首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
4.
Flowers J 《Science (New York, N.Y.)》2004,306(5700):1324-1330
Over the past half-century, there has been a shift away from standards based on particular artifacts toward those based on physical effects, the most stable being based on quantum properties of systems. This change was proposed at the end of the 19th century but is still not complete at the start of the 21st. We discuss how this vision has been implemented through recent advances in science and metrology and how these may soon lead to an SI system finally free from artifact standards, with a consistency based on fundamental constants.  相似文献   

5.
6.
7.
8.
9.
Emerging complex functional materials often have atomic order limited to the nanoscale. Examples include nanoparticles, species encapsulated in mesoporous hosts, and bulk crystals with intrinsic nanoscale order. The powerful methods that we have for solving the atomic structure of bulk crystals fail for such materials. Currently, no broadly applicable, quantitative, and robust methods exist to replace crystallography at the nanoscale. We provide an overview of various classes of nanostructured materials and review the methods that are currently used to study their structure. We suggest that successful solutions to these nanostructure problems will involve interactions among researchers from materials science, physics, chemistry, computer science, and applied mathematics, working within a "complex modeling" paradigm that combines theory and experiment in a self-consistent computational framework.  相似文献   

10.
从《白孔雀》的环境景物描写、作品的人物形象塑造和结构方式几个方面进行比较分析 ,得出结论 :劳伦斯的《白孔雀》受到乔治·艾略特的《弗洛斯河上的磨坊》的影响  相似文献   

11.
12.
13.
14.
15.
16.
Laser-focused atomic deposition   总被引:1,自引:0,他引:1  
The ability to fabricate nanometer-sized structures that are stable in air has the potential to contribute significantly to the advancement of new nanotechnologies and our understanding of nanoscale systems. Laser light can be used to control the motion of atoms on a nanoscopic scale. Chromium atoms were focused by a standing-wave laser field as they deposited onto a silicon substrate. The resulting nanostructure consisted of a series of narrow lines covering 0.4 millimeter by 1 millimeter. Atomic force microscopy measurements showed a line width of 65 +/- 6 nanometers, a spacing of 212.78 nanometers, and a height of 34 +/-+ 10 nanometers. The observed line widths and shapes are compared with the predictions of a semiclassical atom optical model.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号