首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rainfall simulations were conducted on a loess derived silt loam soil (Henan province, P.R. China) under conventional tillage. This tillage practice is widespread and involves the turning of the plough layer and the wheat stubble in July (primary tillage), followed by a secondary tillage operation in October. Soil samples were collected and in situ measurements were done before each rainfall simulation in order to analyse soil physical properties after successive simulated rainfall events. The purpose of this study was to determine rainfall induced changes in saturated hydraulic conductivity, bulk density, penetration resistance, water retention and soil erodibility. The results only showed significant differences in soil bulk density and erodibility when applying successive rainfall events. Penetration resistance and water retention (at matric potentials ≤ − 3 kPa) were not significantly affected and soil surface sealing was not observed. This was also confirmed by the infiltration measurements, where no significant differences in saturated hydraulic conductivity were found. From a soil conservation point of view, this study indicated that the primary tillage operation (i.e. ploughing at the beginning of July) is rather disadvantageous: the saturated hydraulic conductivity is not significantly affected, but the soil erodibility is considerably higher in comparison to a consolidated soil. Furthermore, the beneficial effects of the wheat stubble on soil and water conservation are lost by the tillage operation.  相似文献   

2.
Abstract. Hydraulic properties of soils after rice cropping are generally unfavourable for wheat cultivation. Poor drainage, delayed planting and oxygen stress in the root zone may adversely affect the wheat crop after lowland rice cultivation. We studied long-term effects of lantana ( Lantana spp. L.) residue additions at 10, 20 and 30 t ha−1 yr−1 (fresh biomass) on physical properties of a silty clay loam soil under rice–wheat cropping in northwest India. At the end of ten cropping cycles, soil water retention, infiltration rate, saturated hydraulic conductivity and drying rate of soil increased significantly with lantana additions. The available water capacity (AWC), on volume basis, declined at rice harvest (from 22.0 to 18.8–20.9%), but increased at wheat harvest (from 12.9 to 13.4–15.0%) after lantana treatment. The volumes of water transmission (>50 μm) and storage pores (0.5–50 μm) were greater, while the volume of residual pores (<0.5 μm) was smaller in lantana-treated plots than in controls at both rice and wheat harvest. Infiltration rate in the lantana-treated soil was 1.6–7.9 times that of the control (61 mm d−1) at rice harvest, and 2–4.1 times that of the control (1879 mm d−1) at wheat harvest. Thus lantana addition improved soil hydraulic properties to the benefit of the wheat crop in a rice–wheat cropping sequence.  相似文献   

3.
In Indian Punjab, rice–wheat is a dominant cropping system in four agro‐ecosystems, namely undulating subregion (zone 1), Piedmont alluvial plains (zone 2), central alluvial plains (zone 3), and southwestern alluvial plains (zone 4), varying in rainfall and temperature. Static and temporal variabilities in soil physical and chemical properties prevail because of alluvial parent material, management/tillage operations, and duration of rice–wheat rotation. A detailed survey was undertaken to study the long‐term effect of rice–wheat rotation on soil physical (soil separates, bulk density, modulus of rupture, saturated and unsaturated hydraulic conductivities, soil water content, and suction relations) and chemical (organic carbon, pH, electrical conductivity) properties of different textured soils (sandy clay loam, loam, clay loam, and silty clay loam) in these four zones of Punjab. Soil samples (of 0‐ to 30‐cm depth) from 45 sites were collected during 2006 and were analyzed for physical and chemical properties. The results showed that sand content and pH increased whereas silt and organic carbon decreased significantly from zones 1 to 4. Compared to other textures, significantly greater organic carbon, modulus of rupture, and pH in silty clay loam; greater bulk density in clay loam, and greater saturated hydraulic conductivity in sandy clay loam were observed. Irrespective of zone and soil texture, in the subsurface soil, there was a hard pan at 15–22.5 cm deep, which had high soil bulk density, modulus of rupture, more silt and clay contents (by 3–5%) and less organic carbon and hydraulic conductivity than the surface (0–15 cm) layer. These properties deteriorated with fineness of the soil texture and less organic carbon content. Continuous rice–wheat cropping had a deleterious effect on many soil properties. Many of these soils would benefit from the addition of organic matter, and crop yields may also be affected by the distinct hardpan that exists between 15 and 22.5 cm deep.  相似文献   

4.
A long-term field experiment with rice-wheat cropping was started in the wet season of 1988 with four levels of lantana (Lantana camara L.) (0, 10, 20, and 30 Mg ha?1 on fresh weight basis) and three tillage practices (No puddling, puddling, and soil compaction). From wet season of 1997, however, three tillage practices were replaced with three levels of nitrogen (N) and potassium (K) to rice (33, 66, and 100% of recommended) and 66% of recommended N, phosphorus (P), and K to wheat. Phosphorus was totally omitted for the rice crop. The recommended N and K for rice was 90 and 40 kg ha?1, whereas the recommendations for N, P, and K for wheat were 120, 90 and 30 kg ha?1. Organic amendments are known to improve soil productivity under rice-wheat cropping by improving physical conditions and nutrient status of the soil, but their availability is restricted. There is a need to identify locally available and cost-effective organic materials that have minimal alternate uses as fodder and fuel. We evaluated Lantana camara L. residues, a fast-growing weed in nearby wastelands, as a potential soil organic amendment. Among the different fractions of K, nonexchangeable K was dominant followed by exchangeable and water soluble K. The incorporation of lantana (10 to 30 Mg ha?1) over the last 12 years has resulted in a significant build-up of all the K fractions, the maximum being in water-soluble K (10 to 32%) followed by exchangeable K (18 to 27%) and least in nonexchangeable K (5 to 7%) over no lantana incorporation. The increasing levels of these two inputs significantly and consistently increased ammonium acetate (NH4OAc)- extracted K (available K) content in soil and also resulted in significantly higher accumulation of K by the crops during the years of experimentation. Among different K fractions, exchangeable K was observed to be the most important K fraction contributing towards wheat and rice yields as well as K accumulation by wheat and rice. Stepwise multiple regression equations indicated that exchangeable K was the most important variable contributing towards total variation in grain yield and K accumulation by wheat or rice.  相似文献   

5.
《Soil & Tillage Research》2007,92(1-2):82-88
Soil management practices are needed in the subarctic that stabilize the soil against the forces of wind and water as well as conserve soil water for crop production. There is a paucity of information, however, regarding the long-term effects of conservation tillage on soil hydraulic properties in subarctic Alaska. The objective of this study was therefore to characterize infiltration, water retention, and saturated hydraulic conductivity of a soil 20 years after establishing tillage and straw management treatments in interior Alaska. The strip plot experimental design, established on a silt loam and maintained in continuous barley (Hordeum vulgare L.), included tillage as the main treatment and straw management as the secondary treatment. Tillage treatments included no tillage, autumn chisel plow, spring disk, and intensive tillage (autumn and spring disk) while straw treatments included retaining or removing stubble and loose straw from the soil surface after harvest. Soil properties were measured after sowing in spring 2004; saturated hydraulic conductivity was measured by the falling-head method, infiltration was measured using a double-ring infiltrometer, and water retention was assessed by measuring the temporal variation in in-situ soil water content. No tillage resulted in greater saturated hydraulic conductivity and generally retained more water against gravitational and matric forces than other tillage treatments. Infiltration was greater in autumn chisel plow than other tillage treatments and was presumably suppressed in no tillage by an organic layer overlying mineral soil. Infiltration was also enhanced by retaining straw on rather than removing straw from the soil surface after harvest. No tillage is not yet a sustainable management practice in this region due to lack of weed control strategies. In addition, the formation of an organic layer in no tillage has important ramifications for the soil hydrological and thermal environment. Therefore, minimum tillage (i.e., autumn chisel plow or spring disk) appears to be a viable management option for maximizing infiltration in interior Alaska.  相似文献   

6.
Soil management practices are needed in the subarctic that stabilize the soil against the forces of wind and water as well as conserve soil water for crop production. There is a paucity of information, however, regarding the long-term effects of conservation tillage on soil hydraulic properties in subarctic Alaska. The objective of this study was therefore to characterize infiltration, water retention, and saturated hydraulic conductivity of a soil 20 years after establishing tillage and straw management treatments in interior Alaska. The strip plot experimental design, established on a silt loam and maintained in continuous barley (Hordeum vulgare L.), included tillage as the main treatment and straw management as the secondary treatment. Tillage treatments included no tillage, autumn chisel plow, spring disk, and intensive tillage (autumn and spring disk) while straw treatments included retaining or removing stubble and loose straw from the soil surface after harvest. Soil properties were measured after sowing in spring 2004; saturated hydraulic conductivity was measured by the falling-head method, infiltration was measured using a double-ring infiltrometer, and water retention was assessed by measuring the temporal variation in in-situ soil water content. No tillage resulted in greater saturated hydraulic conductivity and generally retained more water against gravitational and matric forces than other tillage treatments. Infiltration was greater in autumn chisel plow than other tillage treatments and was presumably suppressed in no tillage by an organic layer overlying mineral soil. Infiltration was also enhanced by retaining straw on rather than removing straw from the soil surface after harvest. No tillage is not yet a sustainable management practice in this region due to lack of weed control strategies. In addition, the formation of an organic layer in no tillage has important ramifications for the soil hydrological and thermal environment. Therefore, minimum tillage (i.e., autumn chisel plow or spring disk) appears to be a viable management option for maximizing infiltration in interior Alaska.  相似文献   

7.
The current cropping system of excessive tillage and stubble removal in the northwestern Loess Plateau of China is clearly unsustainable. A better understanding of tillage and surface cover management on surface soil structure is vital for the development of effective soil conservation practices in the long term. Changes in surface soil structure and hydraulic properties were measured after 4 years of straw and plastic film management under contrasting tillage practices (no tillage vs. conventional tillage) in a silt loam soil (Los Orthic Entisol) which had been under conventional management for hundred of years in the northwestern Loess Plateau, China. Surface soil (0–10 cm) under no tillage with straw cover had the highest water stability of macro-aggregates (>250 μm) and the highest saturated hydraulic conductivity. Compared with straw cover, plastic film cover did not change macro-aggregate stability and the soil had the lowest saturated hydraulic conductivity (Ksat) but the highest % <50 μm soil particles. Significant correlation was found between water stable macro-aggregates and soil organic carbon content, indication the importance of the latter on soil structural development. No tillage on its own (without straw cover) was not sufficient to improve structural stability probably due to lack of organic carbon input. While use of plastic film cover might lead to short term yield increases, results indicated that it did little to improve soil physical fertility. On the other hand, no tillage with straw cover management should lead to long-term improvement of physical quality of this structurally fragile soil.  相似文献   

8.
Imbalanced and inadequate use of chemical fertilizers is responsible for low rice- (Oryza sativa L.) wheat (Triticum aestivum L.) productivity in many resource-poor farmers' fields. Wheat yields in post-rice soils are also constrained due to soil conditions created by puddling in rice, especially in fine to medium textured soils. Organic amendments are known to improve soil productivity under rice-wheat cropping by way of improving physical conditions and nutrient status of the soil, but their availability is restricted. There is a need to identify locally available and cost-effective organic materials, which have minimal alternate uses as fodder and fuel. We evaluated lantana (Lantana spp. L.) residues, a fast-growing weed in nearby wastelands, as a potential soil organic amendment. Yield trends, and soil and crop nutrient status in a 12-year rice-wheat experiment at Palampur, India, involving four levels (0, 10, 20, and 30 Mg ha-1 year-1 fresh mass) of lantana addition were investigated. Chopped lantana was incorporated into soil 10–15 days before puddling. Lantana additions at 10, 20 and 30 Mg ha-1 increased rice yields on average by 18%, 23% and 30%, wheat yields by 11%, 14% and 20%, and total system productivity (rice + wheat) by 15%, 20% and 26% over controls, respectively, and at the same time saved NPK fertilizer. Linear regression analyses over 12 years did not show any change in yield trends of rice and wheat at P =0.05. Continuous cultivation of rice-wheat significantly increased total C, labile C, and other C indices of soils. Total N, Olsen's P, and NH4OAc-extractable K in the lantana-amended plots were higher than in the controls. Nutrient concentrations in crop biomass, however, remained generally unaffected by lantana treatments. Results suggest that lantana residues, which improved the nutrient status of soil and system yield, have the potential for resource conservation and sustaining rice-wheat productivity.  相似文献   

9.
太湖地区农田生态环境中土壤饱和导水率研究   总被引:30,自引:2,他引:28  
对太湖地区主要水稻土类型的饱和导水率进行了研究.结果表明,该土壤的饱和导水率变化于7.20×10-5~6.33×10-4 cm/s, 并随着深度的增加饱和导水率迅速下降;原状土和扰动土的饱和导水率相差很大, 土壤的质地、有机质含量、容重、孔隙度和结构系数等均对饱和导水率有一定的影响.原状土的饱和导水率能反映田间的实际情况, 对研究土壤水分平衡和水土保持有极其重要的意义. 而扰动土的饱和导水率只能作为一种农业工程的参考数据被运用.  相似文献   

10.
The objective of this study was to determine the influence of tillage methods (conventional tillage (CT) and minimum tillage (MT)) and N rates (0, 50, 150, 250 kg N ha?1) on crop yield, N uptake and soil organic carbon (SOC), bulk density (BD), total N (TN), electrical conductivity (EC), pH and soil nutrient contents on a clay-loam near Hashtgerd, Iran. A successive corn-based rotation (2012–2014) was conducted as a split-plot in a randomized complete block design in which tillage methods were considered as main plots, and N rates as subplots. Tillage had no significant effect on corn 2012 and canola 2012–2013 grain yields. CT and MT systems showed different critical N rates to reach their maximum grain yield in corn (2013) and wheat (2013–2014). MT system required more N application to reach its maximum grain yield. Tillage × N rate effect on none of the soil properties was significant. Tillage had no significant (P ≤ 0.05) effect on soil pH, BD, TN and SOC. However, soil EC of 0–5 cm depth in MT system was higher than CT system by 64%. MT system under higher N application could increase corn grain yield, but on the other hand probably adversely changes soil chemical properties.  相似文献   

11.
Abstract

Conventional (CT) and no‐tillage (NT) effects on soil physical properties and bromide (Br) movement were studied at two locations in North Carolina. The soils were a Norfolk sandy loam (fine‐loamy, siliceous, thermic Typic Paleudult) at a North American eastern Coastal Plain location and a Pacolet sandy clay loam (clayey, kaolinitic, thermic Typic Kanhapludult) at a Piedmont location. Bulk density (Db), macroporosity (Mp), and saturated hydraulic conductivity (Ks) were measured in the plant row (R) and trafficked (T) or untrafficked (N) interrow positions. Simulated rain was applied at two intensities to 1?m2 plots after KBr was surface applied. The first simulated rain (30 min) consisted of a low (1.27 cm h?1) or a high (5.08 cm h?1) intensity applied 24 h after Br application. One week later, the high rainfall rate was repeated on all plots. Soil samples for Br determinations were taken 2 days after each rain simulation event to a depth of 40 cm and at the end of the growing season to 120 cm. Soil physical properties were affected by both tillage and position. Bulk density was greater for NT than for CT and in the T compared with R and N row positions. Mp was significantly greater in NT than CT at Coastal Plain location, but the results were opposite at the Piedmont location. Saturated hydraulic conductivity was highly variable ranging from 0.36 cm h?1 to 14.4 cm h?1 at the Coastal Plain location and from 0.06 cm h?1 to 7.12 cm h?1 at the Piedmont location. Saturated hydraulic conductivity at T position was about 100% lower than Ks at N and R positions, but the effect of tillage system was not significant on Ks. The surface 10 cm of soil contained the greatest Br concentration for both tillage systems. For the first and second sampling dates, greater Br movement occurred under NT vs. CT. However, no significant differences were observed in Br movement in the end of season sampling. Because of the coarser soil texture, greater Ks and Mp at the Coastal Plain location, Br moved, to a greater depth at this site than at the Piedmont site.  相似文献   

12.
Tillage modifies soil structure and has been suggested as a practice to improve physical, hydrological and chemical properties of compacted soils. But little is known about effect of long‐term tillage on physicochemical soil properties and crop yield on sodic soils in India. Our objective was to investigate the effect of different tillage regimes on crop yield (wheat and paddy rice) and physicochemical properties of sodic soils. Two sodic sites under conventional tillage for 5 (5‐YT; 5‐year tillage) and 9 (9‐YT; 9‐year tillage) years were selected for this study. Changes in crop yield and physicochemical soil properties were compared with a control, sodic land without any till history, that is, 0‐year tillage/untilled (0‐YT). Five replicated samples at 0‐ to 10‐cm and 10‐ to 20‐cm soils depths were analysed from each site. In the top, 0‐ to 10‐cm soil depth 5‐YT and 9‐YT sites had higher particle density (Pd), porosity, water holding capacity, hydraulic conductivity, organic carbon, total nitrogen (Nt), available nitrogen (Navail), phosphorus (Pavail) and exchangeable calcium (Exch. Ca++) than 0‐YT, whereas bulk density (Bd), C : N ratio and CaCO3 were significantly lower. Bd, pH, EC and CaCO3 increased significantly with depth in all the lands, whereas Pd, porosity, water holding capacity, hydraulic conductivity, organic carbon, Nt, Navail, Pavail and Exch. Ca++ decreased. We conclude that continuous tillage and cropping can be useful for physical and chemical restoration of sodic soils. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Xiao  Liang  Yuan  Guodong  Feng  Lirong  Bi  Dongxue  Wei  Jing  Shen  Guanhua  Liu  Zhaohui 《Journal of Soils and Sediments》2020,20(8):3053-3061
Purpose

Being carbon-rich and porous, biochar has the potential to improve soil physical properties, so does conventional farming practice. Here, a field trial was conducted to investigate the combined effects of biochar use and farming practice on the physical properties of a salt-affected compact soil for wheat–maize rotation in the Yellow River Delta region.

Materials and methods

Salix fragilis L. was used as feedstock to produce biochar in the field via aerobic carbonization at an average temperature of 502 °C, terminated by a water mist spray, for use as a soil amendment at 0, 1, 2, and 4 g kg?1 doses (CK, T1, T2, and T3, respectively). Farming practices included rotary tillage/straw returning for wheat sowing, spring irrigation, no-tillage seeding of maize, and autumn irrigation. Both cutting ring and composite samples of the soil were collected at four stages of wheat–maize rotation (22, 238, 321, and 382 d after the benchmark date of land preparation for wheat sowing) for the determination of soil properties by established methods.

Results and discussion

Rotary tillage/straw returning reduced soil bulk density (BD) from 1.48 to 1.27 g cm?3 (CK) and 1.14 g cm?3 (T3) and increased saturated hydraulic conductivity (Ks) from 0.05?×?10?5 to 0.75?× 10?5 cm s?1 (CK) and 1.25?× 10?5 cm s?1 (T3). This tillage effect on BD and Ks gradually disappeared due to the disturbance from the subsequent farming practice. Biochar use lessened the disturbance. At maize harvest, BD was 1.47 (CK) vs. 1.34 g cm?3 (T3), and Ks was 0.06?×?10?5 (CK) vs. 0.28?×?10?5 cm s?1(T3); in comparison with CK, T3 increased Na+ leaching by 65%, Cl? leaching by 98%, organic carbon content by 40.3%, and water-stable aggregates (0.25–2 mm) by 38%, indicating an improvement in soil properties.

Conclusions

Biochar use and rotary tillage improved soil physical properties (BD, Ks) and favored soil aeration, water filtration, and salt leaching, which further helped the accumulation of soil organic carbon, the formation of water-stable aggregates, and the amelioration of salt-affected compact soil.

  相似文献   

14.
长期水旱轮作条件下紫色土养分供应能力的研究   总被引:13,自引:4,他引:13  
通过10年稻—麦水旱轮作定位试验,研究了紫色土生产力以及N、P、K自然供应能力和变化。结果表明,在水旱轮作下,紫色土对稻、麦产量的地力贡献率平均为58%和51%,肥料的增产贡献率可达42%~49%。紫色土N、P、K养分自然供给力在小麦上分别为60%、70%、91%,在水稻上分别为70%、90%、92%,小麦对肥料的依赖性高于水稻;N、P、K养分的自然供应量在小麦上分别为37.1、5.4、45.9kg.hm2,在水稻上分别为81.8、13.6、103.0kg.hm2。随着试验年份的延长,旱作季节紫色土N、P、K养分的供应能力逐年降低,水作季节N、P、K供应力则相对稳定,旱作对地力的消耗比水作大。环境输入的养分在维持水田稳定供肥能力发挥了重要作用。紫色土这种基础养分供给力可维持每年生产小麦1.4t.hm2、稻谷3.5t.hm2左右。  相似文献   

15.
This study was conducted to determine a tilth index from tillage induced soil physical properties and grain yield to optimize tillage in rice–wheat system. The experiment was conducted in a silty clay loam (Aquic hapludoll) associated with a shallow water table fluctuating between 0.02 and 0.96 m from the surface. Tillage treatments for rice were puddling by four passes of rotary puddler (PR), reduced puddling (ReP), conventional puddling (CP) and direct seeding without puddling (DSWP) in four replications. Tillage treatments for wheat were zero tillage (ZT) and conventional tillage (CT) superimposed over the plots of rice tillage treatments. Measurements were made of puddling index and specific volume (only in the rice season), bulk density, saturated hydraulic conductivity, infiltration rate, plasticity index, porosity and organic carbon in the rice and wheat seasons. Rice yield in the PR plots was highest and statistically equal to that in the ReP plots but wheat yield was highest in the DSWP plots under ZT condition and was statistically equal to that in the ReP plots.Tilth index (TI) was determined in two ways: one by the model suggested by Singh et al. [Trans. ASAE 35 (6) (1992) 1777] and the second by a proposed regression model. The proposed regression model utilizes soil physical properties having significant influence on crop yield. As per the Singh et al. model, wheat yield increased linearly with increasing TI from 0.75 to 0.89 but rice yield decreased with increasing TI from 0.67 to 0.81. Both TI and its relation with rice yield were contrary to their observations. The proposed regression model showed a value of TI in the range of 0.74–0.87 for rice soils and 0.86–1.0 for wheat soils as indicators of TI for optimum yields of rice and wheat. A high TI corresponds to low tillage both for rice and wheat. The optimum yield with minimum tillage operations coincided with TI obtained in ReP plots of rice and in ZT plots of wheat under ReP conditions. Results thus show that the quality of soil puddle obtained by half the efforts in PR and CP was sufficient for optimum yields of rice. Similarly, wheat sowing by zero-till drill in such a reduced puddling plots of rice was sufficient for optimum yields of wheat in Tarai soils associated with shallow water tables. The proposed regression model is simple and compatible to use in the existing crop growth models, such as in DSSAT 3.5, with suitable alterations.  相似文献   

16.
The effects of tillage implement distrubance on the physical properties of soil have been widely studied. However, because soil properties resulting from the use of a given implement vary due to implement factors (depth and speed of tillage) and soil factors (water content, texture, residue cover, etc.), soil properties for a given operation are difficult to visualize, let alone predict. This report summarizes the ranges of selected soil property responses observed in previous tillage studies and identifies factors that must be considered in developing useful models to predict the effects of tillage on soil properties that are related to soil and water conservation. Considered are soil mechanical properties (surface micro-relief, aggregate size distribution and bulk density) and hydraulic properties and processes (water retention, saturated conductivity, infiltration and evaporation). For future literature reports on tillage to be useful for developing comprehensive relationships between tillage and soil properties, the reports should include information on: soil classification, texture, water content (or time of precipitation), bulk density, mechanical impedance and organic matter concentration; tillage method, depth and speed of operation; previous crop, including availability of crop residues; and previous soil management history (compacted soil, irrigated or dryland, etc.).  相似文献   

17.
Soil application of organic wastes (OWs) can be beneficial for soil quality, depending on the quality of the wastes as well as on the amended soil. We performed a field experiment comparing the effects of two different OWs, an industrial sewage sludge (ISS) and a municipal solid waste compost (MSWC), on the physical, chemical and biological quality of an agricultural soil cultivated with maize in central Iran. The two OWs were mixed into the topsoil of the plots at rates of 15 and 45 t ha?1 (dry matter). The analysis of soil samples taken 31, 74, 132 and 241 days after OW application showed both OW increased organic matter, microbial respiration, and urease activity and decreased bulk density. In contrast, they had opposite effects on water retention and saturated hydraulic conductivity. While the MSWC increased water retention at high saturation and saturated hydraulic conductivity, the ISS decreased them. The negative effects of the ISS on physical soil quality, which may have been due to pore-clogging and hydrophobicity effects, were related to a smaller yield increase in the ISS than in the MSWC treatments, demonstrating the importance that physical OW properties can have for the quality of amended soil.  相似文献   

18.
Conservation tillage practices are intended to minimize soil erosion. Yet little is known concerning changes in physical properties of subarctic soils subject to tillage practices. This study ascertained whether physical properties of a newly cleared subarctic soil are altered after 7 years of continuous barley (Hordeum vulgare L.) using different tillage and straw management strategies. Tillage and straw treatments were established in 1983 near Delta Junction, Alaska, and consisted of conventional fall and spring disk, fall chisel plow, spring disk, and no-tillage. Tillage plots were split by straw management practices, which included straw and stubble, stubble only, and no straw or stubble. Soil samples were collected from the upper 0.15 m of the profile in the spring of 1990 to assess water content, bulk density, saturated hydraulic conductivity, dry aggregate and mechanical stability, penetration resistance, water retention, and particle size distribution. Percent non-erodible aggregates, mechanical stability, and penetration resistance were greater for no-tillage compared to conventional tillage, chisel plow, and spring disk. No-tillage soils were also typically wetter, denser, and had a greater hydraulic conductivity. The spring disk treatment was least susceptible to erosion and also conserved soil water compared with chisel plow. Straw maintained on the surface conserved water and promoted soil stability.  相似文献   

19.
轮耕对土壤物理性状和冬小麦产量的影响   总被引:25,自引:12,他引:25  
针对华北地区土壤连续单一耕作存在的主要问题,进行了土壤轮耕效应的研究。试验选择冬小麦夏玉米玉两熟区连续5 a免耕田,设置免耕、翻耕和旋耕3种轮耕处理(即免耕一免耕,免耕一翻耕和免耕一旋耕),冬小麦播种前进行耕作处理。研究结果表明:多年免耕后进行土壤耕作(翻耕、旋耕)可以显著降低土壤体积质量;旋耕显著降低0~10 cm土壤体积质量,翻耕则降低0~20 cm体积质量;随时间变化各处理土壤体积质量差异逐渐降低。翻耕、旋耕均显著增加了0~10 cm土壤总孔隙,同时翻耕显著增加了10~20 cm土壤总孔隙;翻耕、旋耕显著提高了5~10 cm毛管孔隙。0~10 cm土壤饱和导水率表现为旋耕>翻耕>免耕,翻耕、旋耕在5%水平上显著高于免耕;10~20、20~30 cm土层均表现为翻耕>旋耕>免耕,且10~20 cm翻耕5%水平上显著高于免耕;饱和导水率与体积质量呈显著线性负相关。翻耕、旋耕有效穗数与免耕相比分别提高了24.1%、22.3%;冬小麦的实际产量表现为:旋耕>翻耕>免耕,翻耕、旋耕分别比免耕增产11.8%、16.9%。总之,长期免耕后进行土壤耕作有利于改善土壤物理性状,提高作物产量。  相似文献   

20.
Knowledge of hydraulic properties is essential for understanding water movement in soil. However, very few data on these properties are available from the Loess Plateau of China. We determined the hydraulic properties of two silty loam soils on agricultural land at sites in Mizhi and Heyang in the region. Undisturbed soil cores were collected from seven layers to one meter depth to determine saturated hydraulic conductivity, soil water retention curves and unsaturated hydraulic conductivity (by the hot-air method). Additional field methods (internal drainage and Guelph permeameter) were applied at the Heyang site to compare differences between methods. Soil water retention curves were flatter at Mizhi than at Heyang. Water contents at saturation and wilting point (1500 kPa) were higher at Heyang than at Mizhi. However, unsaturated hydraulic conductivity was lower at Heyang than at Mizhi, with maximum differences of more than six orders of magnitude. Nevertheless, the two soils had similar saturated hydraulic conductivities of about 60 cm day− 1. Comparison between the methods showed that soil water retention curves obtained in the laboratory generally agreed well with the field data. Field-saturated conductivities had similar values to those obtained using the soil core method. Unsaturated hydraulic conductivities predicted by the Brooks–Corey model were closer to field data than corresponding values predicted by the van Genuchten model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号