活性、灌溉水分生产率及氮肥偏生产力以N1最高,各处理之间差异显著。水、氮之间表现显著的互作效应,N1W1处理的黄秋葵总生物量、果实产量、灌溉水分生产率和氮肥偏生产力最高,分别为446.4 g、201.3 g、6.9 g/kg和108.7 kg/kg,显著高于最低处理N2W3(190.3 g、64.9 g、2.4 g/kg和11.7 kg/kg),分别提高了57.4%、67.8%、65.2%和89.2%。综合分析表明,高氮高水处理(N2W3)显著降低黄秋葵产量及水肥利用效率,黄秋葵产量、灌溉水分生产率及养分吸收综合体现的最优模式为110 kg/hm2的施氮量、45%~55%FC的灌水上下限(N1W1),此研究可为丰富黄秋葵高产栽培提供理论依据。  相似文献   

14.
Most plant nutrients are optimally available when soil pH is close to neutral. In this experiment the effects of Thiobacillus and Mycorrhiza on nutrient uptake and grain yield of maize were studied on an alkaline soil as a factorial experiment with randomized complete blocks design. Treatments consisted of Mycorrhiza fungi (M): inoculated (m1) and noninoculated (m0), Thiobacillus (T): inoculated (t1) and noninoculated (t0), and sulfur (S) (S0, S1: 250, and S2: 500 kg ha?1). Inoculation of Mycorrhiza, Thiobacillus, and S application decreased soil pH and increased grain yield and seed oil content. The lowest soil pH and the greatest S content were obtained from the combination of Thiobacillus and 500 kg ha?1 S. Inoculation of Thiobacillus and S application significantly decreased root colonization. The greatest iron (Fe) content was in the combination of Mycorrhiza inoculation and 500 kg ha?1 S. Grain P content significantly increased with Mycorrhiza inoculation and S application. The greatest grain yield obtained from combination of Thiobacillus with 500 kg ha?1 S.  相似文献   

15.
A field experiment was conducted for 5 years (2004–2005 to 2009–2010) covering 10 crop seasons [five wet (WS; Kharif) and five dry (DS; Rabi)] at the Directorate of Rice Research farm, Hyderabad, India, to compare the influence of organic and conventional farming systems on productivity of fine grain rice varieties, cumulative partial nutrient balance, and soil health/quality in terms of nutrient availability, physical and biological properties, and sustainability index. Two main plot treatments were with and without plant protection measures, and four subplot treatments were (1) control (CON), (2) inorganic fertilizers (CF), (3) organics (OF), and (4) inorganics + organics (integrated nutrient management, INM). During wet season, grain yields with CF and INM were near stable (5.0 to 5.5 t ha?1) and superior to organics by 15–20% during the first 2 years, which improved with OF (4.8 to 5.4 t ha?1) in the later years to comparable levels with CF and INM. However, during DS, CF and INM were superior to OF for 4 consecutive years and OF recorded yields on par with CF and INM in the fifth year. The partial nutrient balance over 10 crop seasons for N and P was positive and greater with OF and INM over CF and for K it was positive with OF alone and negative with CF and INM. There were increases in SOC and available N, P, and K by 50–58%, 3–10%, 10–30%, and 8–25% respectively, with OF, over CF at the end of 5 years. The sustainability index (SI) of the soil system was maximum with organics (1.63) and CF recorded 1.33, which was just above the minimum sustainability index of 1.30 after 5 years. Thus, organic farming needs more than 2 years to stabilize rice productivity and bring about perceptible improvement in soil quality and sustainability in irrigated rice.  相似文献   

16.
Abstract. We studied the effect of inoculation with three arbuscular-mycorrhizal (AM) fungi ( Glomus intraradices Schenck & Smith, Glomus deserticola (Trappe, Bloss. & Menge) and Glomus mosseae ([Nicol & Gerd.] Gerd. & Trappe) and the addition of composted sewage sludge on root nitrate reductase (NR, EC 1.6.6.1.) activity, mycorrhizal colonization, plant growth and nutrient uptake in Retama sphaerocarpa L. seedlings afforested in a semiarid, degraded Mediterranean soil under well-watered and non-watered conditions. Six months after planting, the mycorrhizal inoculation and the irrigation of plants had a strong effect on the growth parameters. The effect on plant growth was a negative interaction between plant irrigation and mycorrhizal inoculation and a positive interaction between plant irrigation and composted sewage sludge addition. The latter treatment had a significant, but moderate, effect on the growth but conferred no additional benefit when combined with mycorrhizal inoculation. Mycorrhizal inoculation, composted sewage sludge and irrigation had a significant effect on NR activity in roots and on foliar nutrients. The irrigation significantly increased the positive effect of composted sewage sludge on NR activity and the concentrations of foliar N and K. The effect of mycorrhizal inoculation on NR activity did not depend on the water regime. The effectiveness of mycorrhizal inoculation on the establishment and growth of R. sphaerocarpa seedlings in these Mediterranean conditions was independent of water regime. The addition of composted sewage sludge was only effective when soil water was freely available. The combination of mycorrhizal inoculation and composted sewage sludge addition had no synergistic effect on plant growth.  相似文献   

17.
The effect of increasing chloride content in nutrient solution on nutrient composition in root environment, interaction of nutrients in leaves and yield of greenhouse tomato cv. ‘Grace F1’ grown in rockwool were searched. In Experiment I (2004–2005) the levels of 15, 30, 60, and 90 mg Cl·L?1 but in Experiment II (2006) 30, 60, 90 and 120 mg Cl·L?1 of nutrient solution were tested. The sources of chloride were water (9.6–10.7 mg Cl·L?1) and calcium chloride (CaCl2·2H2O) but the rest of nutrients and sodium in all treatments were on the same levels. It was found that increasing content of chloride from 15 to 60 mg Cl·L?1 enhanced the total and marketable fruit yield. Within the range of 60 to 90 mg Cl·L?1 the yield was on the optimum level but the content of 120 mg Cl·L?1 declined it. Increasing chloride content in the nutrient solutions was reflected in rising of chlorine content in leaves. The concentration of chloride above 60 mg C·L?1 reduced the content of nitrogen but above 90 mg C·L?1 declined the content of calcium, sulfur and zinc in leaves. The antagonism between Cl:N, Cl:Ca: Cl:S and Cl:Zn was appeared. More variable interaction were between Cl:K and Cl:B. At the low levels of chloride, from 15 to 60 mg Cl·L?1, potassium and boron content were decreased but at the higher ones, from 90 to 120 mg·L?1, these nutrients had increasing course. It was not found out the effect of chloride contents on macro and microelement contents in nutrient solution emitted from drippers however their content upraising in root medium (rockwool). The highest increase was found out for Na 95.1 and 64.9 % (Exp. I and II - respectively), next for Ca (76.0, 70.1 %), Cu (62.5 and 71.0 %), Cl (43.6, 24.4), B (33.3, 21.0 %), N-NO3 (30.4, 49.6 %), Zn (29.5, 32.8 %), S-SO4 (25.9, 25.5 %), K (24.5, 24.1 %), Fe (19.8, 19.2 %), Mn (17.5, 21.3 %) and Mg (14.9, 11.7). Advantageous effect of chloride on tomato yield justified the need to introduce for the practice adequate chlorine nutrition, and recommend to maintain 60 to 90 mg Cl·L?1 in nutrient solution. The best yield appeared when content of chlorine in leaves (8th or 9th leaf from the top) was in the range 0.48-0.60 % of Cl in d. m.  相似文献   

18.
In the recent past, biochar and crop residues have attracted lots of attention as a viable strategy for maintaining soil health. This paper evaluates the comparative effect of two different doses (equivalent to 2 and 5 t C ha?1) of each of pine needle and Lantana biochar (PBC and LBC), wheat residue and lentil residue (WR and LR) on soil biological properties, nutrient availability and yield of rice and wheat in pot culture. Energy-dispersive X-ray spectroscopy (EDS) revealed higher C content of biochar than crop residues. Evaluation of biochemical quality reflected high recalcitrance indices of C and N for both PBC and LBC. Application of LBC and PBC increased the wheat grain yield significantly by 6.2%–24.2% over control. Both PBC and LBC significantly increased N and P uptakes in grain over the control and crop residues. Both biochars recorded a significant decrease of 33.9 and 71,7% in β-glucosidase activity in comparison to control at termination of study. PBC and LBC also resulted in more soil available N, P and K in soil at different intervals. The geometric mean of enzyme activities (GMea) reflected improved soil quality by PBC and LR and reduction by LBC application.  相似文献   

19.
The present investigation was carried out at Palampur, India, during 2009–11 to enhance plant water relations and productivity in pea through arbuscular mycorrhizal fungi (AMF) in a Himalayan acidic Alfisol. The field experiment was replicated three times in a randomized block design comprising 14 treatments involving AMF, inorganic phosphorus (P), irrigation regimes, generalized recommended nitrogen, phosphorus, and potassium (NPK) dose and irrigations, and farmers’ practice in the region. The study revealed that treatments involving AMF inoculation along with inorganic P nutrition at varying irrigation regimes led to significantly greater relative leaf water content (2%), xylem water potential (12%), and water-use efficiency (10%), respectively, in comparison with non-AMF inoculated counterparts. Similarly, maximum increase in quality parameters such as total soluble solids (6%), ascorbic acid (6%), and crude protein content (3%) in pea was registered under AMF inoculation involving treatments. Further, AMF-inoculated treatments indicated an economy of about 25% in soil-test-based P dose without impairing crop productivity.  相似文献   

20.
Field experiments were conducted at Owo, southwest Nigeria to select organic fertilizer treatments most suitable for sustaining high soil fertility and yam productivity on a nutrient-depleted tropical Alfisol. Eight organic fertilizer treatments were applied at 20 t ha?1 with a reference treatment inorganic fertilizer (NPK 15–15–15) at 400 kg ha?1 and natural soil fertility (control), laid out in a randomized complete block design with three replications. Results showed that organic fertilizers significantly increased (p = 0.05) tuber weight and growth of yam, soil and leaf N, P, K, Ca and Mg, soil pH and organic C concentrations compared with the NSF (control). The oil palm bunch ash + poultry manure treatment increased tuber weight, vine length, number of leaves and leaf area of yam by 66, 25, 21 and 52%, respectively, compared with inorganic fertilizer (NPK) and 37, 22, 19 and 44%, respectively, compared with poultry manure alone. Sole or mixed forms of organic fertilizers showed significant improvement in soil physical conditions compared with IF (NPK) and NSF (control). Synergistic use of oil palm bunch ash + poultry manure at 10 t ha?1 each was most effective for sustainable management of soils and for improving agronomic productivity of yam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号