首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Posidonia oceanica, an endemic marine magnoliophyta found in the Mediterranean Sea, is used as a biosorbent for dye wastewater treatment. The ability of P. oceanica to remove the dye C.I. Acid Yellow 59 from an aqueous solution was compared to that of two commercial activated carbon forms: powdered (PAC) and granular (GAC) activated carbon. The effect of initial pH, mass concentration, contact time and initial dye concentration were investigated for the three sorbents. Equilibrium uptake was found to be pH dependent and maximum uptake was observed at an acid pH (2–3) for all materials. Kinetic studies for initial dye concentration of 20, 50 and 100 mg L?1 showed that dye uptake followed the pseudo-second order model for all materials and equilibrium was reached in 10, 400 and 600 min for PAC, GAC and P. oceanica, respectively. The equilibrium data tend to fit Freundlich isotherm model for all materials, the best retention of C.I. Acid Yellow 59 was found to be on PAC followed by P. oceanica and then GAC. This comparative study indicates that sorption onto P. oceanica is an effective, cheaper alternative for dye removal.  相似文献   

2.
《Field Crops Research》1999,63(3):187-198
Rice is subjected to excessive waterlogging and flash-flooding on large areas in south and south-east Asia. Besides cultivars, submergence tolerance of plants is influenced by various agronomic practices. A field experiment was conducted at Cuttack, India during 1994–1995 to study the effect of method of stand establishment (direct seeding and transplanting), vigour of seed (low and high-density) or seedlings (N-fertilized and unfertilized), plant population (normal and 50% more) and N fertilizer (single basal and split application) on yield performance of lowland rice under conditions of natural submergence and simulated flash-flooding (impounding up to 90 ± 3 cm depth for 10 days at vegetative stage). Flooding reached a maximum depth of 80 cm in 1994 and 52 cm in 1995 under natural submergence. The crop performance was better in 1994 due to timely sowing in dry soil and delayed accumulation of water (43 days after sowing) than in 1995 when sowing was done late in saturated soil followed by early water accumulation (28 days after sowing). Grain yield of rice decreased by 30.0–33.6% due to simulated flash-flooding compared with natural submergence, and by 21.4–33.1% due to transplanting in July compared with direct seeding in May-end/early June. The yield of direct-sown crop increased by using high-density seed of 22.9–23.0 mg weight (5.2–9.0%), higher seed rate of 600 m−2 (2.2–2.3%) and basal fertilization at 40 kg N ha−1 (19.4–25.7%) compared with low-density seed (19.4–20.1 mg), 400 seed m−2 and no N, respectively. The yield of transplanted crop increased by using N-fertilized seedlings of 0.49–1.65 g weight (29.5–38.5%), higher number of seedlings at 155 m−2 (3.5–16.7%) and basal fertilization at 40 kg N ha−1 (31.9–32.5%) compared with unfertilized seedlings (0.19–0.79 g), 115 seedlings m−2 and no N. Split application of 40 kg N ha−1 — 50% each at basal and top dressing (105–115 days of growth after flash-flooding) — improved yield significantly (10.1–13.1%) over single basal application under simulated flash-flooding, but not under natural submergence conditions. Regression analysis indicated that relative contribution of various factors in increasing grain yield was in order: N fertilizer > seed density > seed m−2 in direct-sown rice, and N fertilizer > seedlings m−2 > seedling dry weight in transplanted rice. It was concluded that grain yield of flood-prone lowland rice can be increased by establishing the crop early through direct seeding using high-density seed and basal N fertilization.  相似文献   

3.
《Field Crops Research》2006,95(1):75-88
Long-term trends of crop yields have been used as a means to evaluate the sustainability of intensive agriculture. Previous studies have measured yield trends from long-term rice–rice and rice–wheat experiments in different sites from the slopes of individual site regressions of yield over time. The statistical significance of each site regression was determined but not that of the aggregate trend, which could give an indication of the magnitude and significance of global yield change.The random regression coefficient analysis (RRCA) and meta-analysis were used in this study to analyze the aggregate yield trend from several long-term experiments (LTE) across the Indo-Gangetic Plains (IGP) and outside the IGP. Both methods show that there has been a significant (p < 0.05) declining trend in rice yield in rice–wheat LTEs in South Asia including China with the recommended rates of nutrients, but that there has been no significant change in wheat and system (rice + wheat) yields. There was no significant year × region (IGP versus non-IGP) interaction in rice and wheat yields. However, RRCA showed that the average yield trend was significantly negative (−41.0 kg ha−1 yr−1) only in the IGP. In the rice–rice LTEs, there was a significant year × site (IRRI versus non-IRRI sites) interaction during the dry season but not the wet season. Rice yields declined throughout Asia in the wet season. The average system (dry + wet season rice) yield trends were significantly negative in both IRRI and non-IRRI sites (−170.1 and −52.8 kg ha−1 yr−1, respectively) but the magnitude of yield decline was significantly greater in the IRRI sites than in the non-IRRI sites.Rice in the rice–wheat LTEs showed a significantly positive yield trend with the addition of farmyard manure (FYM) but the initial yield was generally lower with FYM than without FYM. After 15 years, yield increase due to FYM was not evident in most of the LTE.  相似文献   

4.
Modelling of the Acetosolv treatment of the cardoon bark (Cynara cardunculus) was accomplished using a second-order face-centred factorial design. We considered as independent (experimental) variables: cooking time (60–180 min), acetic acid concentration in the cooking liquor (60–90%) and hydrochloric acid concentration in the cooking liquor (0.20–0.80%); as well as dependent variables: pulp yield, kappa number and viscosity.Empirical models were deduced to satisfactorily fit experimental data with the values of the independent variables and allow quantifying the effects of each variable.An optimisation with constraints led to the calculation of the region of the experimental domain (time = 180 min, acetic acid concentration  71.3% and HCl concentration > 0.41%) leading to pulps with kappa numbers < 25 at a maximal pulp yield and viscosity, giving us maximum possible values for pulp yield (46.3%) and viscosity (557 mL/g).  相似文献   

5.
In this work, the forward extraction of defatted wheat germ protein (DWGP) by reverse micelles was studied. The reverse micellar systems were formed by sulphosuccinic acid bis (2-ethylhexyl) ester sodium salt (AOT), isooctane and KCl solution. The effects of AOT concentration, pH, KCl concentration, extraction time, the amounts of defatted wheat germ flour (DWGF), W0 (the molar ratio of water to surfactant, i.e. W0 = [H2O]/[AOT]) and temperature on the forward extraction efficiency of DWGP were tested. On the basis of single-factor experiments, the optimum extraction was achieved by response surface methodology (RSM). The experimental results lead to the conclusion that the highest forward extraction efficiency of DWGP was reached at the AOT concentration 0.06 g/mL, pH 8, KCl concentration 0.1 mol/L, time 30 min, the amounts of DWGF 0.500 g, W0 25 and temperature 36 °C. Under these conditions, the forward extraction efficiency of DWGP achieved 37%.  相似文献   

6.
An experimental design was performed to study the influence of process variables (135–175 °C for temperature, 60–120 min for pulping time and 15–25% for active alkali) on the properties of pulps (yield, Kappa index, viscosity, 1% NaOH solubles, alcohol–benzene extractives holocellulose, lignin and α-cellulose contents and brightness) and paper sheets (stretch index, burst index, and tear index) obtained from olive trimming residues. Obtaining pulps with acceptably high physical and chemical properties entails operating at a temperature of 175 °C for 90 min and 25% of active alkali. The paper sheets obtained from olive trimming residues pulps that were produced in different degrees of refining are characterised for their stretch index, burst index, and tear index. An increase in the different parameters for the paper sheet upon increasing the degree of refining is found. All pulps reached between 33 and 39 kN m/kg in the stretch index, between 1.5 and 2 kN/g for the burst index and 0.7–2.5 N m2/g for the tear index and not in excess of the refining degree (<45 °SR).  相似文献   

7.
To evaluate the production potential of fiber nettle crops in Tuscany (Italy), a German clone of fiber nettle was cultivated during 2006–2007.Although a longer experimentation is essential, the two first years of trials showed that the German clone used also seems to give good results in term of growth and fiber yield in an environment like central Italy, with higher temperatures and generally lower rainfall. Indeed the stalk mean dry matter obtained was about 15.4 Mg ha?1 with a mean fiber content of about 11% of stalk dry matter, and the resulting fiber yield was 1696 kg ha?1, comparable to or higher than those reported in the literature.The differences in chemical, physical and mechanical characteristics of fibers extracted from different portions of stalks seemed to indicate an intrinsic heterogeneity of the fibers along the stem. Fiber mean diameter values ranged from 47 to 19 μm and fiber length from 43 to 58 mm moving from stalk bottom to top. Tensile strength of the bottom part of the stalk was much lower than that of the other parts, with mean values of about 24 and 60 cN tex?1, respectively. More constant mean values along the stalk were found for the elongation parameter (2.3–2.6%). Lignin content decreased moving toward the stalk top from about 4.4% to 3.5%.These physical–mechanical characteristics confirmed the potential of the fibers of nettle cultivated in Tuscany to be used for textile purposes. Indeed they were similar to hemp fibers in diameter, lignin content and elongation, and similar to flax or cotton in tensile strength.  相似文献   

8.
《Field Crops Research》1999,61(3):193-199
The prominent effects of a soil surface crust on crop production, impedance to seedling emergence and reduced infiltration rate, were examined using a quantitative land evaluation model under the Sahelian environmental and soil conditions of north-central Burkina Faso. The model integrated data from climate, soil and crop for quantifying potential grain yield of sorghum (Sorghum bicolor), grown on a sandy loam soil for 14 production years (1977–1990). Crust development was induced using `simulated rainfall' with an intensity of 75 mm h−1 from a 2 m height. Results revealed that seeding sorghum in small holes without sufficiently breaking the surface crust depressed grain yield. Observed and potential yield correlated closely over a 7-year period (r = 0.79, p < = 0.05). Substantial yield gap was found between estimated potential yield (crust broken scenario set to 75% of the predicted yield) and observed, indicating however, the possibility of significantly improving yield by using appropriate tillage to break the crust before seeding.  相似文献   

9.
The potential of chestnut shell and eucalyptus bark extracts as phenol substitutes in the formulation of adhesives, as chrome substitutes in leather tanning and as a source of antioxidants compounds has been studied. The influence of extraction conditions, type and concentration of alkaline compounds (NaOH, Na2SO3 and Na2CO3) and temperature, on extraction yield and on extract characteristics: Stiasny number, tannin content, total phenols content, FRAP (ferric reducing/antioxidant power) antioxidant capacity and molecular weight distribution was analysed. Chestnut shell extracts had much better properties than eucalyptus bark extracts and significantly higher extraction yields were obtained. The increase of temperature from 70 to 90 °C not only increased the extraction yield but also improved the quality of the extracts. For both materials, the 2.5% Na2SO3–90 °C extract, together with the 2.5% NaOH–2.5% Na2SO3–90 °C extract for chestnut shell, showed high extraction yields and the best properties for all the applications proposed.  相似文献   

10.
《Field Crops Research》2005,91(2-3):307-318
A 3-year field experiment examined the effects of non-flooded mulching cultivation and traditional flooding and four fertilizer N application rates (0, 75, 150 and 225 kg ha−1 for rice and 0, 60,120, and 180 kg N ha−1 for wheat) on grain yield, N uptake, residual soil Nmin and the net N balance in a rice–wheat rotation on Chengdu flood plain, southwest China. There were significant grain yield responses to N fertilizer. Nitrogen applications of >150 kg ha−1 for rice and >120 kg ha−1 for wheat gave no increase in crop yield but increased crop N uptake and N balance surplus in both water regimes. Average rice grain yield increased by 14% with plastic film mulching and decreased by 16% with wheat straw mulching at lower N inputs compared with traditional flooding. Rice grain yields under SM were comparable to those under PM and TF at higher N inputs. Plastic film mulching of preceding rice did not affect the yield of succeeding wheat but straw mulching had a residual effect on succeeding wheat. As a result, there was 17–18% higher wheat yield under N0 in SM than those in PM and TF. Combined rice and wheat grain yields under plastic mulching was similar to that of flooding and higher than that of straw mulching across N treatments. Soil mineral N (top 60 cm) after the rice harvest ranged from 50 to 65 kg ha−1 and was unaffected by non-flooded mulching cultivation and N rate. After the wheat harvest, soil Nmin ranged from 66 to 88 kg N ha−1 and increased with increasing fertilizer N rate. High N inputs led to a positive N balance (160–621 kg ha−1), but low N inputs resulted in a negative balance (−85 to −360 kg ha−1). Across N treatments, the net N balances of SM were highest among the three cultivations systems, resulting from additional applied wheat straw (79 kg ha−1) as mulching materials. There was not clear trend found in net N balance between PM and TF. Results from this study indicate non-flooded mulching cultivation may be utilized as an alternative option for saving water, using efficiently straw and maintaining or improving crop yield in rice–wheat rotation systems. There is the need to evaluate the long-term environmental risks of non-flooded mulching cultivation and improve system productivity (especially with straw mulching) by integrated resource management.  相似文献   

11.
《Field Crops Research》2006,96(1):48-62
In order to quantify the effects, at different stages during grain filling, of alternating day/night high temperature regimes on sunflower grain yield and quality, heads were exposed to high temperatures during 7 or 6 days starting either 10–12 days after anthesis (daa, HT1), 18 daa (HT2) or 24 daa (HT3). Also, heads were exposed to high temperatures for periods of 2, 4 or 6 days in each of HT1 and HT2. Temperatures covered a range of mean daily grain temperature of 20–40 °C and peak grain temperatures (i.e., those prevailing during the central 5 h of the daylight period) of 26–45 °C. High temperature stress for periods of 4 days or longer produced significant (p < 0.05) reductions in grain yield and grain quality. Early (HT1) exposure to stress reduced yield by 6%/°C above a mean grain temperature threshold of 29 °C; later (HT2 + HT3) exposures reduced yield by 4%/°C above a threshold of 33 °C. These reductions in yield were attributable to reductions in unit grain weight at all positions (periphery, intermediate, central) on the head, and an increase in the proportion of very small (10–30 mg) grains, termed half-full (HF) grains in this paper. In both full and HF grains, stress in either HT1 or HT2 reduced final pericarp weight, associated with fewer number of cell layers and thinner cell walls in the schlerenchyma. High temperatures reduced both the rate and duration of oil deposition in the grain, with the greatest effects being found with early (HT1) exposures. The unsaturation (oleic acid/linoleic acid) ratio of oil from mature grain was altered only when exposure to heat stress overlapped with the cessation of deposition of storage lipids. The effects of duration and intensity of heat stress on relative (to control) grain yield and oil content could be reasonably summarized using a linear response to cumulative hourly heat load calculated with a base temperature of 30 °C. We conclude that: (i) 4 days of alternating day/night temperatures resulting in mean daily grain temperatures of >30 °C can reduce sunflower grain yield and quality; (ii) the magnitude of these effects is strongly dependent on the timing of exposure and their nature on the grain growth processes active at the time of stress; and (iii) an hourly heat load (base = 30 °C) provides a useful integrative estimator of the effects of exposure to heat stress on grain yield and oil content for a given phase of grain filling.  相似文献   

12.
《Field Crops Research》2004,86(1):53-65
Deceleration in rice (Oryza sativa L.) yield over time under fixed management conditions is a concern for countries like Bangladesh, where rice is the primary source of calories for the human population. Field experiments were conducted from 1990 to 1999 on a Chhiata clay loam soil (Hyperthermic Vertic Endoaquept) in Bangladesh, to determine the effect of different doses of chemical fertilizers alone or in combination with cow dung (CD) and rice husk ash (ash) on yield of lowland rice. Two rice crops—dry season rice (December–May) and wet season rice (July–November) were grown in each year. Six treatments—absolute control (T1), one-third of recommended fertilizer doses (T2), two-thirds of recommended fertilizer doses (T3), full doses of recommended fertilizers (T4), T2+5 t CD and 2.5 t ash ha−1 (T5) and T3+5 t CD and 2.5 t ash ha−1 (T6) were compared. The CD and ash were applied on dry season rice only. The 10-year mean grain yield of rice with T1 was 5.33 t ha−1 per year, while the yield with T2 was 6.86 t ha−1 per year. Increased fertilizer doses with T3 increased the grain yield to 8.07 t ha−1 per year, while the application of recommended chemical fertilizer doses (T4) gave 8.87 t ha−1 per year. The application of CD and ash (T5 and T6) increased rice yield by about 1 t ha−1 per year over that obtained with chemical fertilizer alone (T2 and T3, respectively). Over 10 years, the grain yield trend with the control plots was negative, but not significantly, both in the dry and wet seasons. Under T3 through T6, the yield trend was significantly positive in the dry season, but no significant trend was observed in the wet season. The treatments, which showed positive yield trend, also showed positive total P uptake trend. Positive yield trends were attributed to the increasing P supplying power of the soil.  相似文献   

13.
《Field Crops Research》2004,86(1):33-42
The study was undertaken to assess the variation within a bread wheat (Triticum aestivum L.) cultivar, primarily for grain yield, and the implications for wheat breeding. During the 1998–1999 growing season, cv. Nestos was established in a non-replicated (NR-0) honeycomb experiment, in the absence of competition (11 547 plants ha−1). Ten high yielding (H) and 10 low yielding (L) plants were selected, the seeds of which were used to form the respective H and L lines. The 20 lines, along with their original cultivar, were evaluated in two locations either in the absence of competition (11 547 plants ha−1) during the 1999–2000 season or under competition (5 000 000 plants ha−1) during the 2000–2001 season. Results showed significant differentiation between lines for grain yield, determined both in the absence of competition at the single-plant level, i.e. yield per plant (YP), and under competition at the crop yield level, i.e. yield per plot (CY). Significant differences between lines were also found for grain protein content (PC), grain carbon isotope discrimination (Δ), and grain ash content (ASH), either in the absence of competition or under competition. A positive relationship was found between YP and CY (r=0.53,P<0.02). Results showed that selection within a bread wheat cultivar, under very low density and on the basis of individual plant grain yield, could be an effective way to either upgrade or maintain the cultivar, whereas the use of Δ or ASH as indirect selection criteria instead of grain yield was not supported by the study.  相似文献   

14.
《Field Crops Research》1999,63(3):237-246
Using data from large, grower-managed fields we investigated the variation in yield of dryland soybean in an area with low and variable summer rainfall, and soils that are variable in depth and poor in phosphorus (P). First, using data from unfertilised, wide-row (0.7 m) crops grown under standard management between 1989 and 1992 (Series 1), we quantified the relationship between yield and W, a rainfall-based estimate of water availability during the period of pod and grain set. Separate functions were established for deep (depth  1 m) and shallow soils (0.75 m  depth  0.5 m). Second, we partially tested these functions using two independent data sets (Series 2 and 3). Third, we evaluated the effects on yield of large (18 kg P ha−1, Series 4) or moderate doses of P fertiliser (8–12 kg P ha−1) in narrow-row crops (0.35 m, Series 5). To investigate water × management interaction we (i) calculated ΔY, the difference between actual yield in Series 4 and 5 and yield calculated with the functions derived from Series 1, and (ii) tested the association between ΔY and actual W. In a set of 24 crops (Series 1), yield varied between 2.1 and 3.1 t ha−1 in deep soils and between 1.3 and 2.6 t ha−1 in shallow soils; non-linear functions described fairly well, the response of yield to W. Fertilisation with 18 kg P ha−1 increased yield by 0.6 t ha−1 irrespective of water availability. The combination of narrow rows and a moderate dose of fertiliser increased yield in 73% of crops in deep soil but only in 53% of crops in shallow soil. There was a positive association between ΔY and W in deep soil but no relationship between these variables in shallow soil. Yield responses to management were thus differentially affected by rainfall in deep and shallow soils.  相似文献   

15.
The compositions of essential oils of 19 accessions belonging to six different Achillea species, transferred from the natural habitats in 10 provinces of Iran to the field conditions, were assessed. The relationship between the leaf areas of selected accessions with their essential oil content was also investigated. Essential oil yield of dried plants obtained by hydro-distillation ranged from 0.1 to 2.7% in leaves. Results indicated a significant variation in oil composition among and within species. Total of 94 compounds were identified in 19 accessions belonging to the six species of A. millefolium, A. filipendulina, A. tenuifolia, A. santolina, A. biebersteinii and A. eriophora. The major constituents of the leaves in the tested genotypes were determined as germacrene-D, bicyclogermacrene, camphor, borneol, 1,8-cineole, spathulenol and bornyl acetate. According to the major compounds, four chemotypes were defined as: (I) spathulenol (1.64–34.31%) + camphor (0.2–15.61%) (7 accessions); (II1) germacrene-D (18.78–23.93%) + borneol (7.93–8.26%) + bornyl acetate (11.56–14.66%) (5 accessions); (II2) germacrene-D (13.28–36.28%) + bicyclogermacrene (5.93–8.4%) + 1,8-cineole (15.26–19.41%) + camphor (14.95–23.32%) (2 accessions); (III) borneol + camphor (52.04–63.27) (2 accessions); (IV) germacrene-D (45.86–69.64%) (3 accessions). The relationships of chemotypes with soil type and climatic conditions of collected regions were assessed, as probable reasons of high variations in essential oil components, and discussed.  相似文献   

16.
Kenaf (Hibiscus cannabinus L.) is a potential alternative crop being developed for fiber production. Because planting area varies dramatically from year to year, seed supplies may greatly exceed use so that the excess seed must be stored for one to several years. The objectives of this study were to determine the effect of seed storage duration at 10 °C on germination, vigor, emergence, and yield. Replicated trials were established at Starkville, MS in 1999 and 2000 to evaluate field emergence and biomass yield of kenaf seed from five ‘Everglades 41’ (‘E41’) harvest year seed lots stored at 10 °C in ambient relative humidity for up to 4 years. Germination of these same seed lots under standard (20–30 °C) and cool (20 °C) temperatures, and seed vigor was evaluated over time. Field emergence was the same for the different seed storage durations up to 4 years, but was directly affected by drought conditions for each planted year. Biomass yields ranged from 12.39 to 14.57 Mg ha−1 in 1999 and 16.82 to 18.47 Mg ha−1 in 2000, but were not different between storage durations. Seed germination remained greater than 80% regardless of storage duration. Electrolyte leakage, based on conductivity, was 38–50% less with freshly harvested seed than seed stored for 4 years at 10 °C. However, neither the conductivity nor accelerated aging test were reliable predictors of field emergence. Kenaf seed stored up to 4 years at 10 °C retained germination rates acceptable for commercial use. Neither field emergence nor biomass yield was affected by seed storage duration.  相似文献   

17.
The feasibility of producing biodiesel from Idesia polycarpa var. vestita fruit oil was studied. A methyl ester biodiesel was prepared from refined I. polycarpa fruit oil using methanol and potassium hydroxide (KOH) in an alkali-catalyzed transesterification process. The experimental variables investigated in this study were catalyst concentration (0.5–2.0 wt.% of oil), methanol/oil molar ratio (4.5:1 to 6.5:1), temperature (20–60 °C) and reaction time (20–60 min). A maximum yield of over 99% of methyl esters in I. polycarpa fruit oil biodiesel was achieved using a 6:1 molar ratio of methanol to oil, 1.0% KOH (% oil) and reaction time for 40 min at 30 °C. The properties of I. polycarpa fruit oil methyl esters produced under optimum conditions were also analyzed for specifications for biodiesel as fuel in diesel engines according to China Biofuel Systems Standards. The fuel properties of the I. polycarpa fruit oil biodiesel obtained are similar to the No. 0 light diesel fuel and most of the parameters comply with the limits established by specifications for biodiesel.  相似文献   

18.
《Field Crops Research》1999,63(3):225-236
In rainfed agriculture, climatic variability has profound effects on the performance of management systems in improvements of productivity and use of natural resources. A field study was conducted on a Vertic Inceptisol during 1995–1997 seasons at the ICRISAT Center, Patancheru, India, to study the effect of two landforms, i.e., broadbed-and-furrow (BBF) and flat, and two soil depths (shallow and medium-deep) on crop yield and water balance of a soybean–chickpea rotation. Using two seasons experimental data, a soybean–chickpea sequencing model was evaluated and used to extrapolate the results over 22 years of historical weather records. The simulation results showed that in 70% of years total runoff for BBF was greater than 35 mm (range 35–190 mm) compared to greater than 60 mm (range 60–260 mm) for flat on the shallow soil. In contrast on the medium-deep soil it was greater than 70 mm (range 70–280 mm) for BBF compared to greater than 80 mm (range 80–320 mm) for the flat landform. The decrease in runoff on BBF resulted in a concomitant increase in deep drainage for both soils. In 70% of years, deep drainage was greater than 60 mm (range 60–390 mm) for the shallow soil and ranged from 10 to 280 mm for the medium-deep soil. In 70% of years, the simulated soybean yields were greater than 2200 kg ha−1 (range 2200–3000 kg ha−1) and were not influenced by landform or soil depth. In the low rainfall years, yields were marginally higher for the BBF than for the flat landform, especially on the shallow soil. Simulated chickpea yields were higher for the medium-deep soil than for the shallow soil. In most years, marginally higher chickpea yields were simulated for the BBF than for the flat landform on both soil types. In 70% of years, the chickpea yields were greater than 500 kg ha−1 (range 500–1500 kg ha−1) for the shallow soil, and greater than 800 kg ha−1 (range 800–1960 kg ha−1) for the medium-deep soil. Total productivity of soybean–chickpea rotation was greater than 3000 kg ha−1 (range 3000–4150 kg ha−1) for the shallow soil and greater than 3450 kg ha−1 (range 3450–4700 kg ha−1) for the medium-deep soil in 70% of years. These results showed that in most years BBF, landform increased rainfall infiltration into the soil and had marginal effect on yields of soybean and chickpea. Crop yields on Vertic Inceptisols can be further increased and sustained by adopting appropriate rain water management practices for exploiting surface runoff and deep drainage water as supplemental irrigation to crops in a watershed setting.  相似文献   

19.
《Field Crops Research》2005,93(1):94-107
Bangladesh is currently self sufficient in rice (Oryza sativa L.), which accounts for approximately 80% of the total cropped area, and 70% of the cost of crop production. However, farmers are increasingly concerned about the perceived decline in productivity, expressed as the return on fertiliser inputs. Agronomic efficiency is a measure of the increase in grain yield achieved per unit of fertiliser input that can provide a way to quantify the observation of farmers. This study indicates that the yields achieved where only P and K fertiliser were applied ranged from 3–5 t ha−1, indicating good soil fertility, particular in terms of soil N supply (37–112 kg N ha−1). However, at recommended rates and at rates used by farmers, the yield response to application of fertiliser N was low. Data shows that grain yields were significantly correlated in both years (R2 = 0.77 and R2 = 0.67) with plant uptake in nitrogen. The internal nitrogen use efficiency seems to confirm that sink formation was limited by factors other than nitrogen. Low agronomic efficiency (5–19 kg grain kg−1 N) was caused by poor internal efficiency (45–73 kg grain kg−1 N), rather than low supply of soil N or loss of fertiliser N. Thus, often the applications of large amounts of N fertiliser (39–175 kg N ha−1) by farmers to increase yields of high yielding variety Boro rice were not justified agronomically and ecologically. A rate of 39 kg N ha−1 is very low, hardly an environmental threat. No one single factor could be identified to explain the low internal efficiency. Therefore, it is concluded that the data presented tend to confirm the indication that yields are limited by a factor other than nitrogen, which could be crop establishment, plant density, water or pest management, micro-nutrients deficiency, poor seed and transplanted seedling quality, varieties and low radiation.  相似文献   

20.
《Field Crops Research》1999,61(2):125-145
Yield, input use, productivity and profitability of irrigated rice systems were analyzed based on surveys in Senegal (Thiagar and Guédé), Mali (Office du Niger) and Burkina Faso (Kou Valley). The objective was to determine agronomic factors contributing to farmers' fertilizer-use efficiency and productivity, given current farmer practices. (A second paper addresses profitability and risk issues). Grain yields were highly variable, within and across sites. Minimum grain yield was 0.2 t ha−1 (Thiagar), maximum recorded grain yield was 8.7 t ha−1 (Office du Niger). The yield gap between actual farmers' yield and simulated potential or maximum attainable farmers' yield ranged from 0.6 to 5.7 t ha−1 (Kou), 1.8 to 8.2 t ha−1 (Thiagar), 0.3 to 6.3 t ha−1 (Office du Niger), 0.8 to 5.7 t ha−1 (Guédé), indicating considerable scope for improved yield. Physiological nitrogen efficiency (δ grain yield/δ N uptake) was mostly between 40 and 80 kg grain kg−1 plant N. Apparent recovery of fertilizer N was highly variable (average: 30–40% of applied N). Timing of N fertilizer application by farmers was extremely variable and often did not coincide with critical growth stages of the rice plant. Other agronomic constraints included: use of relatively old (>40 days) seedlings at transplanting (Kou, Office du Niger), P and/or K deficiency (Office du Niger), unreliable irrigation water supply (Kou, dry season), delayed start of the wet growing season resulting in yield losses of up to 20% due to cold-induced spikelet sterility (Kou, Guédé, Office du Niger), weed problems (Thiagar), and late harvesting (Thiagar). Discussions during meetings with farmers at the survey sites revealed that farmers lacked knowledge on (i) optimal timing, dosage and mode of fertilizer application, (ii) optimal sowing dates to avoid yield loss due to cold- or heat-induced sterility, and (iii) the importance of N as the main limiting factor to yield. Possibilities to achieve a sustainable increase in rice productivity and profitability in West African irrigation systems are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号