首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
OBJECTIVES: To characterize equine bone marrow (BM)-derived mesenchymal stem cell (MSC) growth characteristics and frequency as well as their adipogenic and osteogenic differentiation potential. STUDY DESIGN: In vitro experimental study. ANIMALS: Foals (n=3, age range, 17-51 days) and young horses (n=5, age range, 9 months to 5 years). METHODS: Equine MSCs were harvested and isolated from sternal BM aspirates and grown up to passage 10 to determine cell-doubling (CD) characteristics. Limit dilution assays were performed on primary and passaged MSCs to determine the frequency of colony-forming units with a fibroblastic phenotype (CFU-F), and the frequency of MSC differentiation into adipocytes (CFU-Ad) and osteoblasts (CFU-Ob). RESULTS: Initial MSC isolates had a lag phase with a significantly longer CD time (DT=4.9+/-1.6 days) compared with the average DT (1.4+/-0.22 days) of subsequent MSC passages. Approximately 1 in 4224+/-3265 of the total nucleated BM cells displayed fibroblast colony-forming activity. Primary MSCs differentiated in response to adipogenic and osteogenic inductive conditions and maintained their differentiation potential during subsequent passages. CONCLUSIONS: The frequency, in vitro growth rate, and adipogenic and osteogenic differentiation potential of foals and young adult horses are similar to those documented for BM MSCs of other mammalian species. CLINICAL RELEVANCE: The results have direct relevance to the use of BM as a potential source of adult stem cells for tissue engineering applications in equine veterinary medicine.  相似文献   

3.
The purpose of this work was to validate isolation methods for sheep mesenchymal stem cells (MSC) from different sources and to explore the hypothesis that MSC exhibit markers of the same phenotype independent from tissue source. Cells derived from ovine bone marrow, synovial membrane and adipose tissue were characterized using the following markers: CD44, CD45, CD11b and MHC-I. The isolated MSC were cultivated, went through osteogenic, chondrogenic and adipogenic differentiation, and were characterized by flow cytometry using mouse anti-ovine CD44, CD45 and MHC-I monoclonal antibody (mAb), and mouse anti-bovine CD11b mAb. Ovine MSC from all three sources differentiated under chondorgenic, osteogenic and adipogenic conditions. Also, MSC from the three tissues were found to express CD44 and MHC-I but lack of CD11b and CD45. The results obtained revealed that our isolation methods for the different tissues tested are valid and that MSC from the three sources studied have same immunophenotic characteristics.  相似文献   

4.
In the dog, mesenchymal stem cells (MSCs) have been shown to reside in the bone marrow (bone marrow-derived mesenchymal stem cells: BM-MSCs) as well as in the adipose tissue (adipose tissue-derived stem cells: ADSCs). Potential application fields for these multipotent MSCs in small animal practice are joint diseases as MSCs of both sources have shown to possess chondrogenic differentiation ability. However, it is not clear whether the chondrogenic differentiation potential of cells of these two distinct tissues is truly equal. Therefore, we compared MSCs of both origins in this study in terms of their chondrogenic differentiation ability and suitability for clinical application. BM-MSCs harvested from the femoral neck and ADSCs from intra-abdominal fat tissue were examined for their morphology, population doubling time (PDT) and CD90 surface antigen expression. RT-PCR served to assess expression of pluripotency marker Oct4 and early differentiation marker genes. Chondrogenic differentiation ability was compared and validated using histochemistry, transmission electron microscopy (TEM) and quantitative RT-PCR. Both cell populations presented a highly similar morphology and marker expression in an undifferentiated stage except that freshly isolated ADSCs demonstrated a significantly faster PDT than BM-MSCs. In contrast, BM-MSCs revealed a morphological superior cartilage formation by the production of a more abundant and structured hyaline matrix and higher expression of lineage specific genes under the applied standard differentiation protocol. However, further investigations are necessary in order to find out if chondrogenic differentiation can be improved in canine ADSCs using different protocols and/or supplements.  相似文献   

5.
Objective— To compare the chondrogenic potential of adult equine mesenchymal stem cells derived from bone marrow (MSCs) or adipose tissue (ASCs). Study Design— In vitro experimental study. Animals— Adult Thoroughbred horses (n=11). Methods— BM (5 horses; mean [±SD] age, 4±1.4 years) or adipose tissue (6 horses; mean age, 3.5±1.1 years) samples were obtained. Cryopreserved MSCs and ASCs were used for pellet cultures in stromal medium (C) or induced into chondrogenesis±transforming growth factor‐3 (TGFβ3) and bone morphogenic factor‐6 (BMP‐6). Pellets harvested after 3, 7, 14, and 21 days were examined for cross‐sectional size and tissue composition (hematoxylin and eosin), glycosaminoglycan (GAG) staining (Alcian blue), collagen type II immunohistochemistry, and by transmission electron microscopy. Pellet GAG and total DNA content were measured using dimethylmethylene blue and Hoechst DNA assays. Results— Collagen type II synthesis was predominantly observed in MSC pellets from Day 7 onward. Unlike ASC cultures, MSC pellets had hyaline‐like matrix by Day 14. GAG deposition occurred earlier in MSC cultures compared with ASC cultures and growth factors enhanced both MSC GAG concentrations (P<.0001) and MSC pellet size (P<.004) after 2 weeks in culture. Conclusion— Equine MSCs have superior chondrogenic potential compared with ASCs and the equine ASC growth factor response suggests possible differences compared with other species. Clinical Relevance— Elucidation of equine ASC and MSC receptor profiles will enhance the use of these cells in regenerative cartilage repair.  相似文献   

6.
OBJECTIVE: To isolate and characterize bone marrow-derived equine mesenchymal stem cells (MSCs) for possible future therapeutic applications in horses. SAMPLE POPULATION: Equine MSCs were isolated from bone marrow aspirates obtained from the sternum of 30 donor horses. PROCEDURES: Cells were cultured in medium (alpha-minimum essential medium) with a fetal calf serum content of 20%. Equine MSC features were analyzed to determine selfrenewing and differentiation capacity. For potential therapeutic applications, the migratory potential of equine MSCs was determined. An adenoviral vector was used to determine the transduction rate of equine MSCs. RESULTS: Equine MSCs can be culture-expanded. Equine MSCs undergo cryopreservation in liquid nitrogen without altering morphologic characteristics. Furthermore, equine MSCs maintain their ability to proliferate and differentiate after thawing. Immunocytochemically, the expression of the stem cell marker CD90 can be detected on equine MSCs. The multilineage differentiation potential of equine MSCs was revealed by their ability to undergo adipogenic, osteogenic, and chondrogenic differentiation. CONCLUSIONS AND CLINICAL RELEVANCE: Our data indicate that bone marrow-derived stromal cells of horses can be characterized as MSCs. Equine MSCs have a high transduction rate and migratory potential and adapt to scaffold material in culture. As an autologous cell population, equine MSCs can be regarded as a promising cell population for tissue engineering in lesions of the musculoskeletal system in horses.  相似文献   

7.
Background: There is considerable interest in using goats as models for genetically engineering dairy animals and also for using stem cells as therapeutics for bone and cartilage repair. Mesenchymal stem cells(MSCs) have been isolated and characterized from various species, but are poorly characterized in goats.Results: Goat MSCs isolated from bone marrow(BM-MSCs) and adipose tissue(ASCs) have the ability to undergo osteogenic, adipogenic and chondrogenic differentiation. Cytochemical staining and gene expression analysis show that ASCs have a greater capacity for adipogenic differentiation compared to BM-MSCs and fibroblasts. Different methods of inducing adipogenesis also affect the extent and profile of adipogenic differentiation in MSCs. Goat fibroblasts were not capable of osteogenesis, hence distinguishing them from the MSCs. Goat MSCs and fibroblasts express CD90, CD105, CD73 but not CD45, and exhibit cytoplasmic localization of OCT4 protein. Goat MSCs can be stably transfected by Nucleofection, but, as evidenced by colony-forming efficiency(CFE), yield significantly different levels of progenitor cells that are robust enough to proliferate into colonies of integrants following G418 selection.BM-MSCs expanded over increasing passages in vitro maintained karyotypic stability up to 20 passages in culture,exhibited an increase in adipogenic differentiation and CFE, but showed altered morphology and amenability to genetic modification by selection.Conclusions: Our findings provide characterization information on goat MSCs, and show that there can be significant differences between MSCs isolated from different tissues and from within the same tissue. Fibroblasts do not exhibit trilineage differentiation potential at the same capacity as MSCs, making it a more reliable method for distinguishing MSCs from fibroblasts, compared to cell surface marker expression.  相似文献   

8.
The objective of this study was to determine the tissue density, in vitro expansion and differentiation of canine adipose tissue-derived (ASC) and bone marrow-derived (BMSC) stromal cells. Primary (P0) and cell passages 1-6 (P1-6) cell doubling numbers (CD) and doubling times (DT) were determined in fresh cells. The P0, P3, and P6 adipogenic (CFU-Ad), osteogenic (CFU-Ob), and fibroblastic (CFU-F) colony forming unit frequencies, lineage specific mRNA levels in differentiated P3 cells and composition of P3 and P6 chondrogenic pellets were assessed in cryogenically preserved cells. Cell yields from bone marrow were significantly higher than adipose tissue. Overall ASC and BMSC CDs and DTs and P3 and P6 CFU-F, CFU-Ad, and CFU-Ob were comparable. The P0 BMSC CFU-Ob was significantly higher than ASC. Lineage specific mRNA levels were higher in differentiated versus control cells, but similar between cell types. Protein was significantly greater in P3 versus P6 ASC chondrogenic pellets. Based on these findings, fresh and revitalized canine ASCs are viable alternatives to BMSCs for stromal cell applications.  相似文献   

9.
Multipotent mesenchymal stromal cells (MSCs) are a promising therapeutic tool for the treatment of equine tendon and other musculoskeletal injuries. While bone marrow is considered the ‘gold standard’ source of these cells, various other tissues contain MSCs with potentially useful features. The aim of this study was to compare clinically relevant characteristics of MSCs derived from bone marrow, umbilical cord blood and tissue and from adipose tissue and tendon. Cell yield, proliferation, migration, tendon marker expression and differentiation into adipocytes, chondrocytes and osteoblasts was assessed, quantified and compared.MSC numbers obtained from adipose, tendon or umbilical cord tissues were 222-fold higher than those obtained from bone marrow or cord blood. Cells derived from tendon and adipose tissues exhibited most rapid proliferation. Osteogenic differentiation was most prominent in MSCs derived from bone marrow, and was weak in MSCs derived from umbilical cord blood and tissue. In contrast, the highest levels of chondrogenic differentiation were observed in MSCs derived from these sources. Collagen 1A2 expression was highest in adipose- and tendon-derived MSCs, while scleraxis expression was highest in cord blood- and in tendon-derived MSCs. The findings indicate that MSCs from different sources display significantly diverse properties that may impact on their therapeutic application.  相似文献   

10.
Adipose-derived mesenchymal stem cells (AD-MSCs) are abundant in adipose tissue from animals of all ages, are easily isolated, can differentiate into multi-lineage cells, and have a clinical application. This promising potential may only be achieved if the cells are expanding in a large number while maintaining their stemness in sequential passages. In this study, canine AD-MSCs (cAD-MSCs) were individually isolated from five dogs and subjected to proliferative culture with seven sub-passages. The cells at each sub-passage were characterized for properties associated with multipotent MSCs such as proliferation kinetics, expression of MSCs-specific surface markers, expression of molecules associated with self-renewal and differentiation capabilities into mesodermal lineage cells. Proliferation of the cells plateaued at passage 5 by cumulative population doubling level, while cell doubling time gradually increased with passage. MSCs surface markers (CD44, CD90, and CD105) and molecules (Oct 3/4, Sox-2, Nanog and HMGA2) associated with self-renewal were all expressed in the cells between passages 1 to 6 by RT-PCR. In addition, the cells at passage 1, 3 or 6 underwent adipogenic and chondrogenic differentiation under specific induction conditions. However, the level of adipogenic and chondrogenic differentiation was negatively correlated with the number of sub-passage. The present study suggests that sequential sub-passages affect multipotent properties of cAD-MSCs, which should be considered in their therapeutic application in regenerative medicine.  相似文献   

11.
Background: Adult mesenchymal stem cells(MSCs) can be conveniently sampled from bone marrow, peripheral blood, muscle, adipose and connective tissue, harvested from various species, including, rodents, dogs, cats, horses,sheep, goats and human beings. The MSCs isolated from adult tissues vary in their morphological and functional properties. These variations are further complicated when cells are expanded by passaging in culture. These differences and changes in MSCs must be considered prior to their application in the clinic or in a basic research study. Goats are commonly used as animal models for bone tissue engineering to test the potential of stem cells for bone regeneration. As a result, goat MSCs isolated from bone marrow or adipose tissue should be evaluated using in vitro assays, prior to their application in a tissue engineering project.Results: In this study, we compared the stem cell properties of MSCs isolated from goat bone marrow and adipose tissue. We used quantitative and qualitative assays with a focus on osteogenesis, including, colony forming unit, rate of cell proliferation, tri-lineage differentiation and expression profiling of key signal transduction proteins to compare MSCs from low and high passages. Primary cultures generated from each source displayed the stem cell characteristics,with variations in their osteogenic potentials. Most importantly, low passaged bone marrow MSCs displayed a significantly higher and superior osteogenic potential, and hence, will be the preferred choice for bone tissue engineering in future in vivo experiments. In the bone marrow MSCs, this process is potentially mediated by the p38 MAPK pathway. On the other hand, osteogenic differentiation in the adipose tissue MSCs may involve the p44/42 MAPK pathway.Conclusions: Based on these data, we can conclude that bone marrow and fat-derived MSCs undergo osteogenesis via two distinct signaling pathways. Even though the bone marrow MSCs are the preferred source for bone tissue engineering, the adipose tissue MSCs are an attractive alternative source and undergo osteo-differentiation differently from the bone marrow MSCs and hence, might require a cell-based enhancer/inducer to improve their osteogenic regenerative capacity.  相似文献   

12.
Immune privileged mesenchymal stem cells (MSCs) can differentiate into multiple cell types and possess great potential for human and veterinary regenerative therapies. This study was designed with an objective to isolate, expand and characterize buffalo bone marrow‐derived MSCs (BM‐MSCs) at molecular and cellular level. Buffalo BM‐MSCs were isolated by Ficoll density gradient method and cultured in Dulbecco’s modified Eagle’s medium supplemented with fetal bovine serum (FBS). These cells were characterized through alkaline phosphatase (AP) staining, colony‐forming unit (CFU) assay, mRNA expression analysis (CD 73, CD 90, CD 105, Oct4 and Nanog), immunolocalization along with flow cytometry (Stro 1, CD 73, CD 105, Oct4, Sox2 and Nanog) and in situ hybridization (Oct4 and Sox2). Multilineage differentiation (osteogenic, adipogenic and chondrogenic) was induced in vitro, which was further assessed by specific staining. Buffalo BM‐MSCs have the capacity to form plastic adherent clusters of fibroblast‐like cells and were successfully maintained up to 16th passage. These cells were AP positive, and further CFU assay confirmed their clonogenic property. RT‐PCR analysis and protein localization study showed that buffalo BM‐MSCs are positive for various cell surface markers and pluripotency markers. Cytoplasmic distribution of mRNA for pluripotency markers in buffalo BM‐MSCs and multilineage differentiation were induced in vitro, which was further assessed by specific staining. To the best of our knowledge, this is the first report of buffalo BM‐MSCs, which suggests that MSCs can be derived and expanded from buffalo bone marrow and can be used after characterization as a novel agent for regenerative therapy.  相似文献   

13.

Background

There is considerable interest in using goats as models for genetically engineering dairy animals and also for using stem cells as therapeutics for bone and cartilage repair. Mesenchymal stem cells (MSCs) have been isolated and characterized from various species, but are poorly characterized in goats.

Results

Goat MSCs isolated from bone marrow (BM-MSCs) and adipose tissue (ASCs) have the ability to undergo osteogenic, adipogenic and chondrogenic differentiation. Cytochemical staining and gene expression analysis show that ASCs have a greater capacity for adipogenic differentiation compared to BM-MSCs and fibroblasts. Different methods of inducing adipogenesis also affect the extent and profile of adipogenic differentiation in MSCs. Goat fibroblasts were not capable of osteogenesis, hence distinguishing them from the MSCs. Goat MSCs and fibroblasts express CD90, CD105, CD73 but not CD45, and exhibit cytoplasmic localization of OCT4 protein. Goat MSCs can be stably transfected by Nucleofection, but, as evidenced by colony-forming efficiency (CFE), yield significantly different levels of progenitor cells that are robust enough to proliferate into colonies of integrants following G418 selection. BM-MSCs expanded over increasing passages in vitro maintained karyotypic stability up to 20 passages in culture, exhibited an increase in adipogenic differentiation and CFE, but showed altered morphology and amenability to genetic modification by selection.

Conclusions

Our findings provide characterization information on goat MSCs, and show that there can be significant differences between MSCs isolated from different tissues and from within the same tissue. Fibroblasts do not exhibit trilineage differentiation potential at the same capacity as MSCs, making it a more reliable method for distinguishing MSCs from fibroblasts, compared to cell surface marker expression.

Electronic supplementary material

The online version of this article (doi:10.1186/2049-1891-6-1) contains supplementary material, which is available to authorized users.  相似文献   

14.
本研究旨在优化组织培养法分离小鼠脂肪间充质干细胞(adipose-derived stem cells,ASCs),为研究成骨分化和成脂分化在间充质干细胞分化过程中的相互影响奠定基础。通过细胞形态学观察、细胞生长曲线和流式仪器检测所分离获得的间充质干细胞的特性,利用CRISPR-dCas9系统在快速促进间充质干细胞成骨分化的前提下观察其对成脂分化的影响,并通过生化染色、实时荧光定量PCR和免疫细胞学等手段进行分析。结果显示,接种3~5 d后可见细胞从组织块周围爬出,光镜下可见细胞形态多为成纤维细胞样的梭形细胞,且形态单一均匀,具有较高的爬出率,可以大大提高脂肪间充质干细胞的分离效率;通过CRISPR-dCas9系统激活Runx2和Osterix基因后可以促进间充质干细胞的成骨分化,实时荧光定量PCR及油红O染色结果显示,CRISPR-dCas9系统可以同时抑制间充质干细胞的成脂分化;通过CRISPR-dCas9-KRAB系统同时抑制成骨相关基因Runx2和Osterix后可以促进成脂分化。本研究利用组织贴壁法成功获得了高纯度的脂肪间充质干细胞,具有间充质干细胞的特性和分化能力;利用CRISPR系统可以同时过表达Runx2和Osterix两个基因,可以在进成骨分化的同时抑制成脂分化,表明成脂分化和成骨分化的相关性,为基因编辑在间充质干细胞诱导分化和临床应用方面提供了新的思路和方法。  相似文献   

15.
本研究旨在建立蒙古羊骨髓间充质干细胞(bone marrow mesenchymal stem cell,BMSC)体外分离、纯化、增殖方法,诱导其向脂肪细胞、成骨细胞及软骨细胞分化。穿刺法抽取蒙古羊骨髓组织,采用密度梯度离心法结合贴壁培养法分离纯化BMSC,增殖,并测定其生长曲线及细胞倍增时间。对第3代蒙古羊BMSC进行成脂、成骨及成软骨诱导,观察诱导后的细胞形态。采用油红O、茜素红、HE等染色法在组织学水平对BMSC进行成脂、成骨和成软骨分化鉴定。结果显示,蒙古羊BMSC呈现均一梭形成纤维细胞样生长,生长曲线呈S型,生长增殖能力良好。在不同分化诱导之后,细胞呈现脂肪细胞、成骨细胞及软骨细胞的表型特征。表明获得的蒙古羊BMSC具有多向分化潜能,所分离细胞确为骨髓间充质干细胞。  相似文献   

16.
17.
18.
OBJECTIVE: To determine whether expansion of equine mesenchymal stem cells (MSCs) by use of fibroblast growth factor-2 (FGF-2) prior to supplementation with dexamethasone during the chondrogenic pellet culture phase would increase chondrocytic matrix markers without stimulating a hypertrophic chondrocytic phenotype. SAMPLE POPULATION: MSCs obtained from 5 young horses. PROCEDURES: First-passage equine monolayer MSCs were supplemented with medium containing FGF-2 (0 or 100 ng/mL). Confluent MSCs were transferred to pellet cultures and maintained in chondrogenic medium containing 0 or 10(7)M dexamethasone. Pellets were collected after 1, 7, and 14 days and analyzed for collagen type II protein content; total glycosaminoglycan content; total DNA content; alkaline phosphatase (ALP) activity; and mRNA of aggrecan, collagen type II, ALP, and elongation factor-1alpha. RESULTS: Treatment with FGF-2, dexamethasone, or both increased pellet collagen type II content, total glycosaminoglycan content, and mRNA expression of aggrecan. The DNA content of the MSC control pellets decreased over time. Treatment with FGF-2, dexamethasone, or both prevented the loss in pellet DNA content over time. Pellet ALP activity and mRNA were increased in MSCs treated with dexamethasone and FGF-2-dexamethasone. After pellet protein data were standardized on the basis of DNA content, only ALP activity of MSCs treated with FGF-2-dexamethasone remained significantly increased. CONCLUSIONS AND CLINICAL RELEVANCE: Dexamethasone and FGF-2 enhanced chondrogenic differentiation of MSCs, primarily through an increase in MSC numbers. Treatment with dexamethasone stimulated ALP activity and ALP mRNA, consistent with the progression of cartilage toward bone. This may be important for MSC-based repair of articular cartilage.  相似文献   

19.
Reason for performing the study: There is a need to assess and standardise equine bone marrow (BM) mesenchymal stem cell (MSC) isolation protocols in order to permit valid comparisons between therapeutic trials at different sites. Objective: To compare 3 protocols of equine BM MSC isolation: adherence to a plastic culture dish (Classic) and 2 gradient density separation protocols (Percoll and Ficoll). Materials and methods: BM aspirates were harvested from the sternum of 6 mares and MSCs isolated by all 3 protocols. The cell viability after isolation, MSC yield, number of MSCs attained after 14 days of culture and the functional characteristics (self‐renewal (CFU) and multilineage differentiation capacity) were determined for all 3 protocols. Results: The mean ± s.d. MSC yield from the Percoll protocol was significantly higher (6.8 ± 3.8%) than the Classic protocol (1.3 ± 0.7%). The numbers of MSCs recovered after 14 days culture per 10 ml BM sample were 24.0 ± 12.1, 14.6 ± 9.5 and 4.1 ± 2.5 × 10 6 for the Percoll, Ficoll and Classic protocols, respectively, significantly higher for the Percoll compared with the Classic protocol. Importantly, no significant difference in cell viability or in osteogenic or chondrogenic differentiation was identified between the protocols. At Passage 0, cells retrieved with the Ficoll protocol had lower self‐renewal capacity when compared with the Classic protocol but there was no significant difference between protocols at Passage 1. There were no significant differences between the 3 protocols for the global frequencies of CFUs at Passage 0 or 1. Conclusions and clinical relevance: These data suggest that the Percoll gradient density separation protocol was the best in terms of MSC yield and self‐renewal potential of the MSCs retrieved and that MSCs retrieved with the Ficoll protocol had the lowest self‐renewal but only at passage 0. Then, the 3 protocols were equivalent. However, the Percoll protocol should be considered for equine MSC isolation to minimise culture time.  相似文献   

20.
Since the discovery of bone marrow derived stromal cell osteogenesis in the 1960s, tissue engineering with adult multipotent stromal cells (MSCs) has evolved as a promising approach to restore structure and function of bone compromised by injury or disease. To date, accelerated bone formation with MSCs has been demonstrated with a variety of tissue engineering strategies. Though MSC bone tissue engineering has advanced over the last few decades, limitations to clinical translation remain. A current review of this promising field is presented with a specific focus on equine investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号