首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
机电排灌站设计中,要使所选择的泵型在高效区内运行,就要对水泵的工作点进行分析。水泵工作点的计算,以往多采用图解法进行,较为繁琐,现介绍一种简化算法。在水泵的高效范围内,相应有一个流量范围和扬程范围,在水泵的Q~H曲线上(见图1),m_1、m_3两点为水泵高效范围的边界点,m_2为水泵的最高效率点。此三个点对应的流量和扬程值,在水泵的规格性能表中都可以查到。在曲线m_1m_3上,如设H=f(Q),则函数H=f(Q)对应于Q_1、Q_2、Q_3的值为H_1、  相似文献   

2.
针对特低扬程大流量水泵的选型问题,以某设计净扬程仅0.32 m的贯流泵站为例,进行水泵性能预测.利用现有水力模型的泵段特性曲线及装置特性曲线进行相似换算,并对计算结果进行比较.通过进一步的数学推演,提出了采用水泵泵段特性参数推算泵装置效率指标的方法,并结合数值模拟及装置模型试验进行验证.结果表明,对于运行净扬程1 m以下竖井贯流泵装置,可利用现有南水北调的低扬程水力模型降低nD值进行选型计算.由于水泵流道水头损失占比较高,其最优工况效率与具有3 m左右扬程水泵相比低了约6%,故采用扬程差距较大的模型装置特性参数换算的偏差较大,采用模型泵泵段特性参数换算更准确.采用泵段效率和泵装置效率换算公式,对泵段曲线工况点及对应流道损失进行换算,可较为准确地预测装置效率曲线高效区扬程范围,可为特低扬程泵站设计提供参考.  相似文献   

3.
以旋流泵最高效率、高效区范围及在小流量区的扬程-流量曲线稳定性为目标函数,先采用Plackett-Burman试验设计筛选结构参数,并根据结构参数对目标函数的影响将其划分为3个等级:显著因素、次显著因素和非显著因素;再由中心复合设计和Box-Behnken设计及响应面分析确定各级结构参数的最优设计点.该方法以CFD计算结果为基础,构造旋流泵的结构参数与多目标函数的响应面近似模型,分析了结构参数间的交互效应.对最优设计点的泵进行了试验研究,试验结果与CFD计算值吻合,在设计工况下效率的相对误差为4.89%,且较优化前的模型在性能上有明显改善,表明基于试验设计和响应面法可用于旋流泵的优化设计.  相似文献   

4.
为了研究核主泵在定转速工况下的正反转特性,采用相似换算法,基于SST k-ω 湍流模型与块结构化网格,对缩比系数为0.5 的核主泵模型泵进行数值模拟.定义流量从泵进口流向出口为“+”,反之为“-”.在正转工况下分别对-0.8Qd到+2.0Qd流量范围内的16个工况点进行计算、反转工况下对-1.4Qd到+1.0Qd流量范围内的14个工况点进行计算,得到其全特性曲线.计算结果表明:在相同流量工况下,核主泵正转时的扬程与转矩总是高于反转时的扬程与转矩,叶轮扬程与泵扬程存在不同的变化趋势;在正转工况下,在 -0.1Qd到+0.4Qd流量范围内,叶轮扬程曲线呈现反“N”型变化趋势;在反转工况下,在-0.4Qd到+0.1Qd流量范围内,叶轮扬程曲线呈一个明显的“V”型变化趋势;叶轮出口处产生二次流回流现象,这是正转小流量工况下叶轮扬程降低的主要原因,而叶轮与导叶之间过渡段区域内的环形高速带和叶轮流道内的大尺度涡是反转小流量工况下叶轮扬程降低的主要原因.  相似文献   

5.
李文广 《排灌机械》2009,27(5):291-296
采用FLUENT计算了44°大出口角叶轮离心泵输送水和粘油的水力性能,通过研究叶轮理论扬程、滑移系数、水力损失系数等重要参数,重点研究了液体粘度对泵水力性能的影响,并将计算的泵扬程和效率与试验数据进行了对比.分析了"扬程突升"现象和叶轮理论扬程曲线出现驼峰的原因.结果表明,计算的泵扬程和效率与试验值仅能部分吻合.虽然能够预测出"扬程突升"现象,但是不能象试验那样在较宽粘度范围内得到维持.小流量工况的蜗壳与叶轮的强烈作用是叶轮理论扬程出现驼峰的原因.增加叶片出口角会使各个工况下的蜗壳和小流量下叶轮水力损失加大,但大流量下叶轮水力损失下降.  相似文献   

6.
提出了一种射流泵装置性能预测方法,并进行了试验验证.以射流泵试验所得射流泵的流量比与压力比曲线,以及离心泵的流量扬程曲线作为预测初始条件,通过射流泵装置2种吸上高度4.5和9.0 m的性能试验,比较各流量比时装置工况点试验值与预测值精度,发现数值解法整体误差较小,能更好地反映射流泵扬程随流量比变化的情况,但与试验值相比仍存在误差且个别工况点误差较大,需进一步修正.引入预测值与试验值的比值作为修正系数,通过Plackett-Burman试验设计,从吸上高度、面积比、喷嘴直径、流量比、喉嘴距、喉管长径比、泵转速等因子中筛选出对射流泵扬程影响效应显著的面积比及流量比作为修正公式的关键参数,利用遗传算法和公式自动搜索拟合,得到射流泵扬程的计算公式,且相关系数超过0.99.通过射流泵装置在吸上高度为3.5和8.0 m的试验结果比较,表明具有较高的可信度.  相似文献   

7.
根据南水北调水泵模型同台测试资料和中水北方水力模型通用试验台的泵装置模型试验资料,对具有代表性的4个轴流泵装置与相应轴流泵扬程-流量性能曲线的马鞍形区特点进行对比分析.结果发现:轴流泵装置扬程-流量性能曲线的马鞍形区只有1个马鞍形,而相应的轴流泵扬程-流量性能曲线有2个马鞍形,第一马鞍形鞍底扬程与泵装置的鞍底扬程接近,而第二马鞍形鞍底扬程则明显低于泵装置的鞍底扬程;透明泵装置模型试验的流态观察结果表明,轴流泵扬程-流量性能曲线马鞍形区出现的第二鞍底是在水泵模型性能测试时受二次回流影响而产生的测量假象.在低扬程泵站水泵选型考虑泵站最高运行扬程的控制扬程时,应将轴流泵扬程-流量性能曲线马鞍形区的第一鞍底扬程作为控制扬程,如有相近泵装置模型试验的扬程-流量性能曲线,则可参考相关泵装置模型试验资料提供的鞍底扬程.  相似文献   

8.
离心泵非定常流动计算及性能预测   总被引:6,自引:0,他引:6  
采用以SSTk-ω模型封闭的雷诺平均方程和滑移网格技术计算了离心泵内的非定常流场.基于非定常流动计算结果,考虑容积损失、圆盘摩擦损失和机械损失,对离心泵的性能进行了预测,并与实测性能曲线进行了比较.结果表明,在给定进口速度的条件下,由于叶轮与蜗壳隔舌的相对位置不同,泵的扬程和轴功率有比较大的脉动,且其脉动幅值随流量的增大而增大.定常流动计算和非定常流动计算所预测的性能曲线在大流量与设计工况时相差不大,在小流量时有明显的差别.与试验曲线相比,预测的扬程曲线偏低,轴功率曲线也偏低,效率曲线比较接近.由于在设计工况时定常计算和非定常计算差别不明显,在设计过程中采用定常计算是可行的.  相似文献   

9.
正确选用水泵和合理配套动力机械是保证灌溉要求,降低成本,发挥机具最佳经济效益的关键。1水泵参数的选择1.1确定所需水泵的流量QQ=ω·mj·t+Q损(1)其中ω———灌溉面积;m———需水量;j———灌溉天数;t———每天工作小时数;Q———输水损失。输水损失是渠道输水过程中损失的水量,计算时可在算出的流量中增加5%~20%。井灌所需水泵流量还应考虑与井的出水量相适应,防止泵大井小不够抽或泵小井大不能充分发挥井的作用。1.2确定水泵扬程H水泵扬程的选择,应根据水源的水位高低和所需排水高度,通过测量得到实际扬程H实再计算损失扬程H损,…  相似文献   

10.
比转速n_s中包含了实际原型泵的几个主要性能参数Q(流量)、H(扬程)、η(效率)值,因此它能反应实际水泵的主要性能。比转速n_s不同,反映了水泵特性曲线的形状也不同。将各种n_s的特性曲线用相对值为座标绘出图1、图2、图3。图中以设计工况的工作参数Q_o、H_o、N_o、η_o作为100%,按下式计算不同n_s的叶片泵,在非设计工况点下的性能参数Q、H、N、η的相对值值为:  相似文献   

11.
为深入了解贯流泵的内部流动及其水力性能,基于标准k-ε湍流模型,利用Fluent软件对贯流泵内流场进行了数值模拟,并计算了贯流泵外特性曲线.结果表明:偏离最优工况时,导叶体和出水流道内出现二次流,造成较大的水力损失,装置效率降低;大流量工况时,水流在叶片进口边产生负冲角,叶片工作面进口附近出现最小压力值;小流量工况时,水流在叶片进口边产生正冲角,背面进口边附近存在最小压力值;最优工况时,整个泵的内部流动平顺均匀,叶片工作面和背面进口边的压力值均较大,而在背面进口偏后区域出现低压区.通过进一步计算得到了新设计贯流泵的扬程、功率和效率的性能曲线,将该模型计算结果与原有JGM-3模型试验数据对比可知,该模型的设计较为合理,其数值结果可为优化低扬程灯泡式贯流泵的设计提供重要的参考.  相似文献   

12.
为研究射流式离心泵内流动机理,以JET750G1型射流式离心泵为研究对象,搭建试验测试系统,分别对不同安装高度下射流式离心泵的空化及能量特性进行试验研究;基于k-ω湍流模型和Zwart-Gerber-Belamri空化模型,对0 mm安装高度下泵各工况点内部流动进行数值模拟.试验结果表明:当流量增大到一定程度之后,扬程-流量、功率-流量、效率-流量曲线均急剧下降;随着安装高度的增大,陡降起始点向小流量工况偏移.数值计算结果表明:扬程、功率、效率的数值模拟结果与试验值基本吻合,数值模拟性能陡降起始流量点比试验值大0.5 m3/h;射流式离心泵由于其面积比值较小,射流剪切层被迅速排挤到喉管壁面,泵内最低压力点出现在喉管内喷嘴稍后处,空化最早发生在该处;随着流量的增大,空化区域急剧向叶轮进口扩展,性能陡降起始点正好是泵内初生空化流量点,射流式离心泵的空化性能取决于其射流器的空化性能;射流器能提升离心泵扬程和自吸性能,但射流器内高速回流及强剪切流动,导致其效率及空化性能大幅下降.  相似文献   

13.
陆伟刚  张旭 《灌溉排水学报》2012,31(6):103-106,125
结合江苏省常州市大运河东枢纽泵站工程,对设计净扬程(1.0m)的特低扬程前置竖井式贯流泵装置特性进行了试验研究。试验测试了模型泵在不同叶片角度下运行的能量特性、汽蚀性能和飞逸转速特性,在此基础上换算得出原型泵的水力特性,绘制了模型以及原型泵装置的综合特性曲线和单位飞逸转速曲线。试验结果表明,泵装置最优工况点的模型装置效率为78.83%,对应的扬程和流量分别为1.70m和22.66m3/s;在设计扬程1.0m、流量25.35m3/s时的模型装置效率为67.5%。对于特低扬程泵站,竖井贯流式水泵具备能量特性好,装置效率高,且运行和维护方便等优点,特别适用于平原水网地区的防洪排涝工程。  相似文献   

14.
【目的】探讨水泵选型方法的合理性。【方法】基于雷诺时均N-S方程和RNG k-ε紊流模型,以立式轴流泵为研究对象,采用传统选型方法和等扬程加大流量的选型方法,运用CFD软件对2种水力模型的泵装置进行全流道数值计算,增加泵装置外特性和不同工况下导叶流线分布作为分析水泵选型方法的参考指标。然后对水力模型选择的可靠性进行模型试验验证。【结果】传统选型方法所选的模型,泵装置高效区扬程偏高,但考虑到涵洞损失,可以应用在该泵站中。等扬程加流量的选型方法高效区合理,但最高扬程不能满足要求。数值计算与模型试验的结果对比最大误差小于5%,整体性能曲线的趋势相对良好,数值计算对泵装置的模拟合理可靠。【结论】选用等扬程加大流量的选型方法可保证轴流泵最高效率点与设计点接近,在实际工程中,需兼顾各个特征扬程。  相似文献   

15.
以北赵引黄工程谢村站用多级双吸式离心泵为研究对象,基于雷诺时均的N-S方程,采用SSTk-ε湍流模型,压力速度耦合使用SIMPLEC计算,对泵内部流动进行了三维定常全流场湍流数值模拟,得到不同工况下该泵内部流动的速度矢量图等流场信息,在对其内部流动规律进行了定性分析的基础上,预测了泵的性能,并与现场测试结果进行了对比分析。分析结果表明,首级叶轮首级压水室以及次级叶轮次级压水室内流动较均匀;由于过渡流道的结构特点以及流动惯性,流体在首级压水室进入过渡流道时,在流道突然扩大区域形成了旋涡,旋涡区域大小与流量有关;预测扬程值与现场测试扬程吻合较好,预测扬程最大误差为2.7%,而预测的流量-水力效率曲线与现场测试流量-机组效率曲线变化趋势一致;水泵内部流动的数值模拟可为工程中泵设计阶段的性能预测和结构优化提供依据。  相似文献   

16.
从常用的离心泵、轴流泵、混流泵的性能曲线看,扬程(H)-流量(Q)的曲线变化,离心泵高效区范围广,曲线变化比较平缓;轴流泵显示出陡降型并有马鞍型扭转点;混流泵曲线介于二者之间。 当实际需要的水泵设计扬程与所选用水泵的额定扬程不相符合,或者发现配套动力机负荷不足或超负荷运行时,可采用调节水泵性能的办法来调节动力机的负荷,以保证泵组在高效区运行。具体调节  相似文献   

17.
赵运革 《排灌机械》2012,30(3):300-303
以北赵引黄工程谢村站用多级双吸式离心泵为研究对象,基于雷诺时均N—S方程,采用SSTk-ω湍流模型,压力速度耦合使用SIMPLEC计算,对泵内部流动进行了三维定常全流场湍流数值模拟,得到不同工况下该泵内部流动的速度矢量图等流场信息.在对其内部流动规律进行了定性分析的基础上,预测了泵的性能,并与现场测试结果进行了对比分析.分析结果表明:首级叶轮首级压水室以及次级叶轮次级压水室内流动较均匀;由于过渡流道的结构特点以及流动惯性,流体在首级压水室进入过渡流道时,在流道突然扩大区域形成了旋涡,旋涡区域大小与流量有关;预测扬程值与现场测试扬程吻合较好,预测扬程最大误差为2.7%,而预测的流量-水力效率曲线与现场测试流量一机组效率曲线变化趋势一致.水泵内部流动的数值模拟可为工程中泵设计阶段的性能预测和结构优化提供依据.  相似文献   

18.
前置导叶对轴流泵马鞍区工况回流涡特性的影响   总被引:1,自引:0,他引:1  
基于RANS方程和SST k-ω湍流模型,对带前置导叶轴流泵进行三维非定常计算,研究了"马鞍区"工况进水流道回流涡的特性以及前置导叶对回流涡结构及压力脉动的影响,揭示了前置导叶提高轴流泵"马鞍区"工况扬程的机理。结果表明,小流量工况,轴流泵进水流道内形成大范围螺旋形回流,其与主流的剪切作用导致回流涡的产生,引起大量低频压力脉动,并造成能量损失,致使泵扬程下降,出现马鞍形;增设前置导叶可打破连续的回流涡,降低低频压力脉动幅值,提高轴流泵运行稳定性;同时,前置导叶可提高轴流泵扬程,消除扬程曲线马鞍形,且随着前置导叶位置不断靠近叶轮进口,泵扬程提高幅值不断增大;最后,前置导叶调角可进一步提高轴流泵扬程。  相似文献   

19.
轴流泵叶片水力矩三维紊流数值计算   总被引:1,自引:0,他引:1  
采用RNGκ-ε湍流模型闭合雷诺时均动量方程组,数值模拟了某轴流泵内部三维流动.在计算流量、扬程、功率和效率的基础上,将该轴流泵的模型试验结果与计算结果进行了对比,两者一致性很好,从而验证了数值计算的有效性和可行性.讨论了叶片水力矩计算方法,根据数值计算结果,采用自编程序计算出每一个计算工况下的叶片水力矩,并详细分析了轴流泵叶片水力矩随流量和扬程变化的规律.轴流泵叶片水力矩随流量变化的关系曲线存在一个马鞍区,并与流量-扬程曲线的马鞍区相对应.在小流量区,水力矩变化剧烈,随流量的减小上升很快.叶片水力矩的变化与泵性能参数的变化密切相关,应引起泵设计人员的充分重视.  相似文献   

20.
利用Excel中的规划求解法的基本功能,解决了水泵工况点的确定问题。首先用抛物线方程H=A1+B1Q+C1Q2表示泵流量与扬程曲线,方程H需=H净+h损表示水泵装置的需要扬程曲线。然后根据在水泵工况点水泵的扬程H与需要扬程H需相等这一理论,给出流量的初值,并分别写出水泵扬程H和需要扬程H需与流量Q之间的计算公式,运用Excel计算功能,分别计算出水泵的扬程和需要扬程。利用此方法和水泵工况点确定的相关理论,准确、快速地求解各类复杂条件下水泵的工况点。这种方法与传统的图解法、数解法相比,具有快捷、精确等优点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号