首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ale MT  Mikkelsen JD  Meyer AS 《Marine drugs》2011,9(10):2106-2130
Seaweeds--or marine macroalgae--notably brown seaweeds in the class Phaeophyceae, contain fucoidan. Fucoidan designates a group of certain fucose-containing sulfated polysaccharides (FCSPs) that have a backbone built of (1→3)-linked α-L-fucopyranosyl or of alternating (1→3)- and (1→4)-linked α-L-fucopyranosyl residues, but also include sulfated galactofucans with backbones built of (1→6)-β-D-galacto- and/or (1→2)-β-D-mannopyranosyl units with fucose or fuco-oligosaccharide branching, and/or glucuronic acid, xylose or glucose substitutions. These FCSPs offer several potentially beneficial bioactive functions for humans. The bioactive properties may vary depending on the source of seaweed, the compositional and structural traits, the content (charge density), distribution, and bonding of the sulfate substitutions, and the purity of the FCSP product. The preservation of the structural integrity of the FCSP molecules essentially depends on the extraction methodology which has a crucial, but partly overlooked, significance for obtaining the relevant structural features required for specific biological activities and for elucidating structure-function relations. The aim of this review is to provide information on the most recent developments in the chemistry of fucoidan/FCSPs emphasizing the significance of different extraction techniques for the structural composition and biological activity with particular focus on sulfate groups.  相似文献   

2.
Fucoidans are cell wall polysaccharides found in various species of brown seaweeds. They are fucose-containing sulfated polysaccharides (FCSPs) and comprise 5–20% of the algal dry weight. Fucoidans possess multiple bioactivities, including antioxidant, anticoagulant, antithrombotic, anti-inflammatory, antiviral, anti-lipidemic, anti-metastatic, anti-diabetic and anti-cancer effects. Dietary fucoidans provide small but constant amounts of FCSPs to the intestinal tract, which can reorganize the composition of commensal microbiota altered by FCSPs, and consequently control inflammation symptoms in the intestine. Although the bioactivities of fucoidans have been well described, there is limited evidence to implicate their effect on gut microbiota and bowel health. In this review, we summarize the recent studies that introduce the fundamental characteristics of various kinds of fucoidans and discuss their potential in altering commensal microorganisms and influencing intestinal diseases.  相似文献   

3.
Fucoidan is a polysaccharide obtained from marine brown algae, with anti-inflammatory, anti-viral, and immune-enhancing properties, thus, fucoidan may be used as an alternative treatment (complementary to prescribed medical therapy) for COVID-19 recovery. This work aimed to determine the ex-vivo effects of treatment with fucoidan (20 µg/mL) on mitochondrial membrane potential (ΔΨm, using a cationic cyanine dye, 3,3′-dihexyloxacarbocyanine iodide (DiOC6(3)) on human peripheral blood mononuclear cells (HPBMC) isolated from healthy control (HC) subjects, COVID-19 patients (C-19), and subjects that recently recovered from COVID-19 (R1, 40 ± 13 days after infection). In addition, ex-vivo treatment with fucoidan (20 and 50 µg/mL) was evaluated on ΔΨm loss induced by carbonyl cyanide 3-chlorophenylhydrazone (CCCP, 150 µM) in HPBMC isolated from healthy subjects (H) and recovered subjects at 11 months post-COVID-19 (R2, 335 ± 20 days after infection). Data indicate that SARS-CoV-2 infection induces HPBMC loss of ΔΨm, even 11 months after infection, however, fucoidan promotes recovery of ΔΨm in PBMCs from COVID-19 recovered subjects. Therefore, fucoidan may be a potential treatment to diminish long-term sequelae from COVID-19, using mitochondria as a therapeutic target for the recovery of cellular homeostasis.  相似文献   

4.
Turk T  Frangez R  Sepcić K 《Marine drugs》2007,5(4):157-167
Polymeric 3-alkylpyridinium salts (poly-APS) present in the marine sponge Reniera sarai show a broad spectrum of biological activities. They are lytic to erythrocytes and various other mammalian cells, enabling the transfection of the latter with alien DNA. Furthermore, they show inhibitory effects to marine bacteria and can inhibit fouling of micro- and macroorganisms to submerged surfaces. Finally, poly-APS act as potent cholinesterase inhibitors. The kinetics of acetylcholinesterase inhibition by poly-APS in vitro is complex and comprises several successive phases ending in irreversible inhibition of the enzyme. The latter is accounted for by aggregation and precipitation of the enzyme-inhibitor complexes. Poly-APS are lethal to rats in concentrations above 2.7 mg/kg. Monitoring of the basic vital functions and histopathological analysis showed that the effects directly ascribable to acetylcholinesterase inhibition are only observed after application of lower concentrations of poly-APS. At higher concentrations, such effects were masked by other, more pronounced and faster developing lethal effects of the toxin, such as haemolysis and platelet aggregation.  相似文献   

5.
Compromised lung function is a feature of both infection driven and non-infective pathologies. Viral infections—including the current pandemic strain SARS-CoV-2—that affect lung function can cause both acute and long-term chronic damage. SARS-CoV-2 infection suppresses innate immunity and promotes an inflammatory response. Targeting these aspects of SARS-CoV-2 is important as the pandemic affects greater proportions of the population. In clinical and animal studies, fucoidans have been shown to increase innate immunity and decrease inflammation. In addition, dietary fucoidan has been shown to attenuate pulmonary damage in a model of acute viral infection. Direct inhibition of SARS-CoV-2 in vitro has been described, but is not universal. This short review summarizes the current research on fucoidan with regard to viral lung infections and lung damage.  相似文献   

6.
We investigated the effect of fucoidan, a sulfated polysaccharide, on acceleration of healing of experimental cartilage injury in a rabbit model. An injured cartilage model was surgically created by introduction of three holes, one in the articular cartilage of the medial trochlea and two in the trochlear sulcus of the distal femur. Rabbits in three experimental groups (F groups) were orally administered fucoidan of seven different molecular weights (8, 50, 146, 239, 330, 400, or 1000 kD) for 3 weeks by screening. Control (C group) rabbits were provided water ad libitum. After the experimental period, macroscopic examination showed that the degree of filling in the fucoidan group was higher than that in the C group. Histologically, the holes were filled by collagen fiber and fibroblasts in the C group, and by chondroblasts and fibroblasts in the F groups. Image analysis of Alcian blue- and safranin O-stained F-group specimens showed increased production of glycosaminoglycans (GAGs) and proteoglycans (PGs), respectively. Some injured holes were well repaired both macroscopically and microscopically and were filled with cartilage tissues; cartilage matrices such as PGs and GAGs were produced in groups F 50, F 146, and F 239. Thus, fucoidan administration enhanced morphologically healing of cartilage injury.  相似文献   

7.
Fucoidans from brown macroalgae are sulfated fucose-rich polysaccharides, that have several beneficial biological activities, including anti-inflammatory and anti-tumor effects. Controlled enzymatic depolymerization of the fucoidan backbone can help produce homogeneous, defined fucoidan products for structure-function research and pharmaceutical uses. However, only a few endo-fucoidanases have been described. This article reports the genome-based discovery, recombinant expression in Escherichia coli, stabilization, and functional characterization of a new bacterial endo-α-(1,4)-fucoidanase, Fhf1, from Formosa haliotis. Fhf1 catalyzes the cleavage of α-(1,4)-glycosidic linkages in fucoidans built of alternating α-(1,3)-/α-(1,4)-linked l-fucopyranosyl sulfated at C2. The native Fhf1 is 1120 amino acids long and belongs to glycoside hydrolase (GH) family 107. Deletion of the signal peptide and a 470 amino acid long C-terminal stretch led to the recombinant expression of a robust, minimized enzyme, Fhf1Δ470 (71 kDa). Fhf1Δ470 has optimal activity at pH 8, 37–40 °C, can tolerate up to 500 mM NaCl, and requires the presence of divalent cations, either Ca2+, Mn2+, Zn2+ or Ni2+, for maximal activity. This new enzyme has the potential to serve the need for controlled enzymatic fucoidan depolymerization to produce bioactive sulfated fucoidan oligomers.  相似文献   

8.
This work aimed to investigate the effect of fucoidan (FPS) on urate transporters induced by uric acid (UA). The results showed that UA stimulated the expression of glucose transporter 9 (GLUT9) and urate transporter 1 (URAT1) in HK-2 cells, and FPS could reverse the effect. Moreover, UA could activate NF-κB, JNK and PI3K/Akt pathways, but both pathway inhibitors and FPS inhibited the UA-induced activation of these three pathways. These data suggested that FPS effectively inhibited the expression induction of reabsorption transporters URAT1 and GLUT9 by UA, through repressing the activation of NF-κB, JNK and PI3K/Akt signal pathways in HK-2 cells. The in vitro research findings support the in vivo results that FPS reduces serum uric acid content in hyperuricemia mice and rats through inhibiting the expression of URAT1 and GLUT9 in renal tubular epithelial cells. This study provides a theoretical basis for the application of FPS in the treatment of hyperuricemia.  相似文献   

9.
Fucan is a term used to denominate a type of polysaccharide which contains substantial percentages of l-fucose and sulfate ester groups. We obtained five heterofucans from Sargassum filipendula by proteolytic digestion followed by sequential acetone precipitation. These heterofucans are composed mainly of fucose, glucose, glucuronic acid, galactose and sulfate. These fucans did not show anticoagulant activity in PT and aPTT tests. Their antioxidant activity was evaluated using the follow tests; total antioxidant capacity, scavenging hydroxyl and superoxide radicals, reducing power and ferrous ion [Fe(II)] chelating. All heterofucans displayed considerable activity, especially SF-1.0v which showed the most significant antioxidant potential with 90.7 ascorbic acid equivalents in a total antioxidant capacity test and similar activity when compared with vitamin C in a reducing power assay. The fucan antiproliferative activity was performed with HeLa, PC3 and HepG2 cells using MTT test. In all tested conditions the heterofucans exhibited a dose-dependent effect. The strongest inhibition was observed in HeLa cells, where SF-1.0 and SF-1.5 exhibited considerable activity with an IC50 value of 15.69 and 13.83 μM, respectively. These results clearly indicate the beneficial effect of S. filipendula polysaccharides as antiproliferative and antioxidant. Further purification steps and additional studies on structural features as well as in vivo experiments are needed to test the viability of their use as therapeutic agents.  相似文献   

10.
An immunomodulatory polysaccharide (DAP4) was extracted, purified, and characterized from Durvillaea antarctica. The results of chemical and spectroscopic analyses demonstrated that the polysaccharide was a fucoidan, and was mainly composed of (1→3)-α-l-Fucp and (1→4)-α-l-Fucp residues with a small degree of branching at C-3 of (1→4)-α-l-Fucp residues. Sulfate groups were at C-4 of (1→3)-α-l-Fucp, C-2 of (1→4)-α-l-Fucp and minor C-6 of (1→4)-β-d-Galp. Small amounts of xylose and galactose exist in the forms of β-d-Xylp-(1→ and β-d-Gal-(1→. The immunomodulatory activity of DAP4 was measured on RAW 264.7 cells, the results proved that DAP4 exhibited excellent immunomodulatory activities, such as promoted the proliferation of spleen lymphocytes, increased NO production, as well as enhanced phagocytic of macrophages. Besides, DAP4 could also produce better enhancement on the vitality of NK cells. For the high immunomodulatory activity, DAP4 might be a potential source of immunomodulatory fucoidan with a novel structure.  相似文献   

11.
Hematopoietic damage is a serious side effect of cytotoxic drugs, and agents promoting hematopoiesis are quite important for decreasing the death rate in cancer patients. In our previous work, we prepared the simulated digestive product of fucoidan from Sargassum fusiforme, DSFF, and found that DSFF could activate macrophages. However, more investigations are needed to further evaluate whether DSFF could promote hematopoiesis in the chemotherapy process. In this study, the protective effect of DSFF (1.8–7.2 mg/kg, i.p.) on cyclophosphamide-induced hematopoietic damage in mice and the underlying mechanisms were investigated. Our results show that DSFF could restore the numbers of white blood cells, neutrophils, and platelets in the peripheral blood, and could also retard bone marrow cell decrease in mice with cyclophosphamide-induced hematopoietic damage. UPLC/Q-Extraction Orbitrap/MS/MS-based lipidomics results reveal 16 potential lipid biomarkers in a serum that responded to hematopoietic damage in mice. Among them, PC (20:1/14:0) and SM (18:0/22:0) were the key lipid molecules through which DSFF exerted protective actions. In a validation experiment, DSFF (6.25–100 μg/mL) could also promote K562 cell proliferation and differentiation in vitro. The current findings indicated that DSFF could affect the blood cells and bone marrow cells in vivo and thus showed good potential and application value in alleviating the hematopoietic damage caused by cyclophosphamide.  相似文献   

12.
Herein we investigate the structure/function relationships of fucoidans from Ascophyllum nodosum to analyze their pro-angiogenic effect and cellular uptake in native and glycosaminoglycan-free (GAG-free) human endothelial cells (HUVECs). Fucoidans are marine sulfated polysaccharides, which act as glycosaminoglycans mimetics. We hypothesized that the size and sulfation rate of fucoidans influence their ability to induce pro-angiogenic processes independently of GAGs. We collected two fractions of fucoidans, Low and Medium Molecular Weight Fucoidan (LMWF and MMWF, respectively) by size exclusion chromatography and characterized their composition (sulfate, fucose and uronic acid) by colorimetric measurement and Raman and FT-IR spectroscopy. The high affinities of fractionated fucoidans to heparin binding proteins were confirmed by Surface Plasmon Resonance. We evidenced that LMWF has a higher pro-angiogenic (2D-angiogenesis on Matrigel) and pro-migratory (Boyden chamber) potential on HUVECs, compared to MMWF. Interestingly, in a GAG-free HUVECs model, LMWF kept a pro-angiogenic potential. Finally, to evaluate the association of LMWF-induced biological effects and its cellular uptake, we analyzed by confocal microscopy the GAGs involvement in the internalization of a fluorescent LMWF. The fluorescent LMWF was mainly internalized through HUVEC clathrin-dependent endocytosis in which GAGs were partially involved. In conclusion, a better characterization of the relationships between the fucoidan structure and its pro-angiogenic potential in GAG-free endothelial cells was required to identify an adapted fucoidan to enhance vascular repair in ischemia.  相似文献   

13.
Fucan is a term used to denominate a family of sulfated polysaccharides rich in sulfated l-fucose. Heterofucan SF-1.5v was extracted from the brown seaweed Sargassum filipendula by proteolytic digestion followed by sequential acetone precipitation. This fucan showed antiproliferative activity on Hela cells and induced apoptosis. However, SF-1.5v was not able to activate caspases. Moreover, SF-1.5v induced glycogen synthase kinase (GSK) activation, but this protein is not involved in the heterofucan SF-1.5v induced apoptosis mechanism. In addition, ERK, p38, p53, pAKT and NFκB were not affected by the presence of SF-1.5v. We determined that SF-1.5v induces apoptosis in HeLa mainly by mitochondrial release of apoptosis-inducing factor (AIF) into cytosol. In addition, SF-1.5v decreases the expression of anti-apoptotic protein Bcl-2 and increased expression of apoptogenic protein Bax. These results are significant in that they provide a mechanistic framework for further exploring the use of SF-1.5v as a novel chemotherapeutics against human cervical cancer.  相似文献   

14.
Fucoidans, fucose-enriched sulfated polysaccharides isolated from brown algae and marine invertebrates, have been shown to exert anticancer activity in several types of human cancer, including leukemia and breast cancer and in lung adenocarcinoma cells. In the present study, the anticancer activity of the fucoidan extracted from the brown seaweed Undaria pinnatifida was investigated in human hepatocellular carcinoma SMMC-7721 cells, and the underlying mechanisms of action were investigated. SMMC-7721 cells exposed to fucoidan displayed growth inhibition and several typical features of apoptotic cells, such as chromatin condensation and marginalization, a decrease in the number of mitochondria, and in mitochondrial swelling and vacuolation. Fucoidan-induced cell death was associated with depletion of reduced glutathione (GSH), accumulation of high intracellular levels of reactive oxygen species (ROS), and accompanied by damage to the mitochondrial ultrastructure, depolarization of the mitochondrial membrane potential (MMP, Δψm) and caspase activation. Moreover, fucoidan led to altered expression of factors related to apoptosis, including downregulating Livin and XIAP mRNA, which are members of the inhibitor of apoptotic protein (IAP) family, and increased the Bax-to-Bcl-2 ratio. These findings suggest that fucoidan isolated from U. pinnatifida induced apoptosis in SMMC-7721 cells via the ROS-mediated mitochondrial pathway.  相似文献   

15.
Scleroderma is an autoimmune disease caused by the abnormal regulation of extracellular matrix synthesis and is activated by non-regulated inflammatory cells and cytokines. Echinochrome A (EchA), a natural pigment isolated from sea urchins, has been demonstrated to have antioxidant activities and beneficial effects in various disease models. The present study demonstrates for the first time that EchA treatment alleviates bleomycin-induced scleroderma by normalizing dermal thickness and suppressing collagen deposition in vivo. EchA treatment reduces the number of activated myofibroblasts expressing α-SMA, vimentin, and phosphorylated Smad3 in bleomycin-induced scleroderma. In addition, it decreased the number of macrophages, including M1 and M2 types in the affected skin, suggesting the induction of an anti-inflammatory effect. Furthermore, EchA treatment markedly attenuated serum levels of inflammatory cytokines, such as tumor necrosis factor-α and interferon-γ, in a murine scleroderma model. Taken together, these results suggest that EchA is highly useful for the treatment of scleroderma, exerting anti-fibrosis and anti-inflammatory effects.  相似文献   

16.
A comparative study concerning the physicochemical, monomeric composition and biological characters among different fucoidan fractions is presented. Common purification techniques for fucoidan usually involve many steps. During these steps, the important structural features might be affected and consequently alter its biological activities. Three purified fractions were derived from Fucus vesiculosus water extract which, afterwards, were purified by a recently-developed dye affinity chromatography protocol. This protocol is based on dye-sulfated polysaccharide interactions. The first two fractions were obtained from crude precipitated fucoidan at different pH values of the adsorption phase: pH 1 and 6. This procedure resulted in fucoidan_1 and 6 fractions. The other, third, fraction: fucoidan_M, however, was obtained from a buffered crude extract at pH 1, eliminating the ethanol precipitation step. All of the three fractions were then further evaluated. Results revealed that fucoidan_M showed the highest sulfur content (S%), 12.11%, with the lowest average molecular weight, 48 kDa. Fucose, galactose, and uronic acid/glucose dimers were detected in all fractions, although, xylose was only detected in fucoidan_1 and 6. In a concentration of 10 µg·mL−1, Fucoidan_6 showed the highest heparin-like anticoagulant activity and could prolong the APTT and TT significantly to 66.03 ± 2.93 and 75.36 ± 1.37 s, respectively. In addition, fucoidan_M demonstrated the highest potency against HSV-1 with an IC50 of 2.41 µg·mL−1. The technique proved to be a candidate for fucoidan purifaction from its crude extract removing the precipitation step from common purification protocols and produced different fucoidan qualities resulted from the different incubation conditions with the immobilized thiazine toluidine blue O dye.  相似文献   

17.
This study involves enzymatic extraction of fucoidan from Sargassum swartzii and further purification via ion-exchange chromatography. The chemical and molecular characteristics of isolated fucoidan is evaluated concerning its anti-inflammatory potential in RAW 264.7 macrophages under LPS induced conditions. Structural properties of fucoidan were assessed via FTIR and NMR spectroscopy. NO production stimulated by LPS was significantly declined by fucoidan. This was witnessed to be achieved via fucoidan acting on mediators such as iNOS and COX-2 including pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β), with dose dependent down-regulation. Further, the effect is exhibited by the suppression of TLR mediated MyD88, IKK complex, ultimately hindering NF-κB and MAPK activation, proposing its therapeutic applications in inflammation related disorders. The research findings provide an insight in relation to the sustainable utilization of fucoidan from marine brown algae S. swartzii as a potent anti-inflammatory agent in the nutritional, pharmaceutical, and cosmeceutical sectors.  相似文献   

18.
The aim of this study was to examine the absorption of fucoidan through the intestinal tract. Fucoidan (0.1, 0.5, 1.0, 1.5 and 2.0 mg/mL) was added to Transwell inserts containing Caco-2 cells. The transport of fucoidan across Caco-2 cells increased in a dose-dependent manner up to 1.0 mg/mL. It reached a maximum after 1 h and then rapidly decreased. In another experiment, rats were fed standard chow containing 2% fucoidan for one or two weeks. Immunohistochemical staining revealed that fucoidan accumulated in jejunal epithelial cells, mononuclear cells in the jejunal lamina propria and sinusoidal non-parenchymal cells in the liver. Since we previously speculated that nitrosamine may enhance the intestinal absorption of fucoidan, its absorption was estimated in rats administered N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) in their drinking water. Rats were fed 0.2% fucoidan chow (BBN + 0.2% fucoidan rats), 2% fucoidan chow (BBN + 2% fucoidan rats) and standard chow for eight weeks. The uptake of fucoidan through the intestinal tract seemed to be low, but was measurable by our ELISA method. Fucoidan-positive cells were abundant in the small intestinal mucosa of BBN + 2% fucoidan rats. Most fucoidan-positive cells also stained positive for ED1, suggesting that fucoidan was incorporated into intestinal macrophages. The uptake of fucoidan by Kupffer cells was observed in the livers of BBN + 2% fucoidan rats. In conclusion, the absorption of fucoidan through the small intestine was demonstrated both in vivo and in vitro.  相似文献   

19.
The anti-amnesic effect of a mixture (4:6 = phlorotannin:fucoidan from Ecklonia cava, P4F6) was evaluated on amyloid-beta peptide (Aβ)-induced cognitive deficit mice. The cognitive function was examined by Y-maze, passive avoidance, and Morris water maze tests, and the intake of the mixture (P4F6) showed an ameliorating effect on Aβ-induced learning and memory impairment. After the behavioral tests, superoxide dismutase (SOD) activity and thiobarbituric acid-reactive substances (TBARS) contents were confirmed in brain tissue, and in the results, the mixture (P4F6) attenuated Aβ-induced oxidative stress. In addition, mitochondrial activity was evaluated by mitochondrial reactive oxygen species (ROS) content, mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) content, and mitochondria-mediated apoptotic signaling pathway, and the mixture (P4F6) enhanced mitochondrial function. Furthermore, the mixture (P4F6) effectively regulated tau hyperphosphorylation by regulating the protein kinase B (Akt) pathway, and promoted brain-derived neurotrophic factor (BDNF) in brain tissue. Moreover, in the cholinergic system, the mixture (P4F6) ameliorated acetylcholine (ACh) content by regulating acetylcholinesterase (AChE) activity and choline acetyltransferase (ChAT) expression in brain tissue. Based on these results, we suggest that this mixture of phlorotannin and fucoidan (P4F6) might be a substance for improving cognitive function by effectively regulating cognition-related molecules.  相似文献   

20.
Two new (1 and 2) and one known phenazine derivative (lavanducyanin, 3) were isolated and identified from the fermentation broth of a marine-derived Streptomyces sp. (strain CNS284). In mammalian cell culture studies, compounds 1, 2 and 3 inhibited TNF-α-induced NFκB activity (IC50 values of 4.1, 24.2, and 16.3 μM, respectively) and LPS-induced nitric oxide production (IC50 values of >48.6, 15.1, and 8.0 μM, respectively). PGE2 production was blocked with greater efficacy (IC50 values of 7.5, 0.89, and 0.63 μM, respectively), possibly due to inhibition of cyclooxygenases in addition to the expression of COX-2. Treatment of cultured HL-60 cells led to dose-dependent accumulation in the subG1 compartment of the cell cycle, as a result of apoptosis. These data provide greater insight on the biological potential of phenazine derivatives, and some guidance on how various substituents may alter potential anti-inflammatory and anti-cancer effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号