首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study investigated the performance of steers grazing rhizomatous birdsfoot trefoil (Lotus corniculatus L.) (RBFT) compared to nonrhizomatous birdsfoot trefoil (BFT) in pure stands or when interseeded with endophyte-free tall fescue (Festuca arundinacea Schreb.; TF). Five forage treatments of RBFT, BFT, TF, RBFT+TF, and BFT+TF (four replicate paddocks per treatment) were continuously stocked in spring and fall of 1998 and spring of 1999. Grazing for individual treatments was terminated when pasture mass fell below 900 kg/ha. Average daily gain was greatest (P < 0.10) in pure stands of BFT and RBFT, but total forage production, and thus grazing days, for these treatments was low. Average daily gain for steers grazing BFT+TF and RBFT+TF treatments was not different from (spring and fall 1998) or greater (P < 0.10) (spring 1999) than that for TF. Total forage production of BFT+TF and RBFT+TF was greater (P < 0.10) than that of TF in spring 1998. In fall 1998, BFT+TF produced more (P < 0.10) total forage than either RBFT+TF or TF, and in spring 1999, RBFT+TF had less (P < 0.10) total forage than TF or BFT+TF. Total steer days on mixed pastures were greater (P < 0.10) than that for TF in spring and fall 1998 but not different from those for TF in spring 1999. In all three trials total weight gain/hectare was greater (P < 0.10) for RBFT+TF and BFT+TF than for TF. The RBFT+TF and BFT +TF had greater (P < 0.05) CP than TF in spring and fall 1998 and less (P < 0.05) NDF and ADF in fall 1998. We concluded that either RBFT or BFT could be interseeded with tall fescue to enhance ADG and total steer days.  相似文献   

2.
Cattle grazing tall fescue (Festuca arundinacea Schreb.) often develop fescue toxicosis. This condition is thought to be caused by ergot alkaloids produced by the endophyte Neotyphodium coenophialum. Endophytes from wild tall fescue plants, which do not produce ergot alkaloids, were transferred into the endophyte-free tall fescue germplasm, HiMag. The novel associations also lacked the ability to produce ergot alkaloids. Our objective was to determine whether cattle grazing these novel endophyte associations showed signs of fescue toxicosis. At the Fayetteville, Arkansas location, tester steers (n = 72) were assigned to one of four pasture treatments: endophyte-free HiMag tall fescue (HiMag-); 'Kentucky-31' tall fescue infected with its native, toxic endophyte (KY+); and two novel endophyte-infected tall fescue associations, HiMag4 and HiMag9. At the Mount Vernon, Missouri location, steers (n = 54) were used to test three of the four cultivars (HiMag9 was not tested). Ergot alkaloid concentrations in the forage of HiMag4 and HiMag9 were low or undetectable. Respiration rate, rectal temperature, ADG, and hair scores were measured during the grazing period. Blood was collected via jugular venipuncture and used for prolactin, aspartate aminotransferase, alkaline phosphatase (ALP), lactate dehydrogenase (LDH), cholesterol, triglyceride, and creatinine analysis. Weight gains by steers grazing HiMag4 and HiMag9 did not differ from those of steers grazing HiMag-, but were greater than gains (P < 0.05) by steers on the KY+ treatment. Steers grazing KY+ had higher (P < 0.05) respiration rates, rectal temperatures, and hair scores than did steers grazing novel endophyte and HiMag- pastures. Prolactin, ALP, cholesterol, LDH, and triglycerides all were suppressed (P < 0.05) in steers grazing KY+ compared with steers grazing novel endophyte and HiMag- pastures. Steers grazing the novel endophyte tall fescues did not suffer from the decreased weight gains and toxicities associated with fescue toxicosis, resulting in enhanced animal production.  相似文献   

3.
Effects of grazing low-endophyte (Acremonium coenophialum Morgan-Jones and Gams, less than 1% infection) Johnstone (J) or high-endophyte (60% infection) Kentucky-31 (K) tall fescue (Festuca arundinacea Schreb.) on grazing behavior and voluntary intake were studied. Six Angus steers (average initial BW = 326 kg) grazed 1.21-ha plots of each forage cultivar (three steers per cultivar) in four 28-d periods beginning May 27. Daytime observations (0630 until 2130) revealed that J steers spent more (P less than .10) time grazing and lying down and took more (P less than .05) prehensile bites than K steers did; conversely, steers grazing K spent more (P less than .10) time standing and idling than J steers did. Idling time showed a forage x period interaction (P less than .10). Mean OM bite size (grams per bite) was not affected (P greater than .10) by forage but differed (P less than .10) among periods. Limited nighttime observations (2130 until 0630) revealed no effects (P greater than .10) of forage on grazing time or number of prehensile bites taken. Voluntary intakes of OM and NDF did not differ (P greater than .10) between steers grazing J and K; however, a forage x period interaction (P less than .10) existed such that, during Period 1, steers grazing J had greater (P less than .01) OM and NDF intakes than did steers grazing K. These data suggest that cattle grazing endophyte-infected tall fescue display altered daytime grazing behavior and that reduction of voluntary intake attributable to endophyte infection may be less severe under free-grazing than has been reported for controlled environmental conditions.  相似文献   

4.
A grazing trial was conducted with six half-sib yearling Angus steers (average initial weight 281 kg) to quantitate nutrient composition and voluntary intake of vegetative regrowth forage in low-endophyte (Acremonium coenophialum Morgan-Jones and Gams) Kentucky-31 tall fescue (Festuca arundinacea Schreb.) pasture. A new .6-ha section in each of two 3.0-ha pastures (three steers/pasture) was clipped to a 5-cm height on five consecutive days to establish a series of plots that could be grazed continuously during 5-d test periods at uniform stages of vegetative regrowth; each period represented a specific regrowth stage (7, 14, 21, 28 and 35 d). Steers were conditioned by training them to graze to satiety while tethered with an adjustable-length rope to a 1-m galvanized steel post. Grazing time was limited to two sessions daily beginning at 0800 and 1400, and satiety was achieved after no more than 2.5 h of continuous grazing in each session. Forage DM availability was controlled by adjusting tether length and was set each day at 4% of steer BW. Fecal DM output was measured by chromic oxide dilution. A quadratic (P less than .05) effect of regrowth stage was observed for forage contents of NDF and ADF due to abrupt increases in both fractions at wk 5; values for ADL were unaffected by stage of forage regrowth. Forage contents of CP and ash showed a cubic (P less than .05) response to advancing stage of regrowth, with highest (23.6 and 11.0%, respectively) and lowest (14.7 and 9.1%, respectively) values for both fractions occurring at wk 1 and 5, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Seeds of the tall fescue ( Festuca arundinacea Schreb .) cultivars Kentucky 31 and an experimental ryegrass X tall fescue hybrid derivative strain (G1-307), and orchard grass (OG) seed were fed in a carrier diet to calves in controlled environmental rooms (31 to 32 C). Both tall fescue varieties produced symptoms of summer toxicosis in dairy steers. Total feed intake (P less than .01) and water intake (P less than .01) of calves were reduced by the tall fescue seed diets when compared with orchard grass. Steers fed G1-307 and Kentucky 31 tall fescue lost (NS) 17.5 and 7.8 kg of body weight, respectively, while those consuming orchard grass gained (P less than .01) 6.2 kg during the experiment. Rectal temperatures were lower (P less than .05) in the calves fed OG (39.4 C) when compared with those fed G1-307 (40.6 C) and Kentucky 31 (40.8 C) tall fescue seed, respectively. In a second trial Kentucky 31 seed was fed in a carrier diet to Holstein steers at graded levels of 0, 350, 700 and 1,050 g seed/d. Consumption of 700 and 1,050 g seed/d adversely affected performance of steers. Total feed intake was lower and water intake was reduced (P less than .05), with rectal temperatures being elevated (P less than .01) in these two groups when compared with 0- or 350-g treatments. No significant differences were detected in body weight changes in this trial. Respiration rates were not significantly affected in either trial. Results of these trials with the young bovine indicate that a toxic substance(s) is present in tall fescue seed.  相似文献   

6.
The dopamine antagonist metoclopramide (MC) was administered to steers grazing on endophyte-infected fescue. Yearling Angus steers (n = 24) were assigned randomly to pasture treatments including high (74%) and low (33%) endophyte levels and low (134 kg N.ha-1.yr-1) and high (335 kg N.ha-1.yr-1) N fertilization rates. One steer of the pair in each paddock (n = 12) received MC, whereas the other received sucrose (S) (15 mg/kg body weight, orally, three times a week for 10 wk). Blood for basal and maximal TRH-stimulated serum prolactin (PRL) concentrations was obtained before animals grazed fescue, after grazing for 1 mo, and after 3, 6 and 9 wk of animal treatment. Grazing endophyte-infected fescue decreased (P less than .05) basal serum PRL concentrations (less than 1.0 vs 5.3 ng/ml, high vs low endophyte). Basal serum PRL increased after 3, 6 and 9 wk of MC treatment (58.1 vs 5.4, 46.0 vs 12.0 and 50.8 vs 16.9 ng/ml, MC vs sucrose, respectively). After 6 wk of animal treatments, MC increased (P less than .05) serum cholesterol (84.7 vs 60.8 mg/dl, MC vs S). Animals treated with MC spent more (P less than .05) time between 1200 and 1600 grazing (22.4% vs 6.2%, MC vs S respectively) and had faster ADG (.314 vs .150 kg/d, MC vs S). The results implicate dopaminergic processes in fescue toxicosis.  相似文献   

7.
Two experiments were conducted to compare the effects of a progesterone-estradiol implant (PEI) with no implant (NI) and 20 g of copper oxide needles (CuON) with no CuON on grazing, subsequent feedlot performance, and selected serum constituents of steers. In Exp. 1, 114 Limousin crossbred yearling steers (317 kg average initial BW) were stocked continuously on Acremonium coenophialum-infected tall fescue (Festuca arundinacea Schreb.)-ladino clover (Trifolium repens L.) pastures (C) or were rotated to bermuda grass (Cynodon dactylon [L.] Pers.) during summer months (R) of two consecutive years. Implant and copper treatments were applied within pasture. Blood samples were collected four times during each grazing season. Continuously stocked steers had greater (P less than .05) grazing gain, less (P less than .10) feedlot gain, and heavier (P less than .05) carcass weights than R steers did. Implanted steers had greater (P less than .05) pasture but lesser (P less than .05) feedlot gains than did NI steers. Prolactin concentrations were greater (P less than .05) from R than from C steers in late summer 1988. Ceruloplasmin was greater (P less than .01) with CuON than without on the last three and last two sampling dates in 1988 and 1989, respectively. In Exp. 2, blood samples were collected twice from 40 mixed-breed steers (283 kg average initial BW) receiving the same implant and copper treatments as in Exp. 1 and grazing infected fescue for one season. Serum ceruloplasmin and copper concentrations were increased (P less than .01) by CuON, but other measurements did not differ among treatments. Summer grazing of bermuda grass increased serum copper, ceruloplasmin, and prolactin but decreased grazing performance. Implanting increased grazing performance. Copper oxide needles increased serum ceruloplasmin and copper concentrations but did not affect steer performance.  相似文献   

8.
Effects of applying Tasco-Forage, an Ascophyllum nodosum seaweed-based product prepared by a proprietary process, to endophyte (Neotyphodium coenophialum [Morgan-Jones and Gams] Glenn, Bacon, and Hanlin)-infected and endophyte-free tall fescue (Festuca arundinacea Schreb.) were studied in each of 3 yr (1995, 1996, and 1997) in Virginia and in 1996 and 1997 in Mississippi. There were 48 steers at each location in each year (n = 240) in a 2 x 2 x 2 factorial arrangement with two replications at each location. Steers in Virginia were Angus and Angus x Hereford with initial weights of 245 kg (SD = 20), 234 kg (SD = 9), and 265 kg (SD = 5) in yr 1, 2, and 3, respectively. Steers in Mississippi were 3/4 Angus and 1/4 Brahman and weighed 230 kg (SD = 8) and 250 kg (SD = 2) in yr 2 and 3, respectively. Tasco (3.4 kg/ha) was dissolved in water and applied to pastures in April before grazing was begun and again in July at the same rate. The grazing period was from mid-April to late September or mid-October. Total gains were higher (P < 0.05) for steers grazing uninfected than for those grazing endophyte-infected tall fescue. Rectal temperatures were increased (P < 0.05) due to endophyte infection at both locations; Tasco application decreased temperature of steers grazing infected fescue in Virginia (interaction, P < 0.07) but increased temperatures of steers grazing infected fescue in Mississippi (interaction, P < 0.05). Presence of the endophyte resulted in rough hair coats and loss of hair color, but the effect was partially offset (P < 0.05) by Tasco application in Virginia in 1995. Both monocyte phagocytic activity (all years and locations) and major histocompatibility complex class II expression (1995 only) were decreased (P < 0.05) in steers due to endophyte infection, but this effect was reversed (P < 0.05) by application of Tasco to pastures. Application of the extract from A. nodosum seems to have use in alleviating adverse effects of endophyte on immune function and may improve hair coat condition in cattle grazing infected fescue, but effects on rectal temperature varied due to location.  相似文献   

9.
An 84-d grazing experiment was conducted in 2 growing seasons to evaluate interactions of stocking rate and steroidal implants with BW gain and symptoms of toxicosis in yearling steers grazing endemic endophyte-infected (E+) tall fescue (Festuca arundinacea Schreb.). A 4 x 2 factoral design was used to evaluate 4 stocking rates (3.0, 4.0, 5.0, and 6.0 steers/ ha) with or without steroidal implants (200 mg of progesterone + 20 mg of estradiol benzoate). Treatment combinations were randomly assigned to eight 1-ha pastures of E+ Kentucky-31 tall fescue (i.e., treatments were not replicated). Treatment effects were analyzed for ADG, total BW gain per hectare, forage availability, and hair coat ratings. At the conclusion of grazing in the second year (22 June), steers were placed on a bermudagrass [Cynodon dactylon (L.) Pers.] pasture, and rectal temperatures and serum prolactin concentrations were monitored for 10 d to assess carryover effects of stocking rate and steroidal implants on recovery from toxicosis-related heat stress. Forage availability differed (P < 0.001) between years, but there were no year x treatment interactions (P > 0.10). There was an implant x stocking rate interaction (P < 0.05) on ADG. Differences between the slopes in the regression equations indicated that ADG responded to implantation when stocking rates were low, but the response diminished as stocking rate increased. Stocking rate did not influence (P = 0.89) postgraze rectal temperature, but the regression intercept for implanted steers was 0.4 degrees C greater (P < 0.05) than for nonimplanted steers, and the difference was consistent across the entire 10-d fescue-free grazing period. Concentrations of prolactin increased during the 10-d fescue-free grazing period, but trends differed due to an implantation x stocking rate interaction (P < 0.05). Results indicate that implantation with progesterone + estradiol benzoate increases ADG with lower stocking rates, but the effect diminishes with increased grazing intensity. Implantation with steroid hormones increased rectal temperatures, but during a fescue-free grazing period rectal temperatures and serum prolactins for implanted and nonimplanted steers returned to values indicative of a stable and healthy status in a 192- to 240-h (i.e., an 8- to 10-d) period. However, because the treatments used in this study were not replicated, these observations need to be confirmed with replicated studies.  相似文献   

10.
Eighteen Angus steers (438 +/- 4 kg of BW) were supplemented with varying levels of corn oil (0 g/kg of BW, none; 0.75 g/kg of BW, MED; or 1.5 g/kg of BW, HI) on rotationally stocked, endophyte-free tall fescue to determine the effect of supplemental oil level on in vivo digestibility, intake, performance, and carcass traits. Pelleted cottonseed hulls were used as a carrier for the oil supplements, and all supplements were offered to steers using Calan gate feeders for individual intake determination. On d 49, each steer was dosed with a controlled-release capsule containing chromium sesquioxide, and fecal samples were obtained 12 d later over a 7-d period to estimate fecal output that, with forage, supplement, and fecal indigestible NDF concentration, was used to estimate DMI and in vivo total diet digestibility. Steers were slaughtered at the end of the 116-d grazing period, and carcass data were collected at 24 h postmortem. Total fatty acid intake linearly increased with corn oil supplementation, and forage DMI, total DMI, and total DE intake were linearly decreased (P < 0.01). The decrease in total DMI was reflected in forage substitution rates greater (P < or = 0.01) than 1, with a trend (P = 0.09) for a greater substitution rate in HI than in MED. In vivo DM, OM, and NDF digestibility were linearly decreased (P < 0.01) by corn oil supplementation. Average daily gain and final BW tended (P = 0.09) to increase linearly in response to oil level. Oil conversion (0.36 kg of BW gain/kg of corn oil) was greater (P < or = 0.05) than zero and did not differ (P = 0.15) between MED and HI. Dressing percent (P = 0.09), carcass weight (P = 0.01), and carcass backfat thickness (P = 0.01) increased linearly with oil supplementation. No treatment effect was observed for carcass LM area, KPH percentage, marbling score, or yield grade (P > 0.10). Oil supplementation to grazing steers linearly reduced forage DMI intake; however, animal performance was maintained and tended to be greater for oil-supplemented cattle. Oil supplementation increased carcass fat thickness and weight without altering other carcass quality parameters.  相似文献   

11.
Tall fescue (Lolium arundinaceum) toxicosis research is often complicated by a reduction in intake of infected forage or seed, making treatment comparisons difficult. This study was conducted to develop a fescue toxicosis model that would allow for variations in DMI without altering the quantity of alkaloids consumed over the course of the experiment. Ground tall fescue seed and a tall fescue seed extract were used in two 2-period crossover experiments to determine the effectiveness of ruminal dosing of a tall fescue seed extract to induce fescue toxicosis. This experiment used 4 growing Holstein steers (BW = 337 ± 24 kg) surgically fitted with ruminal cannulas. Steers were maintained on a diet of endophyte-free fescue hay fed ad libitum throughout the experiment. Endophyte-infected (E+; 4.1 mg/kg of ergovaline) and uninfected (E-; 0.0 mg/kg of ergovaline) KY-31 tall fescue seed was ground and dosed or extracted with ethanol, concentrated, and lyophilized before ruminal dosing. Ergovaline concentration of the final extract was 102 mg/kg. Animals were given a minimum of a 3-wk washout period between treatments. Physiological indicators were measured over 7 d at 22°C (d 1 to 3) and 32°C (d 4 to 7) during both seed and extract dosing. Seed and extract E+ dosing reduced serum prolactin concentrations such that they were not different from zero (P < 0.10). Treatment with E+ reduced feed intake (P < 0.05) and heart rate (P < 0.001), and increased respiration rate (P < 0.01) and core temperature (P < 0.05) during both seed and extract dosing. Increasing environmental temperature from 22 to 32°C reduced total intake (P < 0.05) and increased core temperature (P < 0.001) and respiration rate (P < 0.001) during both seed and extract dosing. Diastolic blood pressure tended (P < 0.09) to be increased during E+ extract dosing and reduced during heat stress. These physiological alterations are consistent with those reported for cattle grazing or consuming seed from endophyte-infected tall fescue. These data indicate that a ruminally dosed ethanol extract of tall fescue seed is efficacious in inducing fescue toxicosis in cattle.  相似文献   

12.
Nine ruminally and duodenally cannulated steers (average BW 355 kg) were used to evaluate effects of prebloom alfalfa greenchop substitution at 20% of DMI on utilization of late-May (high quality; HQ; Period 1) and mid-August (low quality; LQ; Period 2) tall fescue greenchop. Alfalfa inclusion did not influence (P greater than .10) diet ad libitum DMI during Period 1 but it decreased (P less than .10) DMI during Period 2. Ruminal and total tract DM, cell wall, and GE digestibility of HQ were unaffected (P greater than .10) by alfalfa inclusion; however, digestibility of these constituents in LQ was increased (P less than .03) by alfalfa substitution. Alfalfa substitution did not influence (P greater than .10) dietary cell wall monosaccharide disappearance. Ruminal CP digestibility was greater (P less than .10) when steers received alfalfa, but microbial efficiency (grams of bacterial N/kilogram of OM truly digested in the rumen) was not enhanced (P greater than .10) by alfalfa inclusion in either HQ or LQ diets. There was a trend (P = .15) for greater microbial efficiency with alfalfa substitution to LQ. Ruminal particulate passage rate did not differ (P greater than .10) between treatments for either stage of maturity. Fluid passage rate was faster (P less than .10) in steers that received only LQ (7.1%/h) than in those fed LQ substituted with 20% alfalfa (5.0 %/h). Our data suggest that alfalfa inclusion in a low-quality fescue diet enhanced cell wall and GE digestibility.  相似文献   

13.
Twenty-eight Angus (289 +/- 3.8 kg) steers were used in a completely randomized design to evaluate the effect of isocaloric supplementation of 2 different energy sources to steers rotationally grazing tall fescue pastures for 197 d in comparison to positive and negative controls. Steers were supplemented with either corn grain (0.52% BW on a DM basis; PC) or soybean hulls plus corn oil (0.45% BW on a DM basis + 0.10% BW on an as-fed basis; PO) using Calan gates for individual intake measurement. Negative, pasture only (PA), and positive, high-concentrate control diets (85% concentrate:15% roughage on DM basis; C) were also included in the study. Steers on PC, PO, and PA treatments were managed together under a rotational grazing system, whereas C steers were fed a high-concentrate diet for the final 113 d using Calan gates. Forage DMI and apparent DM and NDF digestibility for the grazing treatments were evaluated using Cr(2)O(5) and indigestible NDF as digesta markers. Energy supplementation decreased (P = 0.02) forage DMI (% of BW) with respect to PA, but not (P = 0.58) total DMI. There were no differences (P = 0.53) among grazing treatments on apparent total DM digestibility. However, NDF digestibility was less (P < or = 0.05) in PC than in PO and PA; the latter 2 treatments did not differ (P > 0.05). Overall ADG was greater (P < 0.01) in supplemented, regardless of type, than in nonsupplemented grazing treatments. During the final 113 d, ADG was greater (P < 0.01) in C than in the grazing treatments. Overall supplement conversion did not differ (P = 0.73) between supplement types and was less (P = 0.006) than C. Carcass traits did not differ (P > 0.05) between energy sources. Dressing percentage and HCW were greater (P < 0.01) in supplemented cattle than in PA. Fat thickness and KPH percentage for PA were less (P < 0.05) than for PO but did not differ (P > 0.14) from PC. Marbling score, LM area, and quality grade did not differ (P > 0.05) between grazing treatments. Hot carcass weight for C was heavier (P < 0.001) than for pastured cattle. Quality and yield grades of C carcasses were also greater (P < 0.001) than carcasses from pastured steers. Energy supplementation, regardless of source, to grazing steers increased ADG, dressing percentage, and carcass weight compared with PA steers; however, supplemented steers had less ADG, efficiency, dressing percentage, and carcass weight compared with high-concentrate finished steers.  相似文献   

14.
Two 120-d trials (May to September, 1988 and 1989) determined the effects of grazing tall fescue (two varieties) or orchardgrass on forage intake and performance by beef cows. Each summer, 48 cow-calf pairs grazed endophyte-infected Kentucky-31 tall fescue (KY-31), endophyte-free Mozark tall fescue (MOZARK), or Hallmark orchardgrass (OG) pastures (16 pairs/treatment). Forage OM intakes and digestibilities were determined during June and August each year. Cow and calf BW and milk production were determined every 28 d. During June of both years, OM intakes did not differ (P greater than .10) among treatments. During August of 1988, intakes were 18% lower (P less than .05) by KY-31 cows (1.6% of BW) than by MOZARK or OG cows (average 1.95% of BW); however, no differences (P greater than .10) were measured in August of 1989. Estimates of ergovaline consumption during June from KY-31 were between 4.2 (1988) and 6.0 mg/d (1989), whereas August estimates were between 1.1 (1988) and 2.8 mg/d (1989). Ergovaline in MOZARK estrusa was below detection limits, except in August of 1989. Cows that grazed KY-31 lost three times (P less than .01) more BW than cows that grazed MOZARK or OG (42 vs 9 and 13 kg, respectively). Milk production by KY-31 cows was 25% lower (P less than .01) than that by cows that grazed MOZARK or OG (6.0 vs average of 8.0 kg/d). Similarly, slower (P less than .01) calf gains were noted for KY-31 than for MOZARK or OG (.72 vs .89 and .88 kg/d, respectively). Cows grazing KY-31 experienced accelerated BW loss and reduced milk production and weaned lighter calves than did cows grazing MOZARK or OG. Decreased performance was not explained by consistently reduced forage intakes; hence, altered nutrient utilization was suspected.  相似文献   

15.
Livestock grazing endophyte (Acremonium coenophialum Morgan-Jones and Gams)-infected tall fescue (Festuca arundinacea Schreb.) perform poorly due to tall fescue toxicosis, especially when animals are under heat stress. In order to determine whether thiamin promotes recovery from tall fescue toxicosis, 1 or 0 g of thiamin per day, as mononitrate, was fed orally to adult Angus (Bos taurus) cows (380 +/- 8 kg) grazing either tall fescue pasture with and without endophyte or alfalfa (Medicago sativa L.). A tethered grazing system employing a split-plot design was used to estimate intake and components of ingestive behavior. No significant differences attributable to thiamin supplements were seen in rates of intake and biting, grazing time and intake per bite when cows grazed endophyte-infected tall fescue during the first 4 d of exposure. When cows grazed endophyte-infected (greater than 95%) tall fescue with 2,091 micrograms/g loline alkaloids after 4 d of exposure, the untreated animals ingested herbage dry matter (DM) at 1.19 kg/h, whereas the cows receiving thiamin ate 1.57 kg/h (P less than .05). Cattle achieved these rates of DM intake by forming bites of 1.0 and 1.2 g DM at 24 and 26 bites/min when treated with 0 and 1 g of thiamin per day, respectively. Thiamin supplements had no effect on ingestive behavior of cows grazing endophyte-free tall fescue or alfalfa after exposure to these forages for 4 d. Responses to thiamin generally were greater when cattle grazing endophyte-infected tall fescue were exposed to heat stress. Oral thiamin supplementation may alleviate tall fescue toxicosis of beef cattle during warm weather.  相似文献   

16.
Eighteen steers were used to evaluate the effect of supplemental corn oil level to steers grazing endophyte-free tall fescue on fatty acid composition of LM, stearoyl CoA desaturase (SCD) activity and expression as well as cellularity in s.c. adipose. Corn oil was supplemented (g/kg of BW) at 0 (none), 0.75 (medium), and 1.5 (high). Cottonseed hulls were used as a carrier for the corn oil and were supplemented according to pasture availability (0.7 to 1% of BW). Steers were finished on a rotationally grazed, tall fescue pasture for 116 d. Fatty acid composition of LM, s.c. adipose, and diet was determined by GLC. Total linoleic acid intake increased linearly (P < 0.01) with corn oil supplementation (90.7, 265.1, and 406.7 g in none, medium, and high, respectively). Oil supplementation linearly reduced (P < 0.05) myristic, palmitic, and linolenic acid percentage in LM and s.c. adipose. Vaccenic acid (C18:1 t11; VA) percentage was 46 and 32% greater (linear, P = 0.02; quadratic, P = 0.01) for medium and high, respectively, than none, regardless of tissue. Effect of oil supplementation on CLA cis-9, trans-11 was affected by type of adipose tissue (P < 0.01). In the LM, CLA cis-9, trans-11 isomer was 25% greater for medium than for none and intermediate for high, whereas CLA cis-9, trans-11 CLA isomer was 48 and 33% greater in s.c. adipose tissue for medium and high than for none, respectively. Corn oil linearly increased (P 0.05) the percentage of total SFA, MUFA, or PUFA but linearly increased (P = 0.03) n-6:n-3 ratio from 2.4 to 2.9 in none and high, respectively. Among tissues, total SFA and MUFA were greater in s.c. adipose than LM, whereas total PUFA, n-6, and n-3 fatty acids and the n-6:n-3 ratio were lower. Trans-10 octadecenoic acid, VA, and CLA trans-10, cis-12 were greater (P < 0.01) in s.c. adipose than in LM. Oil supplementation did not alter (P > 0.05) stearoyl CoA desaturase activity or mRNA expression. Corn oil supplementation to grazing steers reduced the percentages of highly atherogenic fatty acids (myristic and palmitic acids) and increased the percentages of antiatherogenic and anticarcinogenic fatty acids (VA and cis-9, trans-11 CLA).  相似文献   

17.
The objective of the current study was to delineate changes that occur in serum analytes and blood cellular elements in cattle that graze endophyte-infested (Neotyphodium coenophialum) tall fescue. Tall fescue is grown on more than 35 million acres (14.2 million ha) of pasture in the United States, and three-fourths of the pastures are infected with the endophyte at a 60% or greater level. Tall fescue toxicosis caused by endophyte-produced ergot alkaloids continues to be the most important grass-related disease in the United States, in terms of economic loss to animal producers. However, the agronomic attributes of tall fescue make it an attractive forage species because of its ability to withstand cool temperatures, drought, poor soil conditions, and intensive defoliation from herbivore species, including insects. Tall fescue toxicosis is a complex disease and the need exists to understand the mechanisms of the toxic effects in order to institute effective, prophylactic control measures. Our group previously reported changes that occur in serum biochemical analytes of cattle that graze endophyte-infected tall fescue. An additional year's worth of data have been added, strengthening and corroborating these data. Consistent and significant changes associated with tall fescue toxicosis during the 3-yr study included decreased serum concentrations of cholesterol, globulin (increased albumin/globulin ratio), prolactin, total protein, and copper. The activity of alanine aminotransferase was decreased in serum, whereas an increase in serum concentrations of creatinine and total bilirubin occurred. The present report also documents comparative hemograms of cattle that grazed endophyte-infected or endophyte-free tall fescue over a prolonged period. The mean erythrocyte counts were increased in cattle that grazed endophyte-infected tall fescue, whereas mean corpuscular hemoglobin and mean corpuscular volume were decreased, as were mean eosinophil counts. Thus, repeatable changes have been identified that occur in serum biochemical and blood cellular values of cattle grazing endophyte-infected tall fescue that will aid in understanding the pathogenesis of the disease. In addition, these consistently altered parameters can be used to assess the effectiveness of potential prophylactic treatments.  相似文献   

18.
Poor growth often occurs in cattle consuming ergot alkaloids associated with endophyte-infected (EI) tall fescue. Hyperthermia may contribute significantly to poor growth resulting from fescue toxicosis. This study examined indicators of thermal status and growth in Hereford (n = 30; heat-sensitive Bos taurus; H) and Senepol (n = 28; heat-tolerant Bos taurus; S) steers fed EI tall fescue (TF) or orchardgrass (OG) in 2 x 2 factorial experiments. Respiration rates, daytime shade use, tail skin temperatures, and body weights were measured during the summer and fall of 2000 (Exp. 1) and 2001 (Exp. 2). Experimental diets consisted of hay and seed for 12 wk in 2000, hay for 6 wk during the summer of 2001, and hay plus seed for 6 wk during the fall of 2001. In Exp. 1, EI tall fescue increased (P < 0.01) respiration rates, shade use, and skin temperatures in both breeds. Breed x diet affected (P < 0.01) 12-wk ADG in Exp. 1. Growth rate was lower for H-TF (262 g/d) than for S-TF, S-OG, and H-OG (475, 497, and 524 g/d, respectively). In Exp. 2, Senepol had lower (P < 0.01) respiration rates, shade use, and skin temperatures compared with Hereford, but diet did not alter (P > 0.14) these indicator traits in either breed. Breed x diet affected (P < 0.01) summer growth rates. Growth rate was lower for H-TF (88 g/d) than for H-OG, S-TF, and S-OG (508, 555, and 566 g/d, respectively). Adding seed to the diets in Exp. 2 decreased (P < 0.01) ADG for both breeds on TF during the fall. Thermal status indicator traits in Senepol and Hereford steers were similarly altered by TF; however, only Hereford showed consistently poor growth. Senepol showed resilience in their capacity for growth under conditions of fescue toxicosis. Senepol influence may enhance cattle performance in production systems that use EI tall fescue as the base forage.  相似文献   

19.
This experiment was conducted to determine the effects of tall fescue hay maturity on intake, digestion, and ruminal fermentation responses to different supplemental energy sources fed to beef steers. Twelve ruminally cannulated, crossbred steers (initial BW = 228 +/- 21 kg) were used in a split-plot experiment with a 3 x 4 factorial treatment arrangement. Steers were assigned randomly to three supplement treatments: 1) no supplement, 2) pelleted soybean hulls, or 3) coarse cracked corn. The second treatment factor was fescue hay maturity: 1) vegetative (VEG), 2) boot-stage (BOOT), 3) heading-stage (HEAD), and 4) mature (MAT). Supplements were fed once daily at 0.67% of BW (OM basis) and tall fescue hay was offered once daily at 150% of average intake. Supplement type x forage maturity interactions were not detected (P > or = 0.25) for forage, total, or digestible OM intake, which generally decreased (P < 0.01) with advancing forage maturity. Supplementation decreased (P < 0.01) forage and increased (P < 0.01) total OM intake. Supplement type had no effect (P = 0.56) on substitution ratio (unit change in forage intake per unit of supplement intake). Digestible OM intake was increased (P < 0.01) by supplementation and was greater (P = 0.05) with soybean hulls than with corn. Supplement type x forage maturity interactions (P < or = 0.10) were observed for OM and NDF digestibilities and N retention. Increases in digestibility with soybean hulls relative to corn were greater and supplementation elicited greater increases in N retention with more mature forages. Compared with soybean hulls, corn supplementation resulted in greater (P < 0.01) negative associative effects on OM digestibility. Supplementation did not affect (P > or = 0.10) ruminal pH, total VFA concentrations, or acetate:propionate ratio. Corn supplementation decreased (P < or = 0.07) ruminal NH3-N concentrations compared with control and soybean hulls; however, decreases in ruminal NH3-N concentrations were not consistent with the presence of negative associative effects. Thus, mechanisms not involving ruminal pH or NH3-N concentration seem responsible for negative associative effects observed with corn supplementation. Within the range of forage quality in this study, increases in digestible OM intake from starch- or fiber-based supplements were independent of forage maturity. When fed at similar levels of OM, soybean hull supplementation provided an average of 6% greater digestible OM intake than corn supplementation.  相似文献   

20.
A three-year study was conducted to investigate the effects of endophyte-free (E−), endophyte-infected (E+) and novel endophyte-infected (EN) tall fescue on the growth and pregnancy rate of beef heifers during the spring. Each year, 48 beef heifers were strip-grazed on stockpiled fescue from December through February, fed fescue hay during late February to early April and then rotationally grazed on spring growth of fescue until June. At the end of the trial, heifers had been maintained on E+, E− or EN (pasture or hay) for a total of 152, 188 and 191 d in years 1, 2, and 3, respectively. In late March, heifers were synchronized using a controlled intravaginal drug-releasing device, (CIDR®) for 7 d followed by injection with PGF2α (Lutalyse®). Heatmount detectors (Kamar®) and observation for behavioral estrus were used to detect estrus for 63 d. Heifers were artificially inseminated 8 to12 h after the onset of standing estrus. Conception was determined by transrectal ultrasonography at approximately 30, 60 and 90 d after synchronization. Reproductive performance did not differ among treatments (P ≥ 0.20). Pregnancy rate was 54, 65, and 65% for E+, E− and EN, respectively. However, during the spring, growth and prolactin were decreased (P < 0.01) for heifers on E+. Gains on spring pasture were 0.24, 0.75, and 0.71 kg/d (SEM ± 0.03) for E+, E− and EN, respectively. Based on these results, the wild type endophyte-infected fescue can be used in production systems as a source of winter forage but producers should consider placing heifers on alternative forage (such as the novel endophyte-infected fescue) in the spring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号