首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
A comparison was made of the time to and quality of induction of anaesthesia when sevoflurane (n=14) or isoflurane (n=14) was delivered by mask in premedicated healthy adult cats presented for elective surgery. Times to induction and intubation were significantly shorter with sevoflurane (210 +/- 57 seconds and 236 +/- 60 seconds, respectively) than with isoflurane (264 +/- 75 seconds and 292 +/- 73 seconds). The quality of induction was similar for both agents. Two cats in each group developed opisthotonus of less than 45 seconds' duration. Both sevoflurane and isoflurane produced mask induction of anaesthesia of a similar quality in this species. Sevoflurane provided more rapid induction of anaesthesia and establishment of a controlled airway than isoflurane.  相似文献   

2.
The cardiorespiratory parameters, the depth of anaesthesia and the quality of recovery were evaluated in six spontaneously breathing dogs that had been premedicated with medetomidine (40 microg/kg, supplemented with 20 microg/kg an hour later), administered with either propofol (1 mg/kg followed by 0.15 mg/kg/minute, intravenously), or with ketamine (1 mg/kg followed by 2 mg/kg/hour, intravenously) and propofol (0.5 mg/kg followed by 0.075 mg/kg/minute, intravenously). The dogs' heart rate and mean arterial blood pressure were higher and their minute volume of respiration and temperature were lower when they were anaesthetised with propofol plus ketamine, and a progressive hypercapnia leading to respiratory acidosis was more pronounced. When the dogs were anaesthetised with propofol/ketamine they recovered more quickly, but suffered some unwanted side effects. When the dogs were anaesthetised with propofol alone they recovered more slowly but uneventfully.  相似文献   

3.
The beta-blocking agent carazolol is used for the prevention of stress syndromes in pigs. Little is known of the pharmacokinetics of this drug, and therefore of its residue status in meat. In this study carazolol pharmacokinetics were investigated in a randomized three-way cross-over design in five pigs. A dose of 0.025 mg/kg was given intravenously, intramuscularly and intra-adiposely (in the subcutaneous fat layer). Carazolol was rapidly distributed and had a short half-life of 1.2-4.2 h. The distribution volume was calculated to be 0.22-0.65 l/kg. After intramuscular or intra-adipose administration the absorption pattern was biphasic. A rapid initial phase was followed by a slow second phase. Absorption was found to be incomplete at 24 h after intramuscular and intra-adipose administration ranging from 24 to 59% and 25 to 66%, respectively. The biphasic behaviour could be explained by retention of the drug in the tissues after absorption of the solvent was complete. A few hours after intravenous administration only negligible amounts of the drug were circulating in the body; however, considerable amounts of drug might have remained at the intramuscular or intra-adipose injection site.  相似文献   

4.
5.
Cardiovascular, pulmonary and anaesthetic-analgesic responses were evaluated in 18 male and female dogs to determine the effect of the injectable anaesthetic propofol used in conjuction with acepromazine and butorphanol. The dogs were randomly divided into three groups. Dogs in Group A were premeditated with 0.1 mg/kg of intramuscular acepromazine followed by an induction dose of 4.4 mg/kg of intravenous propofol; Group B received 0.2 mg/kg of intramuscular butorphanol and 4.4 mg/kg of intravenous propofol; dogs in Group AB were administered a premeditation combination of 0.1 mg/kg of intramuscular acepromazine and 0.2 mg/kg of intramuscular butorphanol, followed by induction with 3.3 mg/kg of intravenous propofol. The induction dose of propofol was given over a period of 30-60 seconds to determine responses and duration of anaesthesia. Observations recorded in the dogs included heart and respiratory rates, indirect arterial blood pressures (systolic, diastolic and mean), cardiac rhythm, end-tidal CO, tension, oxygen saturation, induction time, duration of anaesthesia, recovery time and adverse reactions. The depth of anaesthesia was assessed by the response to mechanical noxious stimuli (tail clamping), the degree of muscle relaxation and the strength of reflexes. Significant respiratory depression was seen after propofol induction in both groups receiving butorphanol with or without acepromazine. The incidence of apnea was 4/6 dogs in Group B, and 5/6 dogs in Group AB. The incidence of apnea was also correlated to the rate of propofol administration. Propofol-mediated decreases in arterial blood pressure were observed in all three groups. Moderate bradycardia (minimum value > 55 beats/min) was observed in both Groups B and AB. There were no cardiac dysrhythmias noted in any of the 18 dogs. The anaesthetic duration and recovery times were longer in dogs premeditated with acepromazine/butorphanol.  相似文献   

6.
Ketamine hydrochloride was administered intravenously to unpremedicated and xylazine-treated calves. The plasma concentrations of ketamine and norketamine were measured at several time intervals after drug administration and the data were fitted to a two-compartment open model. In unpremedicated female calves the distribution and elimination half-lives averaged 6.9 and 60.5 min, respectively. The volume of the central compartment was 1.21 1/kg and the peripheral compartment was 4.04 1/kg. Total body clearance of ketamine averaged 40.4 ml/ min/kg. Premedication with xylazine, whilst not affecting the half-lives signifi-candy, reduced volumes of distribution and the clearance rate of the drug by approximately 50%. The results for the male calves which were premedicated were intermediate between the two groups of female calves.  相似文献   

7.
ObjectiveTo compare anaesthesia induced with either alfaxalone or ketamine in horses following premedication with xylazine and guaifenesin.Study designRandomized blinded cross-over experimental study.AnimalsSix adult horses, five Standardbreds and one Thoroughbred; two mares and four geldings.MethodsEach horse received, on separate occasions, induction of anaesthesia with either ketamine 2.2 mg kg?1 or alfaxalone 1 mg kg?1. Premedication was with xylazine 0.5 mg kg?1 and guaifenesin 35 mg kg?1. Incidence of tremors/shaking after induction, recovery and ataxia on recovery were scored. Time to recovery was recorded. Partial pressure of arterial blood oxygen (PaO2) and carbon dioxide (PaO2), arterial blood pressures, heart rate (HR) and respiratory rates were recorded before premedication and at intervals during anaesthesia. Data were analyzed using Wilcoxon matched pairs signed rank test and are expressed as median (range).ResultsThere was no difference in the quality of recovery or in ataxia scores. Horses receiving alfaxalone exhibited a higher incidence of tremors/shaking on induction compared with those receiving ketamine (five and one of six horses respectively). Horses recovered to standing similarly [28 (24–47) minutes for alfaxalone; 22 (18–35) for ketamine] but took longer to recover adequately to return to the paddock after alfaxalone [44 (38–67) minutes] compared with ketamine [35 (30–47)]. There was no statistical difference between treatments in effect on HR, PaO2 or PaCO2 although for both regimens, PaO2 decreased with respect to before premedication values. There was no difference between treatments in effect on blood pressure.Conclusions and clinical relevanceBoth alfaxalone and ketamine were effective at inducing anaesthesia, although at induction there were more muscle tremors after alfaxalone. As there were no differences between treatments in relation to cardiopulmonary responses or quality of recovery, and only minor differences in recovery times, both agents appear suitable for this purpose following the premedication regimen used in this study.  相似文献   

8.
The minimum alveolar concentration (MAC) of desflurane was measured in 6 ponies (aged 1 or 2 years) following induction of anaesthesia with iv xylazine (1.1 mgkg bwt) followed by ketamine (2.2 mgkg bwt). The stimulus utilised was electrical; pulses of 50 volts, 10 dsec duration delivered at 5 Hz, applied for 60 s across needles inserted 1 cm apart into the buccal mucosa (n = 2) and/or the coronary band (n = 6). Stimulation was not commenced until at least 1 h following anaesthetic induction, and the time of the final MAC measurement ranged from 2.5–3.5 h. The mean (± sd) MAC of desflurane under these circumstances was 7.0% (± 0.85) with a range from 5.8%-8.3%. One pony behaved aberrantly following a positive response to the stimulus and the MAC measurement was repeated 10 weeks later. At the end of the anaesthetic period xylazine (0.2 mgkg bwt) was administered iv. Mean time to standing was 13.3 (± 2.9) min, range 9–17 min, and the quality of recovery was excellent.  相似文献   

9.
The effects of propofol alone or propofol and ketamine for the induction of anaesthesia in dogs were compared. Thirty healthy dogs were premedicated with acepromazine and pethidine, then randomly allocated to either treatment. Anaesthesia was induced with propofol (4 mg/kg bodyweight intravenously) (group 1), or propofol and ketamine (2 mg/kg bodyweight of each intravenously) (group 2). Anaesthesia was maintained with halothane, delivered in a mixture of oxygen and nitrous oxide (1:2) via a non-rebreathing Bain circuit. Various cardiorespiratory parameters were monitored at two, five, 10, 15, 20, 25 and 30 minutes after induction, and the animals were observed during anaesthesia and recovery, and any adverse effects were recorded. During anaesthesia, the heart rate, but not the systolic arterial pressure, was consistently higher in group 2 (range 95 to 102 beats per minute) than in group 1 (range 73 to 90 beats per minute). Post-induction apnoea was more common in group 2 (11 of 15) than in group 1 (six of 15). Muscle twitching was observed in three dogs in each group. Recovery times were similar in both groups. Propofol followed by ketamine was comparable with propofol alone for the induction of anaesthesia in healthy dogs.  相似文献   

10.
A buffered aqueous solution of clindamycin Hcl (200 mg/mL) was injected intravenously (i.v.) intramuscularly (i.m.) and subcutaneously (s.c.) in a non-randomized, partial cross-over trial involving six male and six female dogs. Blood samples were collected at conventional, predetermined time periods and serum drug concentrations were determined by microbiological assay. Dogs were observed clinically for signs of pain, and activity of serum creatine phosphokinase (CPK) was monitored after i.m. dosing. The i.v. data from five of the dogs best fitted a two-compartment open-system pharmacokinetic model whereas a non-compartment model was most suitable for analysis of the data from the remaining seven dogs. The mean i.v. elimination half-life (t1/2 beta) and the mean residence time (MRT) were 124 and 143 min, respectively. The mean volume of distribution at steady state (Vss) was 0.86 L/kg. Little pain was recorded upon i.m. injection; mean peak serum drug concentration (Cmax) was 4.4 micrograms/mL, the elimination half-life (t1/2el) was 247 min and the calculated bioavailability (F) was 115% of the i.v. dose. Serum CPK activity was elevated to 25-fold the pretreatment level in samples collected 4, 8 and 12 h after i.m. injection. Pain was not recorded after s.c. drug administration; the mean Cmax of 20.8 micrograms/mL was significantly greater than the corresponding value for the i.m. route, and F was 310%. The s.c. route appears to be superior to the i.m. route in terms of local tolerance and serum drug level; a 10 mg/kg SID treatment regimen is suggested for treatment of canine infections due to clindamycin sensitive bacteria.  相似文献   

11.
12.
The distribution of tylosin was studied using a crossover design, in six pigs following i.v. and i.m. administration of 10 mgkg(-1) b.w. Plasma samples were analysed by HPLC and UV absorbance detection. After i.v. administration, t(1/2beta) was 271.3 min, V(d) 14.6 Lkg(-1), V(ss) 9.7 Lkg(-1) and CL 26.8 mLmin(-1)kg(-1). After i.m. administration, a C(max) of 1 microgmL(-1) was reached at 90 min. Mean absorption time was 1988.7 min and bioavailability was 95%.  相似文献   

13.
Zonca, A., Ravasio, G., Gallo, M., Montesissa, C., Carli, S., Villa, R., Cagnardi, P. Pharmacokinetics of ketamine and propofol combination administered as ketofol via continuous infusion in cats. J. vet. Pharmacol. Therap.  35 , 580–587. The pharmacokinetics of the extemporaneous combination of low doses of ketamine and propofol, known as ‘ketofol’, frequently used for emergency procedures in humans to achieve safe sedation and analgesia was studied in cats. The study was performed to assess propofol, ketamine and norketamine kinetics in six female cats that received ketamine and propofol (1:1 ratio) as a loading dose (2 mg/kg each, IV) followed by a continuous infusion (10 mg/kg/h each, IV, 25 min of length). Blood samples were collected during the infusion period and up to 24 h afterwards. Drug quantification was achieved by HPLC analysis using UV‐visible detection for ketamine and fluorimetric detection for propofol. The pharmacokinetic parameters were deduced by a two‐compartment bolus plus infusion model for propofol and ketamine and a monocompartmental model for norketamine. Additional data were derived by a noncompartmental analysis. Propofol and ketamine were quantifiable in most animals until 24 and 8 h after the end of infusion, respectively. Propofol showed a long elimination half‐life (t1/2λ2 7.55 ± 9.86 h), whereas ketamine was characterized by shorter half‐life (t1/2λ2 4 ± 3.4 h) owing to its rapid biotransformation into norketamine. The clinical significance of propofol’s long elimination half‐life and low clearance is negligible when the drug is administered as short‐term and low‐dosage infusion. The concurrent administration of ketamine and propofol in cats did not produce adverse effects although it was not possible to exclude interference in the metabolism.  相似文献   

14.
ObjectiveTo compare anaesthetic induction in healthy dogs using propofol or ketofol (a propofol-ketamine mixture).Study designProspective, randomized, controlled, ‘blinded’ study.AnimalsSeventy healthy dogs (33 males and 37 females), aged 6–157 months and weighing 4–48 kg.MethodsFollowing premedication, either propofol (10 mg mL?1) or ketofol (9 mg propofol and 9 mg ketamine mL?1) was titrated intravenously until laryngoscopy and tracheal intubation were possible. Pulse rate (PR), respiratory rate (fR) and arterial blood pressure (ABP) were compared to post-premedication values and time to first breath (TTFB) recorded. Sedation quality, tracheal intubation and anaesthetic induction were scored by an observer who was unaware of treatment group. Mann–Whitney or t-tests were performed and significance set at p = 0.05.ResultsInduction mixture volume (mean ± SD) was lower for ketofol (0.2 ± 0.1 mL kg?1) than propofol (0.4 ± 0.1 mL kg?1) (p < 0.001). PR increased following ketofol (by 35 ± 20 beats minute?1) but not consistently following propofol (4 ± 16 beats minute?1) (p < 0.001). Ketofol administration was associated with a higher mean arterial blood pressure (MAP) (82 ± 10 mmHg) than propofol (77 ± 11) (p = 0.05). TTFB was similar, but ketofol use resulted in a greater decrease in fR (median (range): ketofol -32 (-158 to 0) propofol -24 (-187 to 2) breaths minute?1) (p < 0.001). Sedation was similar between groups. Tracheal intubation and induction qualities were better with ketofol than propofol (p = 0.04 and 0.02 respectively).Conclusion and clinical relevanceInduction of anaesthesia with ketofol resulted in higher PR and MAP than when propofol was used, but lower fR. Quality of induction and tracheal intubation were consistently good with ketofol, but more variable when using propofol.  相似文献   

15.
ObjectiveTo compare the pharmacokinetics and pharmacodynamics of propofol with or without 2% benzyl alcohol administered intravenously (IV) as a single induction dose in cats.Study designProspective experimental study.AnimalsSix healthy adult cats, three female intact, three male castrated, weighing 4.8 ± 1.8 kg.MethodsCats received 8 mg kg−1 IV of propofol (P) or propofol with 2% benzyl alcohol (P28) using a randomized crossover design. Venous blood samples were collected at predetermined time points to 24 hours after drug administration to determine drug plasma concentrations. Physiologic and behavioral variables were also recorded. Propofol and benzyl alcohol concentrations were determined using high pressure liquid chromatography with fluorescence detection. Pharmacokinetic parameters were described using a 2-compartment model. Pharmacokinetic and pharmacodynamic parameters were analyzed using repeated measures anova (p < 0.05).ResultsPlasma concentrations of benzyl alcohol were below the lower limits of quantification (LLOQ) at all time points for two of the six cats (33%), and by 30 minutes for the remaining four cats. Propofol pharmacokinetics, with or without 2% benzyl alcohol, were characterized by rapid distribution, a long elimination phase, and a large volume of distribution. No differences were noted between treatments with the exception of clearance from the second compartment (CLD2), which was 23.6 and 38.8 mL kg−1 minute−1 in the P and P28 treatments, respectively. Physiologic and behavioral variables were not different between treatments with the exception of heart rate at 4 hours post administration.Conclusions and clinical relevanceThe addition of 2% benzyl alcohol as a preservative minimally altered the pharmacokinetics and pharmacodynamics of propofol 1% emulsion when administered as a single IV bolus in this group of cats. These data support the cautious use of propofol with 2% benzyl alcohol for induction of anesthesia in healthy cats.  相似文献   

16.
The effects of propofol infusion were compared with propofol/isoflurane anaesthesia in six beagles premedicated with 10 microg/kg intramuscular (i.m.) dexmedetomidine. The suitability of a cold pressor test (CPT) as a stress stimulus in dogs was also studied. Each dog received isoflurane (end tidal 1.0%, induction with propofol) with and without CPT; propofol (200 microg/kg/min, induction with propofol) with and without CPT; premedication alone with and without CPT in a randomized block study in six separate sessions. Heart rate and arterial blood pressures and gases were monitored. Plasma catecholamine, beta-endorphin and cortisol concentrations were measured. Recovery profile was observed. Blood pressures stayed within normal reference range but the dogs were bradycardic (mean heart rate < 70 bpm). PaCO2 concentration during anaesthesia was higher in the propofol group (mean > 57 mmHg) when compared with isoflurane (mean < 52 mmHg). Recovery times were longer with propofol than when compared with the other treatments. The mean extubation times were 8 +/- 3.4 and 23 +/- 6.3 min after propofol/isoflurane and propofol anaesthesia, respectively. The endocrine stress response was similar in all treatments except for lower adrenaline level after propofol infusion at the end of the recovery period. Cold pressor test produced variable responses and was not a reliable stress stimulus in the present study. Propofol/isoflurane anaesthesia was considered more useful than propofol infusion because of milder degree of respiratory depression and faster recovery.  相似文献   

17.
Ceftriaxone was administered to Israeli-Friesian male calves by IV and IM routes. The antibiotic was administered IV (10 mg/kg) to 10 calves and IM to 23 calves; 8 were given the antibiotic at the rate of 10 mg/kg of body weight, 5 were given 20 mg/kg, and 10 were given 10 mg/kg, together with probenecid at 40 mg/kg. Serum concentration vs time profiles measured after IV and IM administration were analyzed by use of statistical moment theory. The following mean values +/- SD were found: elimination half-life (t1/2) was 83.8 +/- 8.6 minutes after IV administration and significantly longer 116.8 +/- 20.5 minutes (P less than 0.001) after IM administration at 10 mg/kg. The t1/2 was increased to 141.3 +/- 24.4 minutes by the coadministration of probenecid and to 145.0 +/- 48.2 minutes by doubling the IM dosage to 20 mg/kg. The total body clearance was 3.39 +/- 0.42 ml/min/kg and the renal clearance 2.37 +/- 0.74 ml/min/kg. The specific volume of distribution was 0.2990 +/- 0.0510 L/kg. The average mean residence time (MRT) was 94.0 +/- 12.3 minutes after IV administration and 137.6 +/- 19.9 minutes after IM administration of ceftriaxone at 10 mg/kg. The MRT was increased to 198 +/- 48.8 minutes by the coadministration of probenecid and to 191.0 +/- 59.4 minutes by doubling the IM dose. The former value was significantly different from the MRT after IM administration of the antibiotic at 10 mg/kg. Bioavailability of ceftriaxone after IM administration at 10 mg/kg and at 20 mg/kg was 78% and 83%, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
ObjectiveTo compare the effects of propofol and alfaxalone on respiration in cats.Study designRandomized, ‘blinded’, prospective clinical trial.AnimalsTwenty cats undergoing ovariohysterectomy.MethodsAfter premedication with medetomidine 0.01 mg kg−1 intramuscularly and meloxicam 0.3 mg kg−1 subcutaneously, the cats were assigned randomly into two groups: group A (n = 10) were administered alfaxalone 5 mg kg−1 minute−1 followed by 10 mg kg−1 hour−1 intravenously (IV) and group P (n = 10) were administered propofol 6 mg kg−1 minute−1 followed by 12 mg kg−1hour−1 IV for induction and maintenance of anaesthesia, respectively. After endotracheal intubation, the tube was connected to a non-rebreathing system delivering 100% oxygen. The anaesthetic maintenance drug rate was adjusted (± 0.5 mg kg−1 hour−1) every 5 minutes according to a scoring sheet based on physiologic variables and clinical signs. If apnoea > 30 seconds, end-tidal carbon dioxide (Pe′CO2) > 7.3 kPa (55 mmHg) or arterial haemoglobin oxygen saturation (SpO2) < 90% occurred, manual ventilation was provided. Methadone was administered postoperatively. Data were analyzed using independent-samples t-tests, Fisher's exact test, linear mixed-effects models and binomial test.ResultsManual ventilation was required in two and eight of the cats in group A and P, respectively (p = 0.02). Two cats in both groups showed apnoea. Pe′CO2 > 7.3 kPa was recorded in zero versus four and SpO2 < 90% in zero versus six cats in groups A and P respectively. Induction and maintenance dose rates (mean ± SD) were 11.6 ± 0.3 mg kg−1 and 10.7 ± 0.8 mg kg−1 hour−1 for alfaxalone and 11.7 ± 2.7 mg kg−1 and 12.4 ± 0.5 mg kg−1 hour−1 for propofol.Conclusion and clinical relevanceAlfaxalone had less adverse influence on respiration than propofol in cats premedicated with medetomidine. Alfaxalone might be better than propofol for induction and maintenance of anaesthesia when artificial ventilation cannot be provided.  相似文献   

19.
Serum concentrations of ticarcillin and clavulanic acid were measured in healthy foals (2 to 6 months old) given the drugs in combination by intravenous and intramuscular routes of administration. Five foals were administered 50 mg of ticarcillin/kg of body weight and 1.67 mg of clavulanic acid/kg, IV. Five foals were administered 100 mg of ticarcillin/kg and 3.33 mg of clavulanic acid/kg, IV, and 4 of those 5 were given the same combined dose IM. The elimination half-life of ticarcillin for intravenous administration was 0.83 hour for the low dosage and 0.96 hour for the high dosage. After intramuscular administration, the half-life of elimination was 2.9 hours, with bioavailability of 54.6%. For IV administered clavulanic acid, the elimination half-life was 0.65 hour for the low dosage and 0.74 hour for the high dosage. After intramuscular administration, the elimination half-life was 0.92 hour, and bioavailability was 68.1%. A combined dosage, 50 mg of ticarcillin/kg and 1.67 mg of clavulanic acid/kg, given every 6 hours is recommended.  相似文献   

20.
Thee different combinations of ketamine hydrochloride were used to induce general anaesthesia for surgical operations (typhlectomy) in 30 adult, single-comb White Leghorn cockerels. They were randomly divided into three groups, each comprising 10 birds. Birds in Group I received xylazine-ketamine combinations at the dose rate of 2 mg xylazine and 10 mg ketamine per kg i.v., whereas birds of Group II received diazepam (2.5 mg/kg i.v.) and 5 min later ketamine (75 mg/kg i.m.). In the Group III, midazolam (2 mg/kg i.m.) and 5 min later ketamine (50 mg/kg i.v.) was administered. The onset of sedation/anaesthesia was shortest (1.60 +/- 0.27 min) in Group I, followed by Group II (8.40 +/- 0.83 min) and Group III (17.10 +/- 1.71 min). Recovery period was shortest in the Group I (65-75 min) followed by Group II (80-85 min) and Group III (92-105 min). Sedation, muscle relaxation and surgical anaesthesia was optimal and excellent in Group I compared with the other two groups. Torticollis, salivation and dyspnoea were observed in Group III. Short-term limb contractions were present in all birds in Groups II and III, up to 20 min of observation. Recovery from anaesthesia was smooth in all three groups. A Surgical procedure (typhlectomy) was performed on all birds. Hypothermia was observed in Group II, whereas heart and respiratory depression was recorded in Group I. Blood sugar level did not vary significantly in any anaesthetic regime. The reduction of haemoglobin was maximum in Group II compared with Groups I and III. Hypoxaemia and hypercapnaea were elevated in all birds in Groups II and III. Blood electrolytes did not vary significantly from the baseline values among the three groups of birds during the period of observation (120 min). The xylazineketamine combination was found to be the best anaesthesia for surgical intervention in chickens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号