首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Field surveys and experiment analyses were applied to detect the relationships between plant diversity, community biomass and soil resources at different degradation successional stages in the headwater region of three rivers in an alpine meadow. The chronosequence approach (space‐for‐time substitution) is a viable tool for obtaining integrated information within successional studies. The experimental plots were located in the Guoluo area, which is part of the source region for the Yangtze and Yellow Rivers. The results showed not only that the quantities of roots and soil that are ‘carriers’ for cultivating soil roots were altered not only by disturbance (including overgrazing) and environmental factors but also that the proportion of the rhizome to soil at the 0–10 cm soil layer was enhanced by disturbance in heavy degradation. The plant community composition changed, and the number of plant species and the proportions of fine forage decreased. Moreover, soil fertility levels decreased remarkably, and the soil was degenerated. Plant community biomass levels at different degradation successional stages affected the soil microbial biomass carbon, soil organic carbon and also affected soil fertility conditions. Soil organic carbon and soil total nitrogen declined with grassland degeneration, and the distribution of soil organic carbon was influenced greatly. The alpine species Kobresia pygmaea was at different degradation successional stages, and the plant community biomass was significantly related to soil nutrients. In the positive successional series, the composition of plant functional groups became complex gradually, plant species richness was gradually enhanced, and the change in the composition of each plant functional group also reflected the restoration degree plant community structure. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Intensive agriculture has resulted in the loss of biodiversity and the specialist flora and fauna associated with the semi-natural grasslands of low-intensity pastoral systems throughout northwest Europe. Techniques employed to restore and re-create these grasslands on agricultural land in the UK are reviewed. Extensive cutting and grazing management have been shown to diversify improved swards and facilitate re-colonisation on ex-arable soils, although rates of re-assembly of plant communities with affinity to existing semi-natural grasslands have generally been slow. On former agriculturally improved swards, nutrient depletion has accelerated this process, especially where “gaps” for establishment have been created. Similarly, on ex-arable soils “nutrient stripping” and sowing with diverse seed mixtures has led to the rapid development of species-rich swards. On free draining brown earths such an approach may be required to restore grassland communities where soil phosphorous concentrations exceed semi-natural levels by more than 10 mg/l (using Olsen's bicarbonate extractant). However, the appropriateness of this threshold for other soil types requires further sampling. Although restored grasslands are likely to contribute to national biodiversity targets success will ultimately depend on the reinstatement of the communities and ecological functions of semi-natural references. Although this is technically feasible for a few plant assemblages, less is known about the re-assembly of microbial and faunal communities, or the importance of trophic interactions during grassland succession. As a consequence, more research is required on the functional attributes of semi-natural grasslands, as well as the methods required to restore localised types, novel nutrient depletion techniques, the “phased” introduction of desirable but poor-performing species and the performance of different genotypes during grassland restoration.  相似文献   

3.
[目的]分析植被恢复过程中土壤养分的变化规律,认识和评价植被生态系统功能恢复,促进植被演替和加快生态恢复的人工调控。[方法]通过对宁夏南部山区彭阳县中庄示范区天然草地(封山禁牧)、农耕地(退耕)、人工苜蓿(退耕还林草)3种生态恢复模式进行调查,研究分析不同生态恢复模式对土壤养分的影响。[结果]宁夏黄土丘陵区不同生态恢复模式效果依次为:天然草地农耕地人工苜蓿。随着土层深度的增加,土壤养分含量均呈现降低的趋势。随着植被恢复年限的延伸,土壤养分会逐渐累积而增加。不同恢复年限苜蓿地土壤肥力指数小于农耕地,土壤肥力贫瘠,且随苜蓿种植时间的延长,呈现先增大,再减小的趋势。[结论]在宁夏黄土丘陵区进行植被恢复,能明显提高土壤养分含量,改善土壤肥力状况,但旱作苜蓿粗放经营(只刈割,不培肥),导致土壤综合肥力指数日趋下降。  相似文献   

4.
Straw incorporation is generally considered an effective agricultural management practice that improves nutrient cycling and maintains soil fertility. To study the interactive effects of straw returning factors on soil organic carbon and available nutrients, a17-month(May 6, 2016 to October 6, 2017) experiment was conducted on straw incorporation by using response surface methodology under a three-factor(straw length, amount, and burying depth), five-level quadratic orthogonal rotation experimental design. Weight was assigned to each indicator for soil carbon and nutrients and then a comprehensive indicator was established. Then, a second-order polynomial model of the three straw returning factors was established using response surface methodology. Results indicated that17 months after straw incorporation, straw amount and burying depth had significant effects on the comprehensive indicator of soil carbon and nutrients. Straw length and the interactions of straw amount and burying depth showed no significant effects on the comprehensive indicator of soil carbon and nutrients. It was concluded that 17 months after straw incorporation, the highest value of the comprehensive indicator of soil carbon and nutrients was achieved when the straw length, amount, and burying depth were approximately 17–20 cm, 740–840 g m~(-2), and 9–13 cm, respectively, which can be recommended as the most suitable parameters for use in straw returning in the study area.  相似文献   

5.
[目的]丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)有利于作物对养分的吸收.在镉、铅污染的土壤中,作物常将镉、铅积累在秸秆中,随着秸秆的还田而释放回土壤.探究前茬蚕豆秸秆还田和丛枝菌根真菌单施或联合施用对土壤肥力、后茬玉米的矿质养分与镉、铅吸收的影响,为AMF在调控污染农田轮作体系矿...  相似文献   

6.
The use of biochar as a soil amendment is gaining interest to mitigate climate change and improve soil fertility and crop productivity. However, studies to date show a great variability in the results depending on raw materials and pyrolysis conditions, soil characteristics, and plant species. In this study, we evaluated the effects of biochars produced from five agricultural and forestry wastes on the properties of an organic‐C‐poor, slightly acidic, and loamy sand soil and on sunflower (Helianthus annuus L.) growth. The addition of biochar, especially at high application rates, decreased soil bulk density and increased soil field capacity, which should impact positively on plant growth and water economy. Furthermore, biochar addition to soil increased dissolved organic C (wheat‐straw and olive‐tree‐pruning biochars), available P (wheat‐straw biochar), and seed germination, and decreased soil nitrate concentration in all cases. The effects of biochar addition on plant dry biomass were greatly dependent upon the biochar‐application rate and biochar type, mainly associated to its nutrient content due to the low fertility of the soil used. As a result, the addition of ash‐rich biochars (produced from wheat straw and olive‐tree pruning) increased total plant dry biomass. On the other hand, the addition of biochar increased the leaf biomass allocation and decreased the stem biomass allocation. Therefore, biochar can improve soil properties and increase crop production with a consequent benefit to agriculture. However, the use of biochar as an amendment to agricultural soils should take into account its high heterogeneity, particularly in terms of nutrient availability.  相似文献   

7.
Upland soils in the Amazon basin are often highly weathered and therefore possess low plant-available nutrient contents. Soil fertility is principally maintained by geochemical, biochemical, and biogeochemical processes. Within these processes, the soil microbial biomass is responsible for many of the cycles and transformations of nutrients in soils. The aim of this work was to evaluate the changes in soil fertility, in the form of nitrogen (N) and microbial activity, as indicators of the dynamic of carbon (C) with two extractants [irradiation extraction (IE) and IRGA methods], N, and phosphorus (P) in an upland soil area containing a dystrophic Yellow Latosol (Xanthic Ferralsol) in the western Amazon (Brazil) with succession of two plant covers (citrus or pasture) and management. The study was carried out in two chronosequences: primary forest followed by citrus plantations and primary forest followed by pasture. The results showed that pasture has greater capacity to accumulate organic C and total N than either primary forest or citrus plantation. Removing forest to introduce pasture or citrus plantations influences the soil fertility and microbial biomass of C, N, and P in the soil. Under the edaphoclimatic conditions, the irradiation extraction and IRGA methods all proved efficient in determining the soil microbial C activity. In addition, regardless of the depth of soil, the predominant N form is ammonium (NH4 +).  相似文献   

8.
Differences in soil microbial communities between ex-arable and undisturbed soils are often assumed to reflect long-term legacies of agricultural practices. Ex-arable soils, however, are commonly dominated by different plant species than undisturbed soils making it difficult to separate the importance of land-use and plant-growth legacies. In a system where non-native plants dominate ex-arable soils, we decoupled land-use (ex-arable, undisturbed) and plant-growth (native, non-native) effects on soil microbial communities using a factorial sampling design. Soils were removed from 14 sites that formed a 52-year chronosequence of agricultural abandonment. Microbial abundance and composition were measured using whole-soil phospholipid fatty acid analyses and microbial activity was measured in a subset of samples using sole-carbon-source utilization analyses. We found that both non-native-cultivated and ex-arable soils were independently associated with lower microbial abundance and diversity than native and undisturbed soils. We also found a correlation between microbial abundance and age-since-agricultural abandonment in ex-arable/non-native-cultivated soils suggesting that non-native plant effects accumulate over time. Microbial activity was consistent with microbial abundance; microbial communities in non-native-cultivated, ex-arable soils were slow to respire most carbon sources. Our data suggests that agricultural practices create soil conditions that favor non-native plant growth and non-native plants maintain these conditions. Potential mechanisms explaining how non-natives create soils with small microbial communities and how small microbial communities may benefit non-natives are discussed.  相似文献   

9.
温室盆栽条件下比较了浙江慈溪不同利用年限水稻土(50至2000年)水稻生长与谷物产量的差异,以及无施肥条件下种植水稻对水稻土微生物生物量与转化酶、脲酶活性的影响。结果发现,利用年限较长水稻土上种植的水稻植株相对较高(p 0.10),水稻秸秆、根系及谷粒的生物量均随水稻土利用年限延长而显著增加(p 0.05);N、P、K等营养元素在植株不同部位的分异状况不同,其中秸秆的全P和全K含量均随水稻土利用年限延长而显著升高(p 0.05),而米粒的全N含量也趋于升高(p 0.10)。温室盆栽试验之后,水稻土的微生物生物量及酶活性与利用年限之间的关系规律和种植水稻之前基本一致,且整体上又趋于下降,即无施肥条件下种植水稻转化利用了土壤部分微生物生物量,并减弱了与碳氮转化相关酶的活性,对保持水稻土的营养水平造成不利影响。结果表明,水稻土的肥力质量历经两千年的长期稻作长盛不衰、粮食生产能力不减反增,而且是在作物有效养分可循环利用(如秸秆还田或外施肥料)的前提下实现持续利用的。  相似文献   

10.
[目的]以内蒙古四子王旗境内退化荒漠草原为研究区域,研究不同植被恢复模式对植物群落组成、土壤含水量、土壤侵蚀的影响,为退化草原水土流失治理和草原生态建设提供理论依据。[方法]针对退化草原特点、水土流失特征,分析不同植被恢复模式下植物群落特征、土壤水分、地表径流和侵蚀量的变化,运用主成分分析对不同植被恢复模式的水土保持生态效益进行评价。[结果]退化荒漠草原的3种植被恢复模式试验样地的植物种类组成、群落总盖度、地上生物量均高于放牧天然草地,"围栏封育+灌木条带+施肥复壮"、"围栏封育+松土补播+草种包衣"2种植被恢复模式的地上生物量与放牧天然草地之间变化差异达到显著水平(p0.05);3种植被恢复模式的实施有效控制了土壤侵蚀,径流量和土壤侵蚀量均低于天然草地。[结论]"围栏封育+松土补播+草种包衣"植被恢复模式在保持水土资源,增加群落稳定性等方面的生态效益最好。  相似文献   

11.
In a laboratory experiment, incorporation of paddy straw in soil immobilized native as well as added fertilizer N and about half of the immobilized N was mineralized after 90 days of straw incorporation. Straw and N application alone or in combination increased biomass carbon, phosphatase and respiratory activities of the soil. Microbial biomass carbon and phosphatase activity were maximum at 30 days of straw decomposition. In field trials, incorporation of paddy straw 3 weeks before sowing of wheat significantly increased the wheat yield at Sonepat district in a clay loam soil while no such beneficial effect was observed in a sandy loam soil at Hisar.  相似文献   

12.
草地沙化是青藏高原草地生态环境恶化的显著问题之一,为研究不同恢复措施对高寒沙化草地植被与土壤的影响,以沙化草地(DG)、人工草本恢复草地(AG)、人工灌丛恢复草地(AS)以及天然草地(NG)为研究对象,基于植被群落和土壤特征的变化及两者的相互关系,评价了不同人工植被恢复措施对高寒沙化草地22年的恢复效果。结果表明:(1) AG和AS分别使DG的地上生物量增加至109.21,1 293.21 g/m2,但2种恢复措施的草本地上生物量均显著低于NG,而AG的植被群落物种丰富度比AS显著低31.48%(p<0.05)。(2)与DG的0—10 cm表层土壤相比,AG的土壤孔隙度、含水量、总碳和总氮含量分别显著提高7.94%,67.95%,22.09%和257.14%,AS的这些指标也分别显著提高6.41%,43.00%,17.18%和242.86%;但2种恢复措施的土壤碳氮养分含量均显著低于NG (p<0.05)。(3) AS和AG的土壤有机碳矿化总累积量分别比DG显著提高133.39%和116.96%,但均显著低于NG,2种恢复措施间无显著差异(p>0.05)。可见,人工植被恢复措施显著促进沙化草地植被以及土壤恢复,但灌丛恢复更有利于提高植被物种丰富度,而草本恢复更有利于增加沙化草地土壤水分。  相似文献   

13.
【目的】本研究通过探讨小麦和玉米残体与其生物炭配施对土壤各组分有机碳及其自身有机碳矿化的影响,揭示其在土壤固碳和培肥方面的效应,为农田有机物资源合理利用提供理论支撑。【方法】采用室内恒温培养试验,共设置小麦或玉米残体(根茬、秸秆)和秸秆制成的生物炭单施(WS、WR、WB、MS、MR、MB),配施(WS+WB、WR+WB、MS+MB、MR+MB)以及对照(CK)构成的11个处理,培养期间测定土壤CO2释放量,培养结束后测定土壤总有机碳(TOC)、可溶性有机碳(DOC)、微生物量碳(MBC)、颗粒有机碳(POC)以及粗细颗粒有机碳含量(CPOC、FPOC)。【结果】添加玉米有机物料对土壤TOC、MBC、POC、CPOC和FPOC含量的增加作用普遍高于添加小麦有机物料。添加小麦或玉米秸秆对土壤TOC、POC、CPOC、FPOC含量的增加作用均高于添加根茬。单独添加生物炭,作物残体与生物炭配施和单独添加作物残体处理分别在培养的第4、8、21 d有机碳矿化速率最大,为有机碳矿化快速期,之后矿化速率减缓并逐渐趋于稳定。单独添加作物残体其有机碳累积矿化率最大,达到30%~46%;与对照相比,添加有机物料的各处理均显著增加了土壤TOC含量,其中添加生物炭处理土壤TOC含量增幅最大;单独添加小麦和玉米生物炭处理,土壤TOC含量分别显著增加34.4%和36.5%,但其有机碳累积矿化率仅为3%左右,土壤FPOC含量及敏感性指数在单独添加生物炭处理最高;小麦和玉米残体与其生物炭配施处理,土壤MBC和CPOC含量分别显著增加80.2%~199.2%,且其有机碳累积矿化率为12%~19%,介于生物炭和残体单施之间,土壤CPOC含量及敏感性指数均表现为配施处理最高。【结论】单独添加作物残体能够较好地补充土壤养分,但CO2释放量显著高于单施生物炭及配施处理;单独添加生物炭其有机碳累积矿化率较低,短期内对土壤养分的补充作用较小。作物残体与其生物炭配施可以较好地克服各自单独施用的弊端,尤其是玉米秸秆与其生物炭配施,在保证作物养分供应的同时能增加土壤碳库储量,对土壤肥力提升效果更好。  相似文献   

14.
不同恢复方式下盐渍化弃耕地土壤生物学活性的变化   总被引:2,自引:0,他引:2  
以干旱区新疆玛纳斯河流域冲积扇缘定点定位试验地为研究对象, 研究灌溉处理、人工草地处理和补植处理对盐渍化弃耕地土壤微生物量、酶活性及土壤呼吸速率的影响。结果表明, 不同恢复方式均明显增加了土壤微生物数量和土壤微生物量碳、氮及土壤酶活性。不同处理土壤微生物量碳、氮分别比原始弃耕地高17.80%、26.38%、5.33%和7.89%、12.75%、21.93%; 不同处理土壤微生物数量分别是原始弃耕地的4.72倍、6.04倍和4.56倍; 不同处理土壤蔗糖酶活性分别比原始弃耕地高3.4倍、3.2倍和7.7倍, 多酚氧化酶活性比原始弃耕地高1.7倍、1.2倍和1.5倍, 脲酶活性比原始弃耕地高11.1%、52.3%和37.1%; 灌溉处理土壤过氧化氢酶活性最高, 是原始弃耕地的1.53倍, 土壤呼吸速率变化表现为人工草地处理>灌溉处理>补植处理>原始弃耕地, 其中, 人工草地处理土壤呼吸速率比弃耕地高52.25%。相关分析表明, 微生物量碳与微生物C/N和微生物数量之间均呈显著正相关关系(P<0.05); 土壤呼吸速率与土壤脲酶、微生物数量和微生物量碳的相关性达到显著水平(P<0.05), 与土壤微生物量氮呈负相关关系, 但相关性不显著; 土壤蔗糖酶与其他3种酶以及微生物量氮呈显著正相关关系, 土壤脲酶与微生物数量呈显著正相关关系, 多酚氧化酶与过氧化氢酶相关性达到显著水平(P<0.05)。本研究表明干旱区盐渍化弃耕地采用灌溉与人工草地处理有利于土壤养分积累, 可在一定程度上改善土壤质量。  相似文献   

15.
秸秆炭基肥料挤压造粒成型优化及主要性能   总被引:9,自引:4,他引:5  
炭基肥料是以生物炭为基质与其他肥料复合而成的新型肥料,能有效提高土壤的肥力和透气能力,同时具有对肥料的缓释效果等。为了炭基肥料成型工艺优化及工业化生产,该文以复混肥料的国家标准为参考,尿素、过磷酸钙、磷酸氢二铵、氯化钾作为提供氮磷钾元素的基础肥料,并以秸秆炭为基质,着重讨论了成型前加水量、有无添加胶黏剂和成型前物料粒度对炭基肥料成型的影响。研究成型炭基肥料的较佳工艺为基础肥料质量分数占70.36%,总养分的质量分数为28%,其中N:P2O5:K2O养分质量比为10:8:10,秸秆炭质量分数16.64%,不加研磨,配以13%的水,搅拌均匀常温造粒成型;并对在此条件下成型后的炭基肥料养分含量、含水率、溶水性、强度、pH值和对土壤化学性质的影响等性能进行表征,指标如下:氮质量分数为10.07%,水溶性磷质量分数5.47%,有效磷质量分数8.38%,水溶性磷占有效磷65.27%,钾质量分数10.45%,水分质量分数3.24%,机械强度85%以上,pH值为6.41。实测结果符合国家相应标准,工艺设计简单可行,进而为炭基肥料的工业生产提供参考。  相似文献   

16.
[目的]阐明草地植被演替过程中植被生产力、植物多样性等生态学特征与土壤储水量的关系,为探明黄土高原地区植被恢复的生态环境效应提供一定的科学依据。[方法]采用时空互代的方法对宁夏回族自治区固原市云雾山保护区自然恢复3,8,13,46,66,89a的样地进行取样,分析0—100cm土层土壤储水量的分布及其与地上地下植物生物量、物种多样性的关系。[结果]随着草地演替的进行,植被群落盖度、生物量和物种多样性指数在恢复13a之前显著增加,之后渐趋稳定;土壤含水量逐渐增加,容重逐渐降低。植被群落演替对0—40cm土层土壤储水量没有显著影响,但演替后期对40cm以下土层水分有明显消耗。植被群落生物量及物种多样性指标与表层0—10cm水分呈显著正相关。[结论]草地演替过程中,植被群落生物量和物种多样性的增加与表层土壤储水能力的提升密切相关,但深层根系生物量的增加对下层土壤储水的消耗也逐渐增大。  相似文献   

17.
The UK Biodiversity Action Plan has identified the creation of lowland heathland as an important objective. Heathland restoration studies have identified soil pH, elevated soil nutrients and large weed seed banks as major problems in the restoration of heathland vegetation on ex-arable land. Heathland vegetation is usually found on nutrient-poor acidic soils. Creating acidic soil conditions on ex-arable sites thus may produce a suitable environment for the establishment of heath vegetation. Soil acidification by the addition of sulphur has been shown to reduce the soil pH and the availability of nutrients in arable soils. A series of experiments was established to investigate the effects of soil acidification using sulphur on the establishment of Calluna vulgaris and the development of weed vegetation. The application of sulphur at 0.24 kg m−2 to an arable soil was found to increase the survival rate of C. vulgaris cuttings planted in it. The mechanism of increased C. vulgaris survival appeared to be by sulphur application significantly reducing the cover of arable weeds arising from the soil seed bank. Higher rates of sulphur application (0.36 and 0.48 kg m−2) resulted in the death of many C. vulgaris plants. However C. vulgaris seedlings were able to establish successfully on these ex-arable soils within 18-24 months following the addition of these levels of sulphur. The application of sulphur appears to offer a practical solution to heathland creation on ex-arable land. However, it may be necessary to provide an interval of between 18 and 24 months between the application of sulphur and the addition of C. vulgaris plants or seeds for the successful establishment of heathland vegetation.  相似文献   

18.
The effects of soil incorporation with cereal straw (nil, 2.5, 5 and 10 t straw ha?1) and direct drilling on the proportion and amount of pea N derived from biological N fixation were investigated in three field experiments. Fixed N was determined by15N dilution using barley as a reference plant. The three sites were on acidic, red clay-loams in the cropping zone of southeastern Australia. Seasonal plant available soil N, as determined by the N accumulated in barley, was 31, 56 and 158 kg N ha?1, for the three sites. Incorporated straw reduced soil nitrate at sowing by 10–50 kg N ha?1 (0–30 cm), and 5 or 10 t straw ha?1 reduced barley uptake of N by 10–38 kg N ha?1. However, reducing plant available soil N was generally ineffective for increasing the N fixed by pea. Fixed N increased only at the site with the least plant-available N, and only one-third of the increase could be attributed to lower soil N uptake by pea. There was no evidence that direct drilling pea increased fixed N by decreasing crop uptake of soil N. It is proposed that a lower requirement for soil N by pea as compared to barley, and availability of mineral N beneath the soil layer treated with straw, minimise the effectiveness of straw incorporation for increasing the N fixed by pea.  相似文献   

19.
秸秆一次性深埋还田量对亚表层土壤肥力质量的影响   总被引:1,自引:0,他引:1  
【目的】在以小麦–玉米轮作制为主的黄淮海北部地区,由于长期实施浅旋耕,亚表层土壤结构紧实、有机质匮乏,本研究通过分析不同倍量的粉碎秸秆深埋还田对亚表层土壤肥力的影响,为该地区选择适宜的秸秆还田方式进行亚表层培肥提供理论依据。【方法】本试验在微区土池中进行,设置低(6000 kg/hm^2,T1)、中(12000 kg/hm^2,T2)、高(18000 kg/hm^2,T3) 3种不同量粉碎秸秆的一次性深埋还田试验,并与常规旋耕下的秸秆不还田处理(CK)进行对比,研究2013-2016年深埋还田条件下不同用量秸秆对土壤蓄水量、紧实度、有机碳、全氮、速效氮磷钾含量及作物根系生物量、籽粒产量等指标的影响,并运用主成分分析法评估秸秆增量深还对亚表层土壤肥力质量的影响。【结果】1) 0-40 cm土壤蓄水量随秸秆用量增加而提高,其中T3、T2处理下土壤蓄水量在冬小麦季平均分别提高了50.94%(P <0.05)和59.77%(P <0.05),夏玉米季增幅低于冬小麦季,这表明增加秸秆用量更有利于干旱季土壤水分的保蓄;增加秸秆用量能降低亚表层土壤紧实度高达60%,且能调节土壤pH使之趋于中性;2)中、高量秸秆深埋还田显著提高了亚表层土壤养分含量,如T2、T3处理下有机碳含量显著提高7%~20%(P <0.05),全氮含量显著提高7%~18%(P <0.05),速效养分含量显著提升10%~30%(P <0.05),并增加了亚表层土壤C/N及养分库容;3)主成分分析表明,T3处理的土壤肥力质量略优于T2处理,而以T1处理最差,一次性秸秆增量深还能够长时间维持较高的土壤肥力;4)中、高量秸秆深埋还田可提高冬小麦及夏玉米籽粒产量及其根系生物量,以T2处理冬小麦、夏玉米3年平均籽粒产量最高,增幅分别为7.02%和5.11%(P <0.05),T2、T3处理冬小麦根系生物量平均提高21.9%和16.0%(P <0.05),提高夏玉米根系生物量18.4%和19.5%(P <0.05),然而对秸秆生物量的提高不显著,且T2处理在还田前期对作物生物量的提升作用优于T3处理。【结论】秸秆深埋还田可显著改善亚表层土壤结构,增加土壤养分库容,并提高根系生物量及籽粒产量。12000~18000 kg/hm^2秸秆一次性深埋还田可显著提高亚表层土壤肥力质量,是该地区培肥土壤的有效措施。  相似文献   

20.
In an earlier study we reported the apparent stabilization of a low fungal biomass in ex-arable lands during the first decades after abandonment. It was hypothesized that the lack of increase in fungal biomass was due to constraints on development of fungi with persistent hyphae such as lignocellulolytic basidiomycetes and ericoid mycorrhizal fungi. With respect to the former group, the slow increase of the pool of lignocellulose-rich organic matter was expected to be the major constraint for their development. To study this, we enriched soil samples of one arable land, of two recently abandoned arable lands, of one older abandoned arable land and of heathland with carbon substrates that differed in composition (glucose, cellulose and sawdust). In addition, we combined the effect of carbon addition on fungal biomass development in arable and recently abandoned lands with inoculation of 1% of soil from the older abandoned site and the heathland. All treatments induced a fast increase and a subsequent rapid decline in fungal biomass in the arable and ex-arable fields. Denaturing Gradient Gel Electrophoresis (DGGE) band patterns and enzyme activities did show differences between the carbon treatments but not between the recent and older abandoned field sites, indicating a similarly responding fungal community even after three decades of land abandonment and irrespective of soil inoculation. Identification of fungi by sequencing and culturing confirmed that decomposition processes were mostly dominated by opportunistic fungi in arable and ex-arable fields. In the heathland, only a very slow increase of microbial activity was observed after addition of carbon and sequencing of DGGE bands showed that ericoid mycorrhiza (ERM) fungi were responsible for carbon decomposition. We conclude that an increase of enduringly present fungal hyphae in ex-arable land may only be possible when a separate litter layer develops and/or when suitable host plants for ERM fungi become established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号