首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Friesian heifers grazing Cenchrus ciliaris cv. Biloela were supplemented with 0, 3 or 6 kg concentrates daily during weeks 10–34 (±1·7) of lactation during either the rainy or the dry season. The overall responses to concentrate were identical between seasons at 0·27 kg extra milk and solids corrected milk per kg. Supplementation increased total feed intake and modified the grazing behaviour of cows. For each kg concentrate organic matter eaten, herbage organic matter intake was reduced by 0·64 and 0·42 kg in the rainy and dry seasons respectively and the time spent grazing by 11 min. Higher intakes in the dry season were the result of an increased rate of biting and were reflected in liveweight change but not milk yield.  相似文献   

2.
Concentrate supplementation of grazing dairy cows   总被引:1,自引:0,他引:1  
Two experiments are described in which twenty-four spring-calving Dutch Friesian cows were allocated between six grazing treatments (two levels of daily herbage allowance × three levels of daily concentrate intake) in a 2 × 3 factorial design. The swards consisted predominantly of perennial ryegrass. A two-machine sward-cutting technique (with correction for herbage accumulation during grazing) was used for estimating herbage intake by cows which grazed swards for 3 or 4d. Experiment 1 was carried out for 16 weeks of the grazing season of 1981 and experiment 2 for 18 weeks in 1982.
Daily herbage OM allowances in both experiments were 16 and 24 kg per cow above 4 cm cutting height. Daily concentrate OM intake ranged from 0.8 to 5.6 kg per cow. The effect of concentrates on herbage intake differed significantly between allowances. At the low allowance level and at daily concentrate OM intakes of 0.8, 3.2 and 5.6 kg per cow daily herbage OM intake was 10.9, 10.6 and 10.4 kg per cow respectively and the mean substitution rate of herbage by concentrates was only 0.1. At the high allowance level and at daily concentrate OM intakes of 0.8, 3.2 and 5.6 kg per cow daily herbage OM intake was 14.8, 13.6 and 12.4 kg per cow respectively and mean substitution rate was 0.5 kg herbage OM (kg concentrate OM)−1.  相似文献   

3.
Decision support tools to help dairy farmers gain confidence in grazing management need to be able to predict performance of grazing animals with easy‐to‐obtain variables on farm. This paper, the second of a series of three, describes the GrazeIn model predicting herbage intake for grazing dairy cows. The model of voluntary intake described in the first paper is adapted to grazing situations taking account of sward characteristics and grazing management, which can potentially affect intake compared to indoor feeding. Rotational and continuously stocked grazing systems are considered separately. Specific effects of grazing management on intake were quantified from an extensive literature review, including the effect of daily herbage allowance and pre‐grazing herbage mass in rotational grazing systems, sward surface height in continuously stocked grazing systems, and daily time at pasture in both grazing systems. The model, based on iterative procedures, estimates many interactions between cows, supplements, sward characteristics and grazing management. The sensitivity of the prediction of herbage intake to sward and management characteristics, as well as the robustness of the simulations and an external validation of the GrazeIn model with an independent data set, is presented in a third paper.  相似文献   

4.
The prediction of both food intake and milk production constitutes a major issue in ruminants. This article presents a model predicting voluntary dry matter intake and milk production by lactating cows fed indoors. This model, with an extension to predict herbage intake at grazing presented in a second article, is used in the Grazemore decision support system. The model is largely based on the INRA fill unit system, consisting of predicting separately the intake capacity of the cows and the fill value (ingestibility) of each feed. The intake capacity model considers potential milk production as a key component of voluntary feed intake. This potential milk production represents the energy requirement of the mammary gland, adjusted by protein supply when the protein availability is limiting. Actual milk production is predicted from the potential milk production and from the nutritional status of the cow. The law of response of milk production is a function of the difference between energy demand and actual energy intake, modulated by protein intake level. The simulation of experimental data from different feeding trials illustrates the performance of the model. This new model enables dynamic simulations of intake and milk production sensitive to feeding management during the whole lactation period.  相似文献   

5.
Two experiments are described in which two levels of winter feeding and three levels of herbage allowance during the grazing season were imposed upon March/April calving British Friesian dairy cows. The winter treatments resulted in differences in live weight and milk yield at turnout of 35 and 53 kg and 3·4 and 3·2 kg d-1 for the two trials. Subsequently, when grazed at generous herbage allowances, the cows were able to compensate for much of this difference but when herbage was restricted the milk yield differences were accentuated. Groups of cows from each winter treatment were offered 25, 50 or 75 (Experiment 1) and 30, 50 or 70 (Experiment 2) g herbage DM per kg LW daily during the grazing season. Daily herbage intakes on the three allowances in each trial were 14·1, 13·3, 10·7 and 12·5, 12·1, 11·5 kg OM and milk yields were 16·0, 15·3, 12·5 and 15·2, 14·3, 11·8 kg SCM respectively. Both intake and milk production were depressed once the cows were forced to consume more than 50% of herbage on offer or to graze the sward down to a mean height of less than 8–10 cm. Grazing behaviour observations indicated that under rotational managements the cows did not compensate for restrictions in available herbage by grazing longer. Highest levels of milk production per unit area were observed in both trials when production per cow was depressed by 20–25%.  相似文献   

6.
Twenty-four British Friesian cows were allocated between six grazing treatments (two levels of herbage mass x three levels of daily herbage allowance) in a balanced change-over design with four periods of 12 d each at monthly intervals. Herbage OM mass ranged from 3790 to 5770 kg ha-1 measured to ground level and daily herbage DM allowances were 30, 60 and 90 g per kg animal live weight. Herbage OM intake was lower at high than at low herbage mass (24·6 vs 26·3 g per kg LW), and was 26·9, 26·6 and 22·9 g per kg LW respectively at daily herbage DM allowances of 90, 60 and 30 g per kg LW. Milk yield was not affected by herbage mass but was depressed at the low herbage allowance.  相似文献   

7.
GrazeIn is a model for predicting herbage intake and milk production of grazing dairy cows. The objectives of this paper are to test its robustness according to a planned arrangement of grazing and feeding scenarios using a simulation procedure, and to investigate the precision of the predictions from an external validation procedure with independent data. Simulations show that the predicted effects of herbage allowance, herbage mass, herbage digestibility, concentrate supplementation, forage supplementation and daily time at pasture are consistent with current knowledge. The external validation of GrazeIn is investigated from a large dataset of twenty experiments representing 206 grazing herds, from five research centres within Western Europe. On average, mean actual and predicted values are 14·4 and 14·2 kg DM d?1 for herbage intake and 22·7 and 24·7 kg d?1 for milk production, respectively. The overall precision of the predictions, estimated by the mean prediction error, are 16% (i.e. 2·3 kg DM d?1) and 14% (i.e. 3·1 kg d?1) for herbage intake and milk production, respectively. It is concluded that the GrazeIn model is able to predict variations in herbage intake and milk production of grazing dairy cows in a realistic manner over a wide range of grazing management practices, rendering it suitable as a basis for decision support systems.  相似文献   

8.
Models to predict herbage intake were constructed using 168 dairy cow records from three grazing experiments. Variables included fell into three categories: animal state, sward state and animal behaviour. Linear regression models of varying complexity were obtained by removing variables from the best fitting model to reflect progressive lack of information availability on farms. Thus, behavioural variables were removed first, followed by sward surface height and milk fat concentration. Models were subject to outlier analysis and collinearity tests. Equivalent models were constructed using ridge regression to minimize collinearity problems. They were tested using 20 Holstein–Friesian dairy cows continuously stocked on a perennial ryegrass sward. A `best practice' treatment [7 cm sward surface height (SSH), 6 kg day−1 concentrate (C)] was used together with treatments of SSH5/C6, SSH7/C8, SSH7/C0 and SSH9/C6. The best model accounted for 0.37 of the variance in the estimation data and contained the following variables: concentrate intake, milk yield, milk fat concentration, days in milk, sward surface height and chewing rate while ruminating. Model performance against test data was generally poor. This was mainly because of consistent underprediction of herbage intake, caused in part by the higher average herbage intakes in the test data compared with the estimation data.  相似文献   

9.
Milk fatty acids (FA) were compared in mid‐lactation dairy cows in four feeding systems combining grazing management and supplementation. The four treatments were factorial combinations of compressed herbage grazed to 3·7 or 4·6 cm post‐grazing height, with or without concentrate feeding (3·6 kg cow?1 d?1). Milk yield and composition were measured for four groups of eight Friesian × Jersey dairy cows over 3 weeks in mid‐lactation for cows that had grazed treatments for 64 d from early spring. Milk yield was higher in cows fed concentrate plus herbage (23·9 kg d?1 cow?1) than cows fed herbage only (20·3 kg d?1 cow?1). Milk fat percentage was higher in cows fed herbage only (5·5%) than that fed herbage plus concentrate (5·1%). Milk protein percentage was higher in cows fed herbage plus concentrate (4·0%) than that fed herbage only (3·7%). The concentrations of conjugated linoleic acids c9, t11, C18:0, C18:1 t11 and C18:2 t9, c12 FA were lower where concentrate was fed. The concentrations of C18:1 t10, C18:1 t5, t8 and C18:2 c9, c12 FA were higher where concentrate was fed. The concentrations of C18:1 c6, C18:1 c9, C18:1 t9 and C18:3 c6,9,15 were unaffected by concentrate feeding. Post‐grazing herbage height had no significant effect on milk yield or concentration of milk FA. Provided dairy cows are harvesting leafy material of similar nutrient and FA concentration, post‐grazing herbage height does not appear to alter milk FA and the supply of high energy concentrates is more influential on milk FA profiles.  相似文献   

10.
An experiment was undertaken to examine the effect of supplement type on herbage intake, total dry matter (DM) intake, animal performance and nitrogen utilization with grazing dairy cows. Twenty‐four spring‐calving dairy cows were allocated to one of six treatments in a partially balanced changeover design with five periods of four weeks. The six treatments were no supplement (NONE), or supplementation with either grass silage (GS), whole‐crop wheat silage (WS), maize silage (MS), rapidly degradable concentrate (RC) or slowly degradable concentrate (SC). Cows were rotationally grazed with a mean herbage allowance of 20·5 kg DM per cow per day, measured above 4 cm. Forage supplements were offered for approximately 2 h immediately after each morning milking, with cows on NONE, RC and SC treatments returning to the grazing paddock immediately after milking. Cows on treatment MS had a significantly higher supplement DM intake than the other treatments but a significantly lower grass DM intake than the other treatments, resulting in no significant difference in total DM intake when compared with cows on treatments WS, RC and SC. Concentrate type had no significant effect on herbage intake, milk yield, milk composition or yield of milk components. The yield of milk fat and milk protein was significantly higher on treatments MS, RC and SC compared with treatments NONE, GS and WS. The results indicate that despite a relatively high substitution rate, maize silage can be a useful supplement for the grazing dairy cow.  相似文献   

11.
The effects of severity of grazing on the herbage intake and milk production of continuously stocked British Friesian cows calving in February–March were examined in three experiments conducted in the years 1976–78 (experiments 1–3 respectively) using a put-and-take technique. In experiment 1 four grazing severities were imposed by maintaining swards with different herbage masses (2500, 3000, 3500, 4000 kg OM ha-1); in experiments 2 and 3 there were two severities of grazing maintained by keeping swards canopies at constant heights of 5 and 7 cm (experiment 2) and 5 and 7·2 cm (experiment 3). Cows were reallocated to treatment every 8 weeks in experiments 1 and 2 and there were three periods, whereas they all grazed throughout a 23-week period on the same treatment in the final trial.
A decrease in the quantity of herbage on offer or in sward height reduced herbage intake and milk production in all experiments. Mean daily herbage OM intakes were 11·2, 12·2, 12·2 and 12·2 kg respectively in experiment 1, 12·2 and 13·2 kg respectively in experiment 2 and 12·2 and 152 kg respectively in experiment 3. Mean daily solids–corrected milk yields were 14·2, 15·2, 15·2 and 16·2 kg respectively in experiment 1, 14·2 and 16·2 kg respectively in experiment 2 and 12·2 and 17·2 kg respectively in experiment 3. It was apparent from the data obtained in the first two trials that grazing at a sward canopy height of 7 rather than 9 cm had little effect, but that at 5 cm there were significant depressions in both herbage intake and milk production. Milk yield was depressed to a greater extent when cows were kept on the same treatment for the whole season.  相似文献   

12.
Four perennial ryegrass (Lolium perenne L.) cultivars were compared for differences in herbage production, nutritive value and herbage intake of dry matter (DM) during the summers of 2002 and 2003. Two paddocks were sown with pure stands of four cultivars in a randomized block design with three replicates. Each plot was subdivided into fourteen subplots (22 m × 6 m) which were grazed by one cow during 24 h. Twelve lactating dairy cows were assigned to one cultivar for a period of 2 weeks in a 4 × 4 Latin square experimental design; the experiment lasted 8 weeks in each year. Sward structure (sward surface height, DM yield, green leaf mass, bulk density and tiller density) and morphological characteristics were measured. The ash, neutral‐detergent fibre, acid‐detergent lignin, crude protein and water‐soluble carbohydrate concentrations, and in vitro digestibility of the herbage were measured. The sward was also examined for infestation by crown rust (Puccinia coronata f. sp. lolii). Herbage intake of dairy cows was estimated using the n‐alkane technique. Cultivar differences for all sward structural characteristics were found except for bulk density and tiller density in 2003. Cultivars differed for proportions of pseudostem, stem (in 2003 only) and dead material. The chemical composition of the herbage was different among cultivars, with the water‐soluble carbohydrate concentration showing large variation (>0·35). Cultivars differed in susceptibility to crown rust. Herbage intake differed among cultivars in 2002 (>2 kg DM) but not in 2003. Herbage intake was positively associated with sward height, DM yield and green leaf mass. Canopy morphology did not affect herbage intake. Crown rust affected herbage intake negatively. It was concluded that options for breeders to select for higher intake were limited. High‐yielding cultivars and cultivars highly resistant to crown rust were positively related with a high herbage intake.  相似文献   

13.
Three contrasting defoliation regimes for dairy cows—four cuts annually, severe rotational grazing and lax rotational grazing integrated with cutting—were compared in terms of herbage production, selection and intake per cow. Lax and severe grazing were compared simultaneously and grazing intensity was characterized by means of changes in herbage mass and sward height during grazing.
Herbage growth and yield were similar under cutting, severe grazing and lax grazing/cutting (120 t organic matter (OM) ha−1). Herbage quality and leaf production were highest with severe grazing, which also had a less marked seasonal pattern of growth. The herbage intake per cow was 111 kg OM d−1 with severe grazing and proportionately (0-20) higher at lax grazing/ cutting. 050 of the herbage yield was harvested by cutting at lax grazing/cutting. Selectivity was described with high certainly by the nutrient content prior to defoliation and by the degree of defoliation. Models to quantify this are presented.
Grazing intensity could be described by the size and degree of utilization of the fouled area, and herbage intake was quantified by means of herbage height before and after grazing. Within the range of 80-240 mm sward height prior to grazing, height measurements led to realistic and more accurate estimates than those obtained by measuring organic matter disappearance.
Herbage utilization was depressed significantly by increasing maturity of herbage due to lower nutritive value, but in particular due to reduced green leaf content and increased reproductive development. If sward height did not exceed 250 mm at any time, good utilization by grazing could be obtained.  相似文献   

14.
The objective of this experiment was to use diurnal and temporal changes in herbage composition to create two pasture diets with contrasting ratios of water‐soluble carbohydrate (WSC) and crude protein (CP) and compare milk production and nitrogen‐use efficiency (NUE) of dairy cows. A grazing experiment using thirty‐six mid‐lactation Friesian x Jersey cows was conducted in late spring in Canterbury, New Zealand. Cows were offered mixed perennial ryegrass and white clover pastures either in the morning after a short 19‐day regrowth interval (SR AM) or in the afternoon after a long 35‐day regrowth interval (LR PM). Pasture treatments resulted in lower pasture mass and greater herbage CP concentration (187 vs. 171 g kg?1 DM) in the SR AM compared with the LR PM but did not affect WSC (169 g kg?1 DM) or the ratio of WSC/CP (1·0 g g?1). Cows had similar apparent DM (17·5 kg DM cow?1 d?1) and N (501 g N cow?1 d?1) intake for both treatments. Compared with SR AM cows, LR PM cows had lower milk (18·5 vs. 21·2 kg cow?1 d?1), milk protein (0·69 vs. 0·81 kg cow?1 d?1) and milk solids (1·72 and 1·89 kg cow?1 d?1) yield. Urinary N concentration was increased in SR AM, but estimated N excretion and NUE for milk were similar for both treatments. Further studies are required to determine the effect of feeding times on diurnal variation in urine volume and N concentration under grazing to predict urination events with highest leaching risk.  相似文献   

15.
An experiment was carried out to examine the effect of supplementation on the performance of spring-calving dairy cows grazing swards of differing perennial ryegrass and white clover content. Seventeen heifers and sixty-four Friesian cows in their third to ninth week of lactation were turned out onto one of three pastures with different proportions of perennial ryegrass and white clover. Nine animals on each pasture received either 0, 2 or 4 kg d−1 of a concentrate with a crude protein concentration of 180 g kg−1 dry matter (DM). Prior to grazing, swards contained proportionately 0·01 (L), 0·15 (M) and 0·20 (H) of total DM as clover. During the experiment, grazing pressures were adjusted by movement of buffer fences to maintain compressed sward heights at 6 cm. Samples taken 26 and 68 d after the start of grazing showed little change in the proportion of clover in sward L (< 0·01 and 0·02 respectively), but convergence in the proportion of clover in swards M and L (0·08-0·16 and 0·10-0·15 respectively). Mean daily yields of milk, fat, protein and lactose increased significantly with increased clover content and, even without supplementation, daily yields were 25·4, 0·98, 0·73 and 1·09 kg respectively on sward H. Of the milk components, only protein was significantly increased by increasing sward clover content. The response in milk yield to supplementation was greater on sward L than on swards M and H.  相似文献   

16.
Two experiments were carried out to examine the effects of grazing severity on the performance of January/February calved British Friesian dairy cows. In Experiment 1, three groups of cows were rotationally grazed across twenty-four one-day paddocks with high (H), medium (M) or low (L) herbage allowances. Cows on treatment M were offered a daily herbage allowance designed to achieve a residual sward height of 50 mm, assessed by a rising-plate sward stick. The daily herbage allowance (g organic matter (kg live-weight)-1 on treatments L and H were 0.30 below and above that for M, respectively, to give residual sward heights of 42 and 59 mm. In Experiment 2, three groups of cows were grazed across twenty-four one-day paddocks to obtain residual sward heights of 50 mm (severe), 60 mm (moderate) and 80 mm (lax). Average milk yields on the L, M and H treatments in Experiment 1 were 11.8, 14.6 and 14.5 kg d,-1 and in Experiment 2 they were 13.7, 16.0 and 17.0 kg d-1 on the severe, moderate and lax treatments, respectively. The results indicate that the critical herbage height below which milk production per cow declines may vary with the production potential of the animal. There were no significant treatment effects on milk composition. Milk output ha-1 and utilized metabolizable energy ha-1 were greatest with the low herbage allowance in Experiment I and the moderate treatment in Experiment 2. Net herbage accumulation on the severe treatment in Experiment 2 was 30% lower than that on the lax treatment, as a result of treading damage in early season. It is concluded that, in a rotational grazing system, a reasonable compromise between sward utilization and animal performance can be achieved by grazing January/February calved cows to a residual sward height of 60 mm as assessed by a rising-plate sward stick. This is equivalent to a sward surface height of about 80 mm.  相似文献   

17.
A framework for managing rotationally grazed pastures for dairy cattle which enables the cows’ energy and protein requirements to be met while simultaneously limiting the amount of N excreted in order to reduce N losses is described. The first objective is achieved by ensuring that lamina mass and the N concentration of herbage do not limit herbage intake or feeding value. The second objective is achieved by limiting N fertilizer supply or increasing the interval between defoliations to reduce the N concentration of herbage. Lower and upper thresholds for the N concentration of herbage and lamina mass were estimated from published data. The method is illustrated using two vegetative regrowths (beginning and end of spring) in a cutting experiment with two fertilizer treatments, 0 or 120 kg N ha?1 (?N and +N), and early or late cutting. Decreasing N supply led to a reduction in grazing management flexibility, i.e. the defoliation interval ranges which were compatible with the required sward characteristics (minimum lamina mass and N concentration of lamina) for herbage intake and to meet the protein requirements of dairy cows. Aiming for the upper threshold N concentration of herbage increased the minimum interval between defoliations only for the +N treatments. Nevertheless, grazing management flexibility remained the highest for the +N treatments.  相似文献   

18.
Two factorial design experiments were carried out in the spring of 1994 and 1995, each of 6 weeks, to quantify the effects of sward height (SH), concentrate level (CL) and initial milk yield (IMY) on milk production and grazing behaviour of continuously stocked dairy cows. In Experiment 1, forty‐five Holstein Friesian cows were in five groups with initial milk yields of 16·9, 21·1, 28·0, 31·5 and 35·5 kg d–1, grazed sward heights were 3–5, 5–7 and 7–9 cm (LSH, MSH and HSH respectively), and concentrates were fed at rates of 0, 3 and 6 kg d–1. In Experiment 2, 48 cows were in two groups with IMY of 21·3 and 35·5 kg d–1, grazed sward heights were 3–5 and 7–9 cm (LSH and HSH), and concentrates were fed at 0 and 6 kg d–1 and ad libitum. Multiple regression models were used to quantify the effects of the three variables on milk yield persistency (MYP), estimated herbage dry‐matter (DM) intake (HDMI), grazing time (GT) and rate of DM intake (RI). The partial regression coefficients showed that increased SH led to increased MYP (Experiment 1 P < 0·001, Experiment 2 P < 0·05), increased HDMI (P < 0·01, P < 0·01), increased GT (P < 0·001, P < 0·05) and increased RI (P < 0·001, P < 0·05). Increasing CL led to increased MYP (NS, P < 0·001), decreased HDMI (P < 0·001, P < 0·001), decreased GT (NS, P < 0·001) and decreased RI (P < 0·001, P < 0·001). Higher IMY level of cows decreased MYP (P < 0·001, P < 0·001), increased HDMI (P < 0·001, P < 0·001), increased GT (P < 0·001, P < 0·05) and increased RI (P < 0·05, P < 0·01). The models were highly significant (P < 0·001), and accounted for 0·48–0·87 of the total variance. The partial regression coefficients quantified the extent to which GT and RI by cows respond positively to higher IMY, and negatively to increased CL, but respond differently (GT declines in response to a higher RI) with increasing SH.  相似文献   

19.
An experiment was conducted to examine the effect of concentrate supplementation on the performance of suckling lambs while grazing at variable levels of herbage allowance. Twenty-four ewes suckling twin lambs were allocated 55 d after lambing between four grazing treatments (two levels of herbage allowance × two levels of supplementation) in a 2×2 factorial design. The sward consisted of Tall Fescue and was grazed rotationally.
Daily herbage organic matter (OM) allowances were 57.0 (H) and 38.5 (L) g OM kg LW−1 above 1·5 cm cutting height. Lambs were either supplemented (S) ad libitum with high-moisture whole maize grain or unsupplemented (U).
Supplement intake during the 60-d grazing period was 16 kg DM and 17.5 kg DM respectively for LS and HS lambs. The effect of supplementation on lamb growth rate differed significantly between allowances: at the low allowance level, supplementation increased growth rate (287 g d−1 vs 226 g d−1), whereas it had no effect at the high level (277 g d−1 vs 276 g d−1). Growth rate of unsupplemented lambs was significantly reduced at the low level of allowance compared to the high level (226 g d−1 vs 276 g d−1). The effect of sward height on time spent grazing by unsupplemented lambs is described during the defoliation of a plot.  相似文献   

20.
The effects of short grazing intervals in the early part of the grazing season on the growth and utilization of grass herbage, and the performance of grazing dairy cows, in a rotational grazing system were examined. Seventy-six cows were allocated to two grazing treatments: a normal rotation treatment (20-d rotations for the first 60 d) and a short rotation treatment (12-, 8-, 8-, 8-, 12- and 12-day rotations). Thereafter, both treatments had the same grazing interval and over the season as a whole both treatments received the same amount of nitrogen fertilizer and were stocked at the same rate. The short rotation treatment significantly reduced pre- and post-grazing sward heights and pre-grazing herbage mass in May and June. Total herbage production was significantly lower on the short than the normal rotation treatment as a result of a significant reduction in the growth rate of herbage in May and June. The short rotation treatment had a significantly lower milk output per cow. Grazing shorter swards, as a result of shorter rotations, significantly reduced herbage intake, reflecting reductions in intake per bite, grazing time and total bites per day. Treatment had no significant effect on herbage quality or pre- and post-grazing sward height in August and September, despite the increased grazing severity in May and June with the short rotations. The severity of rotation length in this instance had a detrimental impact on animal performance, whereas a more modest reduction in grazing interval may control herbage production, without reducing animal performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号