首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 859 毫秒
1.
为解决新梅在树干树叶遮挡、果实重叠情况下难以准确检测的问题,该研究建立了新梅目标检测模型SFF-YOLOv5s。在真实果园环境下构建新梅数据集,以YOLOv5s模型作为基础网络,首先在Backbone骨干网络C3模块中引入CA(coordinate attention)注意力机制以增强模型对新梅关键特征信息的提取能力并减少模型的参数量;其次在Neck层中引入加权双向特征金字塔网络,增强模型不同特征层之间的融合能力,从而提高模型的平均精度均值;最后使用SIoU损失函数替换原模型中的CIoU损失函数提高模型的检测准确率。试验结果表明,SSF-YOLOv5s模型对新梅检测准确率为93.4%,召回率为92.9%,平均精度均值为97.7%,模型权重仅为13.6MB,单幅图像平均检测时间12.1ms,与Faster R-CNN、YOLOv3、YOLOv4、YOLOv5s、YOLOv7、YOLOv8s检测模型相比平均精度均值分别提升了3.6、6.8、13.1、0.6、0.4、0.5个百分点,能够满足果园复杂环境下对新梅进行实时检测的需求,为后续新梅采摘机器人的视觉感知环节提供了技术支持。  相似文献   

2.
快速精准识别棚内草莓的改进YOLOv4-Tiny模型   总被引:5,自引:5,他引:0  
为了实现棚内草莓果实的快速精准识别,该研究提出一种基于改进YOLOv4-Tiny的草莓检测模型。首先,为了大幅度减少模型计算量,采用轻量型网络GhostNet作为特征提取网络,并在GhostBottleneck结构中嵌入卷积注意力模块以加强网络的特征提取能力;其次,在颈部网络中添加空间金字塔池化模块和特征金字塔网络结构,融合多尺度特征提升小目标草莓的检测效果;最后,采用高效交并比损失作为边界框回归损失函数,加速网络收敛并提高模型的检测准确率。结果表明,改进YOLOv4-Tiny模型权重大小仅为4.68 MB,平均每幅图片的检测时间为5.63 ms,在测试集上的平均精度均值达到92.62%,相较于原YOLOv4-Tiny模型提升了5.77个百分点。与主流的目标检测模型SSD、CenterNet、YOLOv3、YOLOv4和YOLOv5s相比,改进YOLOv4-Tiny模型平均精度均值分别高出9.11、4.80、2.26、1.22、1.91个百分点,并且模型权重大小和检测速度方面均具有绝对优势,该研究可为后续果实智能化采摘提供技术支撑。  相似文献   

3.
当前菠萝催花作业以人工喷洒为主,生产效率低、劳动强度大。菠萝苗心位置的精准识别和定位是实现机械化、智能化菠萝催花的核心问题。该研究在YOLOv4目标识别算法的基础上,选择GhostNet作为主干特征提取网络,构建了一种混合网络模型,并在颈部网络中融合深度可分离卷积与轻量级的注意力模块。改进后的模型相较于YOLOv4模型的总参数量减少70%。与YOLOv4、Faster R-CNN和CenterNet 3个模型进行检测对比试验,结果可得:改进模型在菠萝植株种植密集与稀疏的条件下识别精度分别为94.7%和95.5%,实时识别速度可达27帧/s,每张图像平均检测时间为72 ms,相比常规YOLOv4模型用时缩短23%。总体性能表现均优于对比组的目标检测模型。总的来说,改进模型YOLOv4-GHDW在一定程度上实现了检测速度、识别精度和模型体量三者之间平衡,能够在实际种植环境下对菠萝苗心有较好的识别效果。研究结果可为智能化菠萝精准催花设备研发提供视觉技术支持。  相似文献   

4.
为解决莲田环境下不同成熟期莲蓬的视觉感知问题,该研究提出了一种改进YOLOv5s的莲蓬成熟期检测方法。首先,通过在主干特征网络中引入BoT(bottleneck transformer)自注意力机制模块,构建融合整体与局部混合特征的映射结构,增强不同成熟期莲蓬的区分度;其次,采用高效交并比损失函数EIoU(efficient IoU)提高了边界框回归定位精度,提升模型的检测精度;再者,采用K-means++聚类算法优化初始锚框尺寸的计算方法,提高网络的收敛速度。试验结果表明,改进后YOLOv5s模型在测试集下的精确率P、召回率R、平均精度均值mAP分别为98.95%、97.00%、98.30%,平均检测时间为6.4ms,模型尺寸为13.4M。与YOLOv3、 YOLOv3-tiny、 YOLOv4-tiny、 YOLOv5s、YOLOv7检测模型对比,平均精度均值mAP分别提升0.2、1.8、1.5、0.5、0.9个百分点。基于建立的模型,该研究搭建了莲蓬成熟期视觉检测试验平台,将改进YOLOv5s模型部署在移动控制器Raspberry Pi 4B中,对4种距离范围下获取的莲蓬场景图像...  相似文献   

5.
为提高橙果采摘定位精度和作业速度,提出一种便于迁移至移动终端的改进YOLOv4模型,可从RealSense深度相机所成彩色图像中获取果实质心二维坐标,经配准提取对应深度图中质心点深度值,实现果实的三维空间定位。改进YOLOv4模型以MobileNet v2为主干网络,在颈部结构中使用深度可分离卷积替换普通卷积,实现模型轻量化并提高检测速度。训练后的改进模型对513张独立橙果测试集数据的识别平均精度达97.24%,与原始YOLOv4模型相比,平均检测时间减少11.39 ms,模型大小减少197.5 M。与经典Faster RCNN、SSD模型相比,检测平均精度分别提高了2.85和3.30个百分点,模型大小分别减少了474.5和44.1 M。与轻量化模型YOLOv4-tiny相比,召回率提升了4.79个百分点,较Ghostnet-YOLOv4,检测速度提升了27.64个百分点。为验证该改进算法实用性,应用改进模型获取果园中78个橙果的位置信息,结果表明:果实二维识别成功率达98.72%,水平方向及垂直方向的平均绝对百分比误差均在1%以内。果实三维定位成功率达96.15%,深度信息平均绝对百分比误差为2.72%,满足采摘机械手精准定位需求。该方法为复杂场景下采摘作业实现提供了鲁棒性强、实时性好、精准度高的目标定位途径。  相似文献   

6.
为提高苹果采摘机器人的工作效率和环境适应性,使其能全天候的在不同光线环境下对遮挡、粘连和套袋等多种情况下的果实进行识别定位,该文提出了基于YOLOv3(you only look once)深度卷积神经网络的苹果定位方法。该方法通过单个卷积神经网络(one-stage)遍历整个图像,回归目标的类别和位置,实现了直接端到端的目标检测,在保证效率与准确率兼顾的情况下实现了复杂环境下苹果的检测。经过训练的模型在验证集下的m AP(meanaverageprecision)为87.71%,准确率为97%,召回率为90%,IOU(intersection over union)为83.61%。通过比较YOLOv3与Faster RCNN算法在不同数目、不同拍摄时间、不同生长阶段、不同光线下对苹果的实际检测效果,并以F1为评估值对比分析了4种算法的差异,试验结果表明YOLOv3在密集苹果的F1高于YOLOv2算法4.45个百分点,在其他环境下高于Faster RCNN将近5个百分点,高于HOG+SVM(histogram of oriented gradient+support vector machine)将近10个百分点。并且在不同硬件环境验证了该算法的可行性,一幅图像在GPU下的检测时间为16.69 ms,在CPU下的检测时间为105.21 ms,实际检测视频的帧率达到了60帧/s和15帧/s。该研究可为机器人快速长时间高效率在复杂环境下识别苹果提供理论基础。  相似文献   

7.
基于改进型YOLOv4-LITE轻量级神经网络的密集圣女果识别   总被引:9,自引:9,他引:0  
对密集圣女果遮挡、粘连等情况下的果实进行快速识别定位,是提高设施农业环境下圣女果采摘机器人工作效率和产量预测的关键技术之一,该研究提出了一种基于改进YOLOv4-LITE轻量级神经网络的圣女果识别定位方法。为便于迁移到移动终端,该方法使用MobileNet-v3作为模型的特征提取网络构建YOLOv4-LITE网络,以提高圣女果果实目标检测速度;为避免替换骨干网络降低检测精度,通过修改特征金字塔网络(Feature Pyramid Networks,FPN)+路径聚合网络(Path Aggregation Network,PANet)的结构,引入有利于小目标检测的104×104尺度特征层,实现细粒度检测,在PANet结构中使用深度可分离卷积代替普通卷积降低模型运算量,使网络更加轻量化;并通过载入预训练权重和冻结部分层训练方式提高模型的泛化能力。通过与YOLOv4在相同遮挡或粘连程度的测试集上的识别效果进行对比,用调和均值、平均精度、准确率评价模型之间的差异。试验结果表明:在重叠度IOU为0.50时所提出的密集圣女果识别模型在全部测试集上调和均值、平均精度和准确率分别为0.99、99.74%和99.15%,同比YOLOv4分别提升了0.15、8.29个百分点、6.54个百分点,权重大小为45.3 MB,约为YOLOv4的1/5,对单幅416×416像素图像的检测,在图形处理器(Graphics Processing Unit,GPU)上速度可达3.01 ms/张。因此,该研究提出的密集圣女果识别模型具有识别速度快、识别准确率高、轻量化等特点,可为设施农业环境下圣女果采摘机器人高效工作以及圣女果产量预测提供有力的保障。  相似文献   

8.
基于改进的轻量化卷积神经网络火龙果检测方法   总被引:2,自引:2,他引:0  
在自然环境下对火龙果进行实时检测是实现火龙果自动化采摘的必要条件之一。该研究提出了一种轻量级卷积神经网络YOLOv4- LITE火龙果检测方法。YOLOv4集成了多种优化策略,YOLOv4的检测准确率比传统的YOLOv3高出10%。但是YOLOv4的骨干网络复杂,计算量大,模型体积较大,不适合部署在嵌入式设备中进行实时检测。将YOLOv4的骨干网络CSPDarknet-53替换为MobileNet-v3,MobileNet-v3提取特征可以显著提高YOLOv4的检测速度。为了提高小目标的检测精度,分别设置在网络第39层以及第46层进行上采样特征融合。使用2 513张不同遮挡环境下的火龙果图像作为数据集进行训练测试,试验结果表明,该研究提出的轻量级YOLOv4-LITE模型 Average Precision(AP)值为96.48%,F1值为95%,平均交并比为81.09%,模型大小仅为2.7 MB。同时对比分析不同骨干网络,MobileNet-v3检测速度大幅度提升,比YOLOv4的原CSPDarknet-53平均检测时间减少了132.33 ms。YOLOv4-LITE在GPU上检测一幅1 200×900的图像只需要2.28 ms,可以在自然环境下实时检测,具有较强的鲁棒性。相比现有的目标检测算法,YOLOv4-LITE的检测速度是SSD-300的9.5倍,是Faster-RCNN的14.3倍。进一步分析了多尺度预测对模型性能的影响,利用4个不同尺度特征图融合预测,相比YOLOv4-LITE平均检测精度提高了0.81%,但是平均检测时间增加了10.33 ms,模型大小增加了7.4 MB。因此,增加多尺度预测虽然提高了检测精度,但是检测时间也随之增加。总体结果表明,该研究提出的轻量级YOLOv4-LITE在检测速度、检测精度和模型大小方面具有显著优势,可应用于自然环境下火龙果检测。  相似文献   

9.
为解决光线遮蔽、藻萍干扰以及稻叶尖形状相似等复杂环境导致稻田杂草识别效果不理想问题,该研究提出一种基于组合深度学习的杂草识别方法。引入MSRCP(Multi-Scale Retinex with Color Preservation)对图像进行增强,以提高图像亮度及对比度;加入ViT分类网络去除干扰背景,以提高模型在复杂环境下对小目标杂草的识别性能。在YOLOv7模型中主干特征提取网络替换为GhostNet网络,并引入CA注意力机制,以增强主干特征提取网络对杂草特征提取能力及简化模型参数计算量。消融试验表明:改进后的YOLOv7模型平均精度均值为88.2 %,较原YOLOv7模型提高了3.3个百分点,参数量减少10.43 M,计算量减少66.54×109次/s,有效提高模型速度与精度。识别前先经过MSRCP图像增强后,改进YOLOv7模型的平均精度均值提高了2.6个百分点,模型对光线遮蔽、藻萍干扰以及稻叶尖形状相似的复杂环境下平均精度均值分别提高5.3、3.6、3.1个百分点;再加入ViT分类网络后,模型平均精度均值进一步提高,较原模型平均精度均值整体提升了4.4个百分点,在复杂环境下的平均精度均值较原模型整体提升了6.2、6.1、5.7个百分点。ViT-改进YOLOv7模型的平均精度均值为92.6 %,相比于YOLOv5s、YOLOXs、MobilenetV3-YOLOv7、YOLOv8和改进YOLOv7分别提高了11.6、10.1、5.0、4.2、4.4个百分点。研究结果可为稻田复杂环境的杂草精准识别提供支撑。  相似文献   

10.
基于改进YOLOv4-Tiny的蓝莓成熟度识别方法   总被引:3,自引:2,他引:1  
为实现自然环境下蓝莓果实成熟度的精确快速识别,该研究对YOLOv4-Tiny网络结构进行改进,提出一种含有注意力模块的目标检测网络(I-YOLOv4-Tiny)。该检测网络采用CSPDarknet53-Tiny网络模型作为主干网络,将卷积注意力模块(Convolution Block Attention Module,CBAM)加入到YOLOv4-Tiny网络结构的特征金字塔(Feature Pyramid Network,FPN)中,通过对每个通道的特征进行权重分配来学习不同通道间特征的相关性,加强网络结构深层信息的传递,从而降低复杂背景对目标识别的干扰,且该检测网络的网络层数较少,占用内存低,以此提升蓝莓果实检测的精度与速度。对该研究识别方法进行性能评估与对比试验的结果表明,经过训练的I-YOLOv4-Tiny目标检测网络在验证集下的平均精度达到97.30%,能有效地利用自然环境中的彩色图像识别蓝莓果实并检测果实成熟度。对比YOLOv4-Tiny、YOLOv4、SSD-MobileNet、Faster R-CNN目标检测网络,该研究在遮挡与光照不均等复杂场景中,平均精度能达到96.24%。平均检测时间为5.723 ms,可以同时满足蓝莓果实识别精度与速度的需求。I-YOLOv4-Tiny网络结构占用内存仅为24.20 M,为采摘机器人与早期产量预估提供快速精准的目标识别指导。  相似文献   

11.
采用改进YOLOv4-tiny的复杂环境下番茄实时识别   总被引:7,自引:7,他引:0  
实时识别番茄的成熟度是番茄自主采摘车的关键功能。现有目标识别算法速度慢、对遮挡番茄和小番茄识别准确率低。因此,该研究提出一种基于改进YOLOv4-tiny模型的番茄成熟度识别方法。在头部网络(Head network)部分增加一个76×76的检测头(y3)来提高小番茄的识别准确率。为了提高被遮挡番茄的识别准确率,将卷积注意力模块(Convolution Block Attention Module,CBAM)集成到YOLOv4-tiny模型的骨干网络(Backbone network)部分。在深层卷积中使用Mish激活函数替代ReLU激活函数以保证提取特征的准确性。使用密集连接的卷积网络(Densely Connected Convolution Networks, DCCN)来加强全局特征融合,并建立红风铃番茄成熟度识别的数据集。试验结果表明,与YOLOv3、YOLOv4、YOLOv4-tiny、YOLOv5m和YOLOv5l模型相比,改进YOLOv4-tiny-X模型的平均精度均值(mean Average Precision, mAP)分别提高了30.9、0.2、0.7、5.4和4.9个百分点,在Nvidia GTX 2060 GPU 上达到111帧/s的速度,平均精度均值达到97.9%。不同模型的实时测试可视化结果表明,改进模型能够有效解决遮挡和小番茄识别准确率低的问题,可为番茄采摘车研制提供参考。  相似文献   

12.
番茄花果的协同识别是温室生产管理调控的重要决策依据,针对温室番茄栽培密度大,植株遮挡、重叠等因素导致的现有识别算法精度不足问题,该研究提出一种基于级联深度学习的番茄花果协同识别方法,引入图像组合增强与前端ViT分类网络,以提高模型对于小目标与密集图像检测性能。同时,通过先分类识别、再进行目标检测的级联网络,解决了传统检测模型因为图像压缩而导致的小目标模糊、有效信息丢失问题。最后,引入了包括大果和串果在内的不同类型番茄品种数据集,验证了该方法的可行性与有效性。经测试,研究提出的目标检测模型的平均识别率均值(mean average precision,m AP)为92.30%,检测速度为28.46帧/s,其中对小花、成熟番茄和未成熟番茄识别平均准确率分别为87.92%、92.35%和96.62%。通过消融试验表明,与YOLOX、组合增强YOLOX相比,改进后的模型m AP提高了2.38~6.11个百分点,相比于现有YOLOV3、YOLOV4、YOLOV5主流检测模型,m AP提高了16.56~23.30个百分点。可视化结果表明,改进模型实现了对小目标的零漏检和对密集对象的无误检,从而达到...  相似文献   

13.
融合YOLO v5n与通道剪枝算法的轻量化奶牛发情行为识别   总被引:2,自引:2,他引:0  
及时、准确地监测奶牛发情行为是现代化奶牛养殖的必然要求。针对人工监测奶牛发情不及时、效率低等问题,该研究提出了一种融合YOLO v5n与通道剪枝算法的轻量化奶牛发情行为识别方法。在保证模型检测精度的基础上,基于通道剪枝算法,对包括CSPDarknet53主干特征提取网络等在内的模块进行了修剪,以期压缩模型结构与参数量并提高检测速度。为了验证算法的有效性,在2239幅奶牛爬跨行为数据集上进行测试,并与Faster R-CNN、SSD、YOLOX-Nano和YOLOv5-Nano模型进行了对比。试验结果表明,剪枝后模型均值平均精度(mean Average Precision, mAP)为97.70%,参数量(Params)为0.72 M,浮点计算量(Floating Point operations, FLOPs)为0.68 G,检测速度为50.26 帧/s,与原始模型YOLOv5-Nano相比,剪枝后模型mAP不变的情况下,Params和FLOPs分别减少了59.32和49.63个百分点,检测速度提高了33.71个百分点,表明该剪枝操作可有效提升模型性能。与Faster R-CNN、SSD、YOLOX-Nano模型相比,该研究模型的mAP在与之相近的基础上,参数量分别减少了135.97、22.89和0.18 M,FLOPs分别减少了153.69、86.73和0.14 G,检测速度分别提高了36.04、13.22和23.02 帧/s。此外,对模型在不同光照、不同遮挡、多尺度目标等复杂环境以及新环境下的检测结果表明,夜间环境下mAP为99.50%,轻度、中度、重度3种遮挡情况下平均mAP为93.53%,中等尺寸目标和小目标情况下平均mAP为98.77%,泛化性试验中奶牛爬跨行为检出率为84.62%,误检率为7.69%。综上,该模型具有轻量化、高精度、实时性、鲁棒性强、泛化性高等优点,可为复杂养殖环境、全天候条件下奶牛发情行为的准确、实时监测提供借鉴。  相似文献   

14.
疏果期苹果目标检测是实现疏果机械化、自动化需要解决的关键问题。为实现疏果期苹果目标准确检测,该研究以YOLOv7为基础网络,融合窗口多头自注意力机制(Swin Transformer Block),设计了一种适用于近景色小目标检测的深度学习网络。首先在YOLOv7模型的小目标检测层中添加Swin Transformer Block,保留更多小尺度目标特征信息,将预测框与真实框方向之间的差异考虑到模型训练中,提高模型检测精度,将YOLOv7中的损失函数CIoU替换为SIoU。最后利用Grad-CAM方法产生目标检测热力图,进行有效特征可视化,理解模型关注区域。经测试,该文模型的检测均值平均精度为95.2%,检测准确率为92.7%,召回率为91.0%,模型所占内存为81 MB,与原始模型相比,均值平均精度、准确率、召回率分别提高了2.3、0.9、1.3个百分点。该文模型对疏果期苹果具有更好的检测效果和鲁棒性,可为苹果幼果生长监测、机械疏果等研究提供技术支持。  相似文献   

15.
基于YOLOv4模型剪枝的番茄缺陷在线检测   总被引:4,自引:4,他引:0  
为解决番茄缺陷检测过程中的精确性和实时性问题,该研究提出一种基于模型剪枝的番茄表面缺陷实时检测方法。采用模型剪枝的方法在YOLOv4网络模型基础上进行模型优化,首先将3个连续检测工位采集的RGB图像拼接生成YOLOv4网络的输入图像,然后采用通道剪枝和层剪枝的方法压缩YOLOv4网络模型,从而减少模型参数,提高检测速度,最后提出一种基于L1范数的非极大值抑制方法,用于在模型微调后去除冗余预测框,从而精准定位图像中的缺陷位置,并将模型部署到分级系统上进行实时检测试验。结果表明,该研究提出的YOLOv4P网络与原YOLOv4网络相比,网络模型尺寸和推理时间分别减少了232.40 MB和10.11 ms,平均精度均值(Mean Average Precision,mAP)从92.45%提高到94.56%,能满足实际生产中针对缺陷番茄进行精准、实时检测的要求,为番茄分级系统提供了高效的实时检测方法。  相似文献   

16.
为满足植物工厂中番茄智能化授粉作业的需要,解决目前机器人在授粉过程中因花朵小、姿态朝向各异而导致的检测精度不高和授粉策略不完善的问题,该研究提出一种由目标检测、花期分类和姿态识别相结合的番茄花朵检测分类算法--TFDC-Net(Tomato flower detection and classification network)。在花朵检测阶段,基于YOLOv5s对其网络进行改进,添加了卷积块注意力模块(Convolutional Block Attention Module,CBAM)及采用了加权框融合(Weighted Boxes Fusion,WBF)的方法,提出一种改进的YOLOv5s网络。该网络在使用线下数据增强的基础上训练得到ACW_YOLOv5s模型,该模型的准确率为0.957,召回率为0.942,mAP0.5为0.968,mAP0.5~0.95为0.62,各项指标相较于原网络模型分别提高了0.028,0.004,0.012,0.066。经测试表明,ACW_YOLOv5s模型解决了远处的小目标及被遮挡的目标漏检,重叠目标误检的问题。同时,为解决花朵不同花期和花蕊不同朝向的授粉问题,研究采用EfficientNetV2分类网络分别对3种不同花期和5种不同姿态的花朵进行训练得到花期分类模型及姿态识别模型,模型准确率分别为94.5%和86.9%,通过对目标进行花期分类和姿态识别判断是否对其进行授粉。为进一步验证分类模型的性能,分别选取300张花期图片和200张姿态图片对模型进行测试,花期分类模型和姿态分类模型的测试总体准确率分别为97%,90.5%。将TFDC-Net算法应用于自主研发的授粉机器人中并进行试验验证,结果表明,该算法能够完成对番茄花朵的目标检测,花期分类和姿态识别。再通过坐标转换实现目标定位,并对目标进行授粉。该研究为授粉机器人的目标检测与定位提供了一定的技术依据。  相似文献   

17.
为解决自然环境中番茄叶片病虫害检测场景复杂、检测精度较低,计算复杂度高等问题,提出一种SLP-YOLOv7-tiny的深度学习算法。首先,将主干特征提取网络中部分3×3的卷积Conv2D(2D convolution)改为分布偏移卷积DSConv2D(2D Depthwise Separable Convolution),以减少网络的计算量,并且使计算速度更快,占用内存更少;其次,将无参数注意力机制(parameter-free attention module, SimAM)融合到骨干特征提取网络中,加强模型对病虫害特征的有效提取能力和特征整合能力;最后,将原始YOLOv7-tiny的CIOU损失函数,更替为Focal-EIOU损失函数,加快模型收敛并降低损失值。试验结果表明,SLP-YOLOv7-tiny模型整体识别精准度、召回率、平均精度均值mAP0.5(IOU阈值为0.5时的平均精度)、mAP0.5~0.95(IOU阈值从0.5到0.95之间的所有值进行平均计算的平均精度)分别为95.9%、94.6%、98.0%、91.4%,与改进前YOLOv7-tiny相比,分别提升14.7、29.2、20.2、30个百分点,同时,计算量降低了62.6%,检测速度提升了13.2%。与YOLOv5n、YOLOv5s、YOLOv5m、YOLOv7、YOLOv7-tiny、Faster-RCNN、SSD目标检测模型相比,mAP0.5分别提升了2.0、1.6、2.0、2.2、20.2、6.1和5.3个百分点,而计算量大小仅为YOLOv5s、YOLOv5m、YOLOv7、Faster-RCNN、SSD的31.5%、10.6%、4.9%、4.3%、3.8%。结果表明SLP-YOLOv7-tiny可以准确快速地实现番茄叶片病虫害的检测,且模型较小,可为番茄叶片病虫害的快速精准检测的发展提供一定的技术支持。  相似文献   

18.
未成熟芒果的改进YOLOv2识别方法   总被引:4,自引:19,他引:4  
在果园场景下,由于光照的多样性、背景的复杂性及芒果与树叶颜色的高度相似性,特别是树叶和枝干对果实遮挡及果实重叠,给未成熟芒果检测带来极大的挑战。本文提出果园场景下未成熟芒果的改进YOLOv2检测方法。设计新的带密集连接的Tiny-yolo网络结构,实现网络多层特征的复用和融合,提高检测精度。为克服遮挡重叠果实检测困难,手工标注遮挡或重叠芒果的前景区域,然后用样本的前景区域训练YOLOv2网络,减小边界框内非前景区域特征的干扰,增强对目标前景区域卷积特征的学习。并以扩增的数据集,采用增大输入尺度和多尺度策略训练网络。最后,对本文方法进行性能评价与对比试验。试验结果表明,该方法在测试集上,芒果目标检测速度达83帧/s,准确率达97.02%,召回率达95.1%。对比Faster RCNN,该方法在杂物遮挡和果实重叠等复杂场景下,检测性能显著提升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号