首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
【目的】用微卫星标记分析糜子种质资源(国内外6个不同生态区)的遗传多样性水平,揭示不同来源糜子种质资源的亲缘关系和遗传结构差异,便于对糜子资源分类和优异种质的筛选利用。【方法】 用144个(高、低碱基序列重复分别为64和80个)SSR标记评估96份国内外(国内、国外分别为71和25份)糜子资源;用PowerMarker 3.25和PopGen 1.32计算遗传多样性参数,用MEGA 5.0和Structure 2.2进行遗传距离和结构聚类,用Ntsys 2.11进行主成分分析。【结果】 144个EST-SSR标记共检测出368个观测等位变异(Na),每个位点检测到等位变异2—3个,平均为2.5556个;观测杂合度(Ho)为0.4070(RYW15)—0.9789(RYW85),平均为0.8288;期望杂合度(He)为0.4369(RYW59)—0.6693(RYW58),平均为0.5535;Nei's基因多样性指数(Nei)为0.4344(RYW59)—0.6653(RYW58),平均为0.5505;多态性信息含量(PIC)为0.1811(RYW68)—0.7508(RYW58),平均为0.4279。Shannon多样性指数(I)为0.6474—1.0956,平均为0.8415。就6个生态区材料的遗传多样性参数而言,北方春糜子区材料的PIC值和Shannon多样性指数最高,西北春夏糜子区材料最低。就不同生态区糜子种质间的遗传距离和遗传一致度而言,不同生态区糜子种质间的遗传距离为 0.0111—0.1425,遗传一致度为 0.8672—0.9889,北方春糜子区和黄土高原春夏糜子区间遗传距离最小和遗传一致度最高,西北春夏糜子区和华北夏糜子区间遗传距离最大。基于UPGMA聚类将试验材料划归3个类群(Ⅰ、Ⅱ、Ⅲ)。类群Ⅰ主要为北方春糜子区材料;类群Ⅱ主要为国外材料;类群Ⅲ主要为北方春糜子区和黄土高原春夏糜子区材料;基于Structure聚类将糜子资源划归4个群组,红色群组,主要为北方春糜子区和黄土高原春夏糜子区材料,代表北方和黄土高原基因库;绿色群组,主要为北方春糜子区材料,代表北方基因库;蓝色群组,主要包括黄土高原春夏糜子区材料,代表黄土高原基因库;黄色群组,代表国外基因库。就各分类群的遗传多样性参数而言,群组Ⅱ的PIC值最大(0.4606),群组Ⅳ最小(0.3539);主成分分析将试材划归6类,与其地理来源一致。【结论】 144个SSR标记可以准确评估96份糜子资源的遗传变异,基于不同依据划分的类群与6个生态区材料的地理来源基本一致,北方春糜子区材料的遗传多样性较丰富。  相似文献   

2.
用高基元微卫星标记分析中国糜子遗传多样性   总被引:7,自引:3,他引:7  
【目的】开发高基元(4—6)碱基重复微卫星标记,分析种质资源遗传多样性,为糜子遗传和进化研究提供理论基础。【方法】用隶属函数、主成分分析和聚类分析综合评价糜子资源表型多样性,用前期糜子转录组测序获得高基元SSR引物对地理来源差异大的糜子材料进行PCR扩增检测其多态性,用Power Marker 3.25计算遗传多样性参数,用Pop Gen 1.32计算Nei’s遗传距离,用MEGA 5.0进行聚类分析,用Structure 2.2鉴定遗传类群。【结果】96份糜子资源株高和穗长变异最丰富,多样性指数分别为2.08和1.91。PCR扩增发现,占56.29%的85对引物具多态性,其中四、五和六碱基重复引物分别为71对(83.53%)、10对(11.76%)和4对(4.7%)。85个标记扩增产物大小分布为100—450 bp,PIC值平均为0.51,Rp值为1.00—5.75,平均为3.15。四、五和六碱基重复SSR的平均Rp值分别为3.15、2.8和4.0。基于Rp值分析SSR的分布频次,发现85个标记分布区间为0—1、1—2、2—3、3—4、4—5和5—6,分别包含1(1.18%)、15(17.65%)、31(36.47%)、20(23.53%)、12(14.12%)和6(7.06%)个标记,60%(51个)的标记分布在区间2—3和3—4。用85个SSR扩增96份糜子资源,共检测到232个等位变异,每个位点检测到等位变异2—3个,平均2.7294个;62个位点产生3个变异,23个位点产生2个变异;多样性指数为0.2842—1.0633,平均为0.7708;PIC值为0.0400—0.7281,平均为0.4723。不同生态区糜子种质间的遗传距离为0.0093—0.5052(平均为0.1798),遗传一致度为0.6034—0.9907(平均为0.8485)。基于UPGMA将96个糜子基因型聚为4个群组,第一群组主要属于北方春糜子区;第二群主要属于东北春糜子区;第三群组主要属于华北夏糜子区;第四群组主要属于黄土高原春夏糜子区。遗传结构分析将96份试材划分为4个类群,分别代表黄土高原、华北、东北和北方基因库。UPGMA聚类分析和遗传结构分析结果基本一致,均与地理起源相关。【结论】在糜子中构建了85个四、五和六碱基重复微卫星标记,这些高基元SSR的引物分辨率(Rp)高,对不同基因型分辨能力强,PCR扩增多态性好;用其评估中国糜子资源的遗传差异发现,黄土高原春夏糜子区和北方春糜子区资源遗传多样性最丰富。  相似文献   

3.
基于SSR的中国糜子遗传多样性分析   总被引:2,自引:0,他引:2  
以40份来自中国的糜子种质资源为材料,利用5对糜子特异性SSR引物研究上述试材的遗传多样性,以期为糜子育种提供一定的理论数据。结果表明,40份试材中共检测出14个等位基因位点,每对引物的等位位点数在2~5之间,平均为3.5。PIC值在0.42~0.69之间,平均为0.52。相似性系数分析表明,遗传相似系数在0.61~0.99之间,平均为0.8;聚类分析结果发现,在相似系数0.68处将40个品种分为5大类群,第一类群共12个品种,属于北方春糜子区;第二类群共7个品种,属于西北春夏糜子区;第三类群共16个品种,大多属于华北夏糜子区;第四类群的4个品种来自不同的生态区,包括东北春糜子区、北方春糜子区、黄北高原春夏糜子区和华北夏糜子区;第五类群只有来自山东的1个品种,来源于华北夏糜子生态区。该结果可为中国糜子的分类以及育种提供参考依据。  相似文献   

4.
基于SSR标记的太湖流域粳稻地方品种遗传多样性研究   总被引:13,自引:1,他引:13  
【目的】评价太湖流域粳稻地方品种的遗传多样性。【方法】利用58对SSR引物,对基于主要农艺性状构建的太湖流域粳稻地方品种核心种质库的122个品种进行DNA水平的多态性分析,并与15个现代育成品种做比较。【结果】(1)地方品种群体中53个SSR位点共检测到216个等位片段,每个多态性位点等位片段数的变化范围为2~7个,平均为4.08个;71.7%的SSR位点具有3个以上等位片段;53个位点PIC值的变化范围为0.031~0.773,平均为0.413;Nei’s基因多样性指数He为0.378;品种间遗传距离平均为0.419;12条染色体中,第5染色体平均等位片段数最多,第11染色体平均PIC值最大。(2)现代育成品种群体检测到的等位片段数、位点PIC值、Nei’s基因多样性指数和品种间遗传距离均比地方品种群体相应值小,地方品种的遗传多样性大于现代育成品种。(3)聚类分析显示,在遗传相似系数0.63处,地方品种和现代育成品种可以明确区分开来。【结论】太湖流域粳稻地方品种具有丰富的遗传多样性,且与现代育成品种有较大的遗传差异,可用以拓宽育成品种的遗传基础。  相似文献   

5.
粳稻种质资源SSR指纹图谱构建及遗传多样性分析   总被引:2,自引:0,他引:2  
【目的】构建新疆粳稻种质资源的DNA指纹图谱,了解新疆粳稻育成品种的遗传相似性。【方法】利用均匀分布于水稻12条染色体的70对SSR引物,以新疆粳稻育成品种及引进资源为材料,进行遗传多样性分析并构建SSR指纹图谱。【结果】有63对引物具有多态性片段,共检测到388个有效等位基因,平对每对引物6.1587个等位基因;引物平均多态性频率为0.2371。89个材料间的遗传相似系数在0.72~0.88,相似性较高,以0.73为标准,可分为5大群。【结论】新疆粳稻育成品种的遗传背景相似性较高、多样性不够丰富,遗传基础相对比较狭窄,加强新的基因资源鉴定利用及育种材料创制。  相似文献   

6.
糜子骨干种质遗传多样性和遗传结构分析   总被引:3,自引:5,他引:3  
【目的】糜子生育期短、耐干旱、耐瘠薄、水分利用效率高,了解糜子资源的遗传多样性和遗传结构,为今后糜子杂交育种、种质创新、挖掘抗旱基因及资源的高效利用提供理论依据。【方法】采用表型鉴定和SSR分子标记对糜子资源进行遗传多样性检测。利用模糊隶属函数法分析糜子种质的株高、主穗长、叶片长、叶片宽、主茎节数、主茎粗、单株穗重、单株粒重和千粒重9个表型性状的分布情况。利用DPS7.05软件进行表型性状的遗传多样性分析、相关性分析和主成分分析,综合评价糜子种质资源的优劣。利用CTAB法提取糜子嫩叶基因组DNA,并利用SSR分子标记技术对不同地区的96份糜子种质资源的基因组DNA进行PCR扩增,后经8%聚丙烯酰胺凝胶电泳分离,银染后显色。利用PowerMaker 3.25软件计算每对引物的等位基因数(A)、主要等位基因频率(M)、基因多样性指数(He)和多态性信息含量指数(PIC),并进行N-J遗传距离的统计分析;利用Structure 2.3.1分析群体遗传结构。【结果】糜子表型遗传多样性分析表明:9个表型性状分布集中,且绝大部分呈极显著相关;单株粒重和单株穗重遗传变异最丰富,不同省份的资源在表型性状上表现出不同的遗传多样性,山西资源表型遗传多样性最丰富。采用主成分分析法和综合评价法表明,内糜1号的综合性状表现最差,宁糜15号的综合性状表现最好。采用19对SSR引物对96份糜子种质资源进行遗传多样性分析,共检测出112个等位变异;每个位点的等位变异数为3-9个,平均5.9个;平均主要等位基因频率为0.7045;平均基因多样性指数为0.4097;平均多态性信息含量位点百分数为39.2%。不同地理来源糜子种质资源的遗传多样性分析表明,各省份间糜子资源的亲缘关系均较近;山西省资源的基因多样性指数及多态性信息含量百分数最高,分别为0.357和33.01%。基于模型的遗传结构分析和基于遗传距离的聚类分析将试验材料划分为3个类群,两种分类结果有一定相似性,皆与生态环境密切相关。【结论】糜子遗传变异较为丰富,遗传多样性高,尤其是山西糜子资源的遗传多样性最丰富;不同地理来源的糜子种质资源亲缘关系均较近,且其遗传多样性与生态环境密切相关。  相似文献   

7.
野生狗牙根种质资源SRAP与SSR的遗传多样性   总被引:2,自引:0,他引:2  
凌瑶  张新全  陈仕勇  刘伟  马啸 《中国农业科学》2012,45(10):2040-2051
【目的】为指导种质资源的引进和利用及选育优质狗牙根新品种提供科学依据。【方法】采用SRAP和SSR两种分子标记方法相结合,对52份野生狗牙根材料进行遗传多样性分析。【结果】①利用4个表型差异显著的野生狗牙根对SRAP的150对引物组合及SSR的200对引物组合进行扩增,分别筛选出有效引物组合各18对,SRAP和SSR扩增总条带分别为236和346条,多态性条带206和255条,平均每对引物扩增出多态性条带各11.4和14.17条,多态性位点百分率分别为87.29%和73.70%;②两种标记结合进行聚类分析,当GS=0.68时,可将所有供试材料分成5个组群;当GS=0.78时,可将第V个组群分成6个小组,大部分来自相同或相似生态地理环境的材料聚为一类;③基于聚类分析,可将供试材料分为8个生态地理类群,据各类群间的Nei氏遗传一致度和遗传距离的无偏估计值表明,生态地理环境相似的地理类群遗传距离较小;④SRAP和SSR标记之间具有显著的相关性,且相关性较高。【结论】野生狗牙根有丰富的遗传多样性,其聚类和生态地理环境有一定的相关性。  相似文献   

8.
【目的】分析我国不同省(区)的薄皮甜瓜种质资源遗传多样性,为今后薄皮甜瓜的种质资源收集及遗传改良和高效利用提供理论依据。【方法】以来自我国不同省(区)的133份薄皮甜瓜种质为材料,从98对SSR引物中筛选得到12对多态性较高的引物,利用TP-M13-SSR分子标记技术对133份薄皮甜瓜种质材料进行遗传多样性分析,并根据Nei’s遗传距离(D)进行聚类分析,以Structure软件的混合模型聚类法分析其群体遗传结构。【结果】利用12对引物从133份薄皮甜瓜种质材料中共扩增出的等位基因数(Na)为54个,平均每对引物4.5个,有效等位基因数(Ne)为1.120~2.234,平均为1.533;观测杂合度(Ho)为0.023~0.466,平均为0.217;期望杂合度(He)为0.107~0.552,平均为0.319,香农信息指数(I)范围为0.267~1.237,平均为0.642;各位点的多态性信息含量(PIC)为0.104~0.531,平均为0.295,大多数位点表现为中度多态性。聚类分析结果显示,133份薄皮甜瓜种质材料被分为两大类群,第Ⅰ类群为4份厚薄皮甜瓜材料,第Ⅱ类群为129份薄皮甜瓜材料。群体遗传结构分析结果显示,当K=4时,△K出现明显的峰值,说明133份薄皮甜瓜种质材料分为4个组群较合适;133份材料中大部分材料的Q值大于0.6。【结论】供试的12对SSR引物表现为中度多态性,需要用更多的分子标记才能有效鉴别薄皮甜瓜材料。133份薄皮甜瓜种质材料遗传结构较为单一,遗传多样性较低,可能存在同物异名的材料,今后应加强对遗传背景差异大、亲缘关系远的种质资源的发掘利用。  相似文献   

9.
7个来源地区山荆子的遗传多样性与群体结构分析   总被引:2,自引:1,他引:1  
【目的】利用荧光SSR分子标记,对新收集的7个来源地区的山荆子种质资源进行遗传多样性和群体结构分析,明确群体内和群体间的遗传多样性和结构,为苹果属植物种质资源的收集保存和种的遗传进化研究提供依据。【方法】筛选19对多态性好的SSR引物检测7个来源地区山荆子的多态性,利用GenAlEx 6.501计算遗传多样性指标、分析群体间的分子变异(AMOVA),利用GenepopV4和Fstat293分析群体间的遗传分化,基于Nei遗传距离DA,利用POPULATION 1.2构建269份材料的Neighbour-Joining(NJ)进化树,使用STRUCTURE2.3.4进行贝叶斯聚类并分析群体的遗传结构。【结果】19对SSR引物共检测出392个多态性等位基因,平均等位基因数20.6,平均有效等位基因数9.070,观察杂合度和期望杂合度的平均值分别为0.628和0.855,香农多样性指数为2.392。按照来源地区划分群体,以黑龙江群体的观测等位基因数最多为15.684,俄罗斯群体的遗传多样性最低,河北群体的遗传多样性最高。两两群体间遗传分化系数Fst为0.019—0.111,河北与多个地域的群体基因交流频繁,甘肃群体是7个群体中最为稳定的,群体间的遗传分化和基因交流与地理位置远近不完全相关。基于Nei遗传距离的聚类分析在遗传距离0.7444处将269份材料可以分成7个类群,多数类群与地理位置不相关。其中类群Ⅰ和Ⅱ与其他类群遗传距离较远,类群Ⅱ和Ⅲ的聚类比较混杂,类群Ⅵ的材料来源最为复杂,类群Ⅳ和Ⅴ相对比较单纯,类群Ⅶ中99%为黑龙江山荆子。群体结构分析将269份材料划分成了3个类群,具有3个可能的基因来源,不同来源地的材料在各群体中均有分布,与地理位置没有十分明确的相关性。只有黑龙江、山西和甘肃群体以及部分俄罗斯和河北材料的类群归属相对单一,与聚类有相似的结果。269份材料中Q≥0.6有232份,大部分山荆子的血缘相对单一。【结论】19对SSR引物具有高度的多态性,可以作为有效的标记用于山荆子群体遗传多样性和遗传结构评价。7个来源地区山荆子遗传多样性均较高,以河北地区的遗传多样性最高,遗传变异和分化主要发生在群体内和个体内部;群体间有基因交流,以河北与其他地区的交流最频繁;抵制基因漂变而导致的群体间的遗传分化,群体间的遗传分化程度和基因交流水平与地理位置远近不完全相关。  相似文献   

10.
高帆  张宗文  吴斌 《中国农业科学》2012,45(6):1042-1053
【目的】从分子水平优化并构建用于中国苦荞种质资源遗传多样性分析的SSR分子标记体系,为综合评价中国苦荞种质资源提供依据。【方法】以50份苦荞种质为试验材料,用正交设计法[L16(45)]筛选适用于苦荞SSR标记分析的PCR反应体系,浓度梯度检测最佳胶分离效果,并从250对不同科属作物SSR引物中筛选出19对引物进行苦荞遗传多样性分析。【结果】优化的苦荞SSR反应体系为DNA模板30 ng,Taq酶2.0 U•L-1,dNTP、引物和Mg2+终浓度分别为150 μmol•L-1、0.1 μmol•L-1、2.0 mmol•L-1,总体积为25 μL,6%聚丙烯酰胺凝胶电泳检测。SSR引物筛选率为7.6%,蓼科同属甜荞的SSR引物适用于苦荞SSR扩增。19对引物共检测到157个等位变异,每对SSR引物检测到的等位变异2-11个,平均等位变异(NA)7.42个,平均多态性信息量(PIC)0.888,平均鉴定力(DP)5.684,2对为SSR骨干引物。利用Popgen Ver.1.31软件,当遗传相似度(GS)为0.578时,50份苦荞材料被分为5个组群,聚类结果与苦荞地理分布相关性不大。四川苦荞资源组群各遗传多样性参数均最高,该区域苦荞种质资源多样性最丰富。利用骨干引物可鉴定部分近缘苦荞品种。【结论】构建的SSR分子标记体系适用于中国苦荞种质资源遗传多样性分析,甜荞SSR引物可用于苦荞SSR标记分析,TBP5和Fes2695为苦荞SSR骨干引物,50份苦荞材料遗传多样性丰富,可划分为5个组群。  相似文献   

11.
基于SSR标记的黍稷种质资源遗传多样性及亲缘关系研究   总被引:7,自引:4,他引:3  
【目的】利用SSR标记,分析黍稷种质资源(野生材料和地方品种)的遗传多样性水平,揭示不同来源黍稷种质资源的亲缘关系和遗传群体结构差异,为黍稷起源进化研究奠定基础。【方法】用6份地理差异显著的黍稷种质资源对137对小宗作物课题组开发的具有多态性的SSR引物进行初步筛选,最终筛选103对条带清晰、扩增良好且多态性稳定的SSR引物,利用这103对多态性SSR标记对146份黍稷材料进行PCR扩增,通过遗传参数、聚类、遗传结构等分析,评估不同个体间及不同群体间的遗传多样性,探讨遗传结构差异。【结果】103对SSR标记共检测出308个等位基因(Na),平均值为2.99,平均Shannon-Weaver指数(I)为0.8478,平均期望杂合度为0.3642,平均多态性信息含量指数(PIC)为0.5544。103对SSR标记的分布区间为0-1、1-2、2-3、3-4和4-5,分辨率范围为0.334-4.002,77.67%的标记分布于区间1-4,具有适度分辨力。国内资源的观测等位基因数(2.9126)、多样性指数(0.8302)、期望杂合度(0.5023)、多态性信息含量指数(0.5278)均高于国外资源,遗传多样性更丰富。12个群体的遗传距离的变化范围为0.0783-0.5762,均值为0.2938;遗传一致度变化范围为0.5620-0.9247,均值为0.75,遗传相似性与地理分布具有一定相关性,地理分布越近,遗传距离越小,遗传一致度越高。聚类分析在遗传距离为0.15处可以把12个群体分为4个组群,其中南美洲和山西资源各自独立分为一支,与其他资源亲缘关系较远。个体间聚类中,国内外资源划分非常显著,在遗传距离为0.63处,146份黍稷资源可分为3大组群,组群Ⅰ和组群Ⅱ为国外资源,组群Ⅲ为国内资源。组群Ⅱ在遗传距离为0.39处又分为3个亚群,组群Ⅲ在遗传距离为0.45处分为5个亚群,其中亚洲与欧洲资源、中国河北与中国山西、中国内蒙古资源的遗传关系较近。遗传结构分析结果显示国内外群体间存在明显的遗传分化,其中5个组群(组群2、组群5、组群6、组群7和组群9)为国内野生资源特有基因型,分布较为分散;2个组群(组群1和组群4)为国外资源特有基因型,分布较为集中。中国宁夏、南美洲资源的群体结构趋向单一化,中国河北、中国黑龙江、亚洲资源的群体结构趋向多元化。UPGMA聚类结果与遗传结构分析结果一致,且不同地区黍稷资源群体间遗传关系远近均与其地理分布相关。【结论】野生资源的遗传多样性高于国外资源,其中中国河北群体的遗传多样性最丰富,中国河北可能是黍稷的起源中心。  相似文献   

12.
【目的】从分子水平研究国内外黍稷种质资源的遗传多样性差异,为黍稷种质资源的研究、保护和利用提供依据。【方法】用不同地理来源且性状差异显著的6份黍稷种质资源对来自高通量测序技术开发的黍稷基因组SSR引物进行筛选,从而获得条带清晰,稳定性好的63对SSR黍稷基因组引物,利用这63对SSR多态性引物对来自国内外的192份黍稷地方品种和野生种质进行遗传多样性分析。统计各试材在同一引物中的条带情况,并以此来分析试材的遗传多样性与所在群体间的亲缘关系。【结果】63对SSR引物共检测出161个等位变异位点,平均每个SSR位点2.56个;平均Shannon-Weaver指数(I)为0.6275,平均基因多样度(Nei)为0.3874,平均PIC值为0.4855。10个不同地理来源群体间表现出显著的遗传多样性差异,各群体的有效等位变异变化范围较窄,最小的是南方群体,为1.2407±0.4315;最大的是内蒙古高原群体,为1.8846±0.4892。国内群体Shannon-Weaver指数为内蒙古高原东北地区黄土高原西北地区南方地区,而国外Shannon-Weaver指数排序依次为前苏联欧洲蒙古印度美国。从Nei’s基因杂合度分析,观察杂合度(Ho)最小的是印度群体,为0.2372±0.2962,最大的是内蒙古高原群体,为0.3966±0.3250。期望杂合度(He)最小的是美国群体,为0.3114±0.2203;最大的是内蒙古高原群体,为0.4622±0.1862。从国外种、国内栽培种和国内野生种3个大群体来看,野生种质资源有效等位基因数(1.9285±0.5101)、Shannon-Weaver指数(0.6948±0.2852)、Nei基因多样性指数(0.4373±0.1773)远大于国外种和国内栽培种。而对国内外两大群体而言,国内资源的有效等位基因数(1.8145±0.4519)、Shannon-Weaver指数(0.6657±0.2413)和Nei基因多样性指数(0.412±0.1574)均大于国外资源(1.6862±0.4527、0.5897±0.2469、0.3652±0.1655)。UPGMA聚类分析结果显示,10个地理群聚为三大类,内蒙古高原地区、黄土高原地区、东北地区、西北地区、蒙古地区聚为一类,前苏联、美国、印度、欧洲地区聚为一类,南方地区单独聚为一类。其中,来自东北黑龙江齐齐哈尔的泰来小野糜(34号)在截距0.37处被独立分为一支,来自甘肃的野黍子(19号)在截距0.34处被分为独立个体,表明这两个材料与其他材料遗传差异较大。但从整体遗传多样性上来看192份材料国内外群体遗传分化不明显,群体间的亲缘关系较近,且不同群体间材料存在着互相渗透。【结论】内蒙地区、东北地区、黄土高原地区种质资源遗传多样性最丰富,是遗传关系最为复杂的地区,进一步印证了中国是黍稷起源的中心。  相似文献   

13.
河北省花生地方品种基于SSR标记的遗传多样性   总被引:7,自引:1,他引:6  
 【目的】揭示河北省花生地方品种的遗传多样性,为花生育种提供理论依据。【方法】利用20对SSR引物对75个河北省不同植物类型花生地方品种遗传多样性进行分析。【结果】共检测到65个等位基因,每个位点的等位基因变幅为2~6个,平均3.25个;平均Shannon信息指数为0.5448,变幅为0.1680(7G02)~1.3617(PM15);平均Nei基因多样性指数为0.6458,变幅为0.3385(7G02)~0.9013(PM384);普通型花生地方品种的遗传多样性明显大于多粒型和珍珠豆型。采用类平均法对欧氏距离进行聚类,可以将各地方品种分为两大类,第Ⅰ类群为珍珠豆型和多粒型花生地方品种,第Ⅱ类群为普通型花生地方品种,品种间的亲缘关系与地理来源关系不大。【结论】SSR检测结果表明,河北省花生地方品种的多样性程度较高。  相似文献   

14.
为了评价新疆小麦地方品种的遗传多样性,利用42对SSR引物对75份新疆小麦地方品种进行遗传多样性分析。结果表明:在75份地方品种中42个SSR位点共检测到317个等位变异,等位变异变化范围为2~15个,平均7.55个;多态性信息指数(PIC值)变化范围为0.169~0.905,平均0.696。基因组的平均等位变异是D>B>A,遗传多样性指数为B>D>A。聚类分析表明75份供试新疆小麦材料可划分为3大类8亚类,聚类结果与材料的生态型密切相关,冬小麦地方品种和春小麦地方品种分别归属不同的类或亚类,春小麦地方品种的遗传多样性高于冬小麦地方品种,同时也反映了一定的地域特性。总之,新疆小麦地方品种具有丰富的遗传多样性,可用以拓宽育成品种的遗传基础。  相似文献   

15.
【目的】了解中国大麦地方品种的遗传多样性,为大麦α-淀粉酶活性基因寻找有效的分子标记。【方法】利用覆盖全基因组的41对简单重复序列(SSR)标记引物,对257份中国大麦地方品种进行PCR扩增;采用Nei’s遗传距离和邻接(neighbour-joining)法进行聚类分析;在对群体结构和连锁不平衡分析的基础上,进行基于全基因组的表型与基因型的关联分析。【结果】共鉴定出709个等位变异,平均每个位点的等位变异数为17个。41个SSR标记位点的多态性信息指数(PI)变化范围为0.23(Bmag 0385)—0.94(Bmac0032),平均为0.6385。257个中国大麦地方品种聚合成9个不同的结构类群,发现5个与大麦α-淀粉酶活性显著关联的标记位点。【结论】中国大麦地方品种中蕴藏着丰富的遗传等位变异;各类群的特性和品种来源符合“遗传关系密切、表型特征特性相同、地理生态相近”的同类群聚集规律。在5个关联位点中,位于7H染色体上的Bmag0385位点,其等位变异A215的酶活增强效应最大;此外,7H上Bmac0273的等位变异A141的增效作用较大,可用于啤酒大麦育种的分子标记辅助选择。  相似文献   

16.
苹果部分种质资源分子身份证的构建   总被引:2,自引:0,他引:2  
【目的】以国家果树种质兴城梨、苹果圃保存的131份苹果地方品种、育成品种及其野生近缘种为试材,利用TP-M13-SSR标记构建苹果种质分子身份证。【方法】基于TP-M13-SSR指纹图谱,筛选可以将苹果种质区分的引物组合,并对其等位基因进行编码建立种质分子身份证。【结果】(1)从131份材料中随机选取两份材料,对第一次PCR条件进行优化和引物筛选,从32对合成引物中筛选出16对稳定性高和重复性好的TP-M13-SSR引物用于131份苹果属植物指纹图谱构建。(2)16对SSR引物在供试种质间共检测出等位基因326个,每对引物平均检测到等位基因数为20.3个。CH05d04对种质扩增的等位基因数最多为49个,位点期望杂合度最高为0.878;其次是CH01f07a为48个。利用PopGen32软件计算引物的多态性信息含量,16对引物的平均多态性信息含量为0.7558。16对SSR引物可区分供试苹果种质资源数量从11份到71份不等,平均每对SSR引物可区分49份苹果种质,区分率为8.09%-52.21%。其中对苹果种质区分率最高的是CH01f07a,最低的为BGT23b。(3)根据引物扩增的多态性信息含量和对苹果种质的区分率,将两者均较高的引物CH05d04、CH01f07a、CH03d07、CH04e03、CH04h02和CH04g07两两组合,CH04h02和CH01f07a引物组合分辨率最高,可以区分120份苹果种质。继续增加组合中引物数量,在增加到3对引物时,即可将全部苹果种质区分开来。(4)把可以将全部供试苹果种质资源材料全部区分的3对核心引物CH04h02、CH05d04和CH01f07a获得等位基因按照从大到小的顺序排列,并用阿拉伯数字从01开始赋值;将每份材料在3个位点获得的等位基因按照赋值数字编码获得每份供试材料独有的字符串,利用条码技术将每对引物的分子身份证转化成可被机器快速扫描的条码分子身份证。【结论】依据引物扩增的多态性信息含量和对苹果种质的区分率,筛选核心引物组合,区分全部供试苹果地方品种、育成品种及其野生近缘种质资源,并基于指纹图谱构建其可被机器快速识别的分子身份证,使每份种质具有可辨的分子身份证,达到利用最少、最特异引物区分最多苹果种质的目的。  相似文献   

17.
基于PCR技术的谷子分子标记遗传图谱构建   总被引:1,自引:0,他引:1  
【目的】构建一张基于PCR技术的谷子分子标记遗传图谱。【方法】以谷子高146A和K103杂交自交F2分离群体为作图群体,以分布于谷子9条染色体上的81个SSR标记为主要参考标记,采用来自谷子、水稻、珍珠粟和高羊茅的SSR、STS、SNP、SV和ACGM标记共1 733个,在亲本间筛选多态性标记,并进一步在F2群体间进行验证,利用MAPMAKER VERSION 3.0软件进行连锁分析,采用MapDraw V2软件绘制遗传连锁图谱。【结果】构建了一张包含192个不同类型分子标记的谷子遗传图谱,新定位标记33个,其中32个来自谷子,另1个来自珍珠粟。遗传图谱包含9个连锁群,覆盖基因组全长2 082.5 cM,连锁群长度介于119.5-475.2 cM,平均长度231.39 cM,标记间平均距离10.85 cM,每个连锁群上的标记数介于10-37个。部分连锁群上标记存在偏分离现象,在定位的192个标记中,共有36个标记发生偏分离,占图谱总标记的18.75%,其中,在LG2、LG6和LG7上分别聚集分布了10、15和7个偏分离标记,出现了偏分离热点区域,而在LG1、LG4、LG5和LG8上仅有零星分布,LG3和LG9上则没有偏分离标记。对来自不同作物的分子标记在谷子上的可转移性分析发现,来自谷子的1 235个PCR标记中有205个标记在双亲及其F2群体间有多态性,多态率为16.60%,而来自珍珠粟、高羊茅和水稻的498个PCR标记,在该群体上仅发现1个多态性标记。【结论】利用不同物种中的分子标记构建了一张覆盖基因组长度为2 082.5 cM的谷子遗传连锁图谱,其分子标记主要来自于谷子。  相似文献   

18.
【目的】评价中国栽培大豆微核心种质的群体结构和遗传多样性水平,为拓宽大豆遗传基础、发掘优异基因、改良大豆品种提供理论依据。【方法】利用大豆20个连锁群上的100个SSR位点,对来自全国28个省补充完善的248份栽培大豆微核心种质进行SSR遗传多样性及群体结构分析;采用PowerMarker Version 3.25软件统计等位变异数、平均等位变异数、多态性信息量(PIC值)及亚群特有等位变异数等参数;基于遗传距离建立了栽培大豆微核心种质的无根Neighbor-Joining树;用Structure2.2软件对微核心种质的群体结构进行评价。【结果】100个SSR位点在248份材料中共检测出等位变异1460个,每个位点变异范围为2—33个,平均为14.6个,每个位点PIC值变异范围为0.158—0.932,平均为0.743。基于模型的群体结构分析显示,依据LnP(D)无法判断最佳K值(群组数),但通过计算系数ΔK发现,K=3为微核心种质的最佳群体结构。结合种质的生态类型及品种类型分析发现,地理来源相同的种质具有聚在一起的倾向,但来源相同的种质也有分在不同组的情况。不同生态类型及品种类型间均存在较多的互补等位变异和特有等位变异。【结论】中国栽培大豆微核心种质具有丰富的遗传多样性,可以用来拓宽大豆品种遗传基础;不同生态类型及品种类型间存在较多的互补及特有等位变异,是种质创新及品种改良的物质基础;栽培大豆微核心种质存在明显的群体结构,为微核心种质在育种中的直接或间接利用提供了理论依据。  相似文献   

19.
【目的】利用SSR荧光标记毛细管电泳技术对取自国家果树种质南京桃资源圃的79份种质进行基因分型和遗传多样性分析,筛选出多态性高的引物可用于桃品种间鉴定、亲缘关系分析,并用于分子标记辅助选种体系建立。【方法】对母本‘中油4号’进行从头测序,以物理距离1 Mb为单位在全基因组范围内开发SSR标记。以79个桃品种为材料进行PCR扩增,扩增产物经聚丙烯酰胺凝胶电泳检测后筛选目标条带清晰且多态性丰富的标记。对筛选出的标记进行5′端荧光修饰,PCR产物在ABI3730XL测序仪测序,实现对标记的复筛。利用Genemapper 4.0软件对测序结果进行统计,Data Formater 2.1软件将统计得到的bp数据转换成Power Marker v3.25软件所需要的数据格式。对筛选出的引物进行多态性分析,选择多态信息含量(PIC)大于0.45的荧光SSR引物作为79份种质材料的核心引物。以Nei’s为参数,利用NTSYSpc 2.1软件中的UPDM聚类方法分析品种间的遗传多样性。利用基于贝叶斯模型的Structure v2.3.4软件解析79份种质的居群遗传结构。【结果】基于79份种质,利用聚丙烯酰胺凝胶电泳对覆盖全基因的SSR标记进行初筛,共筛选出207对多态性良好的引物;利用SSR荧光标记毛细管电泳技术对207对引物进行复筛,最终筛选出26对核心引物,利用其中5对核心引物可将79份品种完全区分开。26对SSR核心引物在79份桃种质中共扩增出174种多态性基因型,每对引物扩增出的基因型为4—13种,平均每对引物扩增出6.69个基因型,每对引物的多态信息含量PIC在0.45以上。基于207对SSR引物在79份种质中扩增出的位点信息,构建了79份种质的遗传关系图谱和居群遗传结构图。207对引物从遗传距离上将79份种质划分为7组,从居群结构上分为2组。79份品种遗传多样性较高,部分品种聚类结果与系谱图相符。【结论】构建了79份材料的聚类分析图和居群遗传结构图,在一定程度上揭示了79份材料的亲缘关系。由于桃复杂的遗传背景,不能依据单一特性对品种间亲缘关系进行判定。本研究筛选出的26对核心引物可用于全基因组范围内连锁性状的鉴定、桃种质资源鉴定、新品种鉴定及保护、分子标记辅助育种体系构建。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号