首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
洱海弥苴河流域降雨侵蚀力特征研究   总被引:3,自引:0,他引:3  
收集了洱海弥苴河流域内5个雨量站1997—2006年共10年的逐日降雨量及洱源县气象站1957—2000年共44年的逐年降雨量资料,对比分析了不同降雨侵蚀力估算方法的适用性,在此基础上对1997—2006年间弥苴河流域降雨侵蚀力的年内和空间分布特征及1957—2000年间降雨侵蚀力的长期年际变化特征进行了较为详细的探讨。研究结果表明:RUSLE模型中采用的降雨侵蚀力估算方法,对采用不同降雨资料所估算的年均降雨侵蚀力结果均具有较高的精度;1997—2006年间弥苴河流域年均降雨侵蚀力R值为1 941.8 M J.mm/(hm2.h.a),并且集中分布于6—10月,其中以7—9月的集中程度最高;1997—2006年10年内流域年均降雨侵蚀力的空间分布呈现北部→西南部→中部→东南部依次降低的特点;1957—2000年间流域年均降雨侵蚀力R值为2 352.1 M J.mm/(hm2.h.a),逐年降雨侵蚀力大致呈现出10年左右的周期性变化。  相似文献   

2.
沂河流域1961-2010年降雨侵蚀力时空分布特征   总被引:2,自引:0,他引:2  
[目的]分析沂河流域近50 a的降雨量和降雨侵蚀力的时空变化特征,为流域水土流失防治及土地利用合理规划等工作提供参考.[方法]利用沂河流域及周边12个气象站1961-2010年的日降雨数据,基于日降雨信息的月降雨侵蚀力模型计算流域多年平均降雨侵蚀力,采用Mann-Kendall非参数检验法及析取Kriging内插法分析流域降雨量和降雨侵蚀力的时空变化特征.[结果]沂河流域降雨量和降雨侵蚀力空间分布上呈现出由西南向北逐级递减的变化趋势.多年平均降雨量为789.41 mm,多年平均降雨侵蚀力为2 626.09(MJ·mm)/(hm2·h·a),两者都在1965年产生突变;降雨量和降雨侵蚀力年内分布主要集中在夏季(6-8月),分别占全年比例的63.02%和71.22%,二者最大值都出现在7月,且秋季对流域多年降雨量的减少趋势贡献最多,夏季的降雨侵蚀力上升幅度最大.[结论]沂河流域的降雨量和降雨侵蚀力空间分布趋势相似,不同月份的降雨量与降雨侵蚀力差异不同.  相似文献   

3.
近60年来江西省各等级侵蚀性降雨与降雨侵蚀力的关系   总被引:3,自引:0,他引:3  
基于江西省具有典型代表性的5个气象站点1956-2015年共60 a逐日降雨量资料,研究了各等级侵蚀性降雨和降雨侵蚀力的特征,建立了利用各等级侵蚀性年降雨量估算年降雨侵蚀力的简易算法模型。结果表明:各等级侵蚀性降雨量、降雨日数和降雨侵蚀的时间分布规律不一。年暴雨量、年暴雨量比例、年暴雨日数、年暴雨侵蚀力、年降雨侵蚀力均在时间上呈不同程度的增长趋势,在空间表现为从南到北逐渐上升趋势。各等级侵蚀性年降雨量估算降雨侵蚀力模型的模拟值与精确值具有高度相关性,可用于估算江西地区年降雨侵蚀力。  相似文献   

4.
基于侵蚀降雨特征的湘江流域R因子修正算法   总被引:2,自引:0,他引:2  
降雨侵蚀因子R表示由降雨引起的土壤侵蚀的潜在能力,能够反映气候因素对土壤侵蚀能力的作用.根据湘江流域18个水文气象站近50 a的降雨量数据,采用针对不同类型降雨资料的不同R值的计算方法,对湘江流域近50 a的降雨侵蚀力R值进行估算.结果表明:Wischmemier年降雨侵蚀力经验公式与福建省降雨侵蚀力计算公式分别计算出的R1、R2值与章文波日降雨量估算方法计算出的R3值有较大误差,分别达到35.99%和45.58%,不适用于直接计算该区域的降雨侵蚀力R值;经过侵蚀降雨特征因子修正后的Wischmemier年降雨侵蚀力经验公式与福建省降雨侵蚀力计算公式计算出的年降雨侵蚀力R值精度比修正前大大提高,其平均误差减小到9.59%和5.53%,表明在缺少日降雨量数据资料的情况下,采用根据侵蚀降雨特征因子侵蚀降雨量与侵蚀降雨时间修正后的降雨侵蚀力计算公式能够更加精确地估算出研究区内降雨侵蚀力R值.  相似文献   

5.
湖北省侵蚀性降雨时空分布特征   总被引:1,自引:0,他引:1  
侵蚀性降雨是南方红壤区剧烈水蚀的原动力,因此分析其时空分布特征对于区域内水土保持相关研究有十分重要的意义。选取国家气象数据网站数据(2014—2020年)、结合水土保持监测站点人工观测数据(2016—2019年),对湖北省4个水土保持分区24个监测站点的侵蚀性降雨标准及降雨侵蚀力进行了分析、计算,并用克里格模型进行插值。结果表明:湖北省整体的降雨侵蚀力从西北到东南逐渐增加,与降雨量的空间分布表现出相同特征,同时降雨量与侵蚀性降雨量表现出高度协同性。全省年平均降雨量813.88~1 590.15 mm(2014—2020年),多年平均年降雨量为1 201.98 mm,多年平均侵蚀性年降雨量为603.53 mm。多年平均侵蚀性年降雨量占多年平均年降雨量的50.21%,多年平均侵蚀性降雨频次(天数)为14次,平均次侵蚀性降雨量为46.88 mm。根据多年平均半月侵蚀力计算结果分析可知,湖北省全省多年平均年降雨侵蚀力值为6 650.10 MJ·mm/(hm2·h·a)。省内年内降雨侵蚀力时间分布基本符合正态分布。4—10月总降雨侵蚀力值为6 202.10 MJ·mm/(h...  相似文献   

6.
降雨侵蚀力表示降雨引起土壤侵蚀的潜在能力,对土壤侵蚀定量预报及评价研究有重要意义。利用三峡库区香溪河流域兴山气象站1990—2009年20 a的逐日降雨量资料,采用日降雨侵蚀力模型估算了研究区的降雨侵蚀力,分析了降雨侵蚀力的年内、年际演变特征,并以此为基准值建立了降雨侵蚀力简易算法模型。结果表明:香溪河流域年内降雨侵蚀力R主要集中在5—8月,占全年的71%,峰值与侵蚀性降雨峰值一致,均出现在7月;R值年际变化较大,变异系数达到0.36,多年平均降雨侵蚀力为4 361.55(MJ·mm)/(hm2·h),R值与年降雨量和年侵蚀性降雨量年际变化趋势基本一致,但也存在少数异常年份,多年降雨侵蚀力年际变化趋势系数为0.106,呈增加趋势;简易算法模型决定系数均在0.9以上,相对误差较小,均能满足要求,可应用于研究流域,但降雨侵蚀力精确值未知,模型参数有待进一步优化。  相似文献   

7.
[目的] 基于不同模型探究黄河中游地区降雨侵蚀力的时空演变特征,为该地区水土流失危害评估、水土保持措施规划提供参考依据。[方法] 采用黄河中游1981—2020年日降雨量数据集,基于两种降雨侵蚀力模型探究了降雨和降雨侵蚀性的时空变化特征。 [结果] 黄河中游年均降雨量为349.90~699.90 mm,空间上自东南向西北呈波浪形递减趋势,时间上呈多峰状不显著的波动上升趋势特征,存在2 a主周期变化特征。黄河中游两种模型的降雨侵蚀力年际变化趋势特征和周期性相似,但降雨量越大的地区,两模型估算的降雨侵蚀力结果相差越大。谢云模型估算的降雨侵蚀力结果与降雨量相对更拟合。黄河中游年均降雨侵蚀力为767.00~3 003.40 MJ·mm/(hm2·h),具有高度月度集中性,集中于7—8月,呈单峰型。 [结论] 黄河中游年均降雨侵蚀力具有显著的垂直空间差异,且在地形和地貌影响下空间差异会发生变化,高海拔地区的变化系数通常高于低海拔地区。在东南部秦岭山区和关中平原等地区,随海拔升高,降雨侵蚀力迅速减少,在西北部黄土高原区,随海拔升高而逐渐增加。因此在黄河中游降雨侵蚀性增加的地区,应采取适当措施,减少土壤侵蚀的潜在风险,确保区域生态安全的可持续发展。  相似文献   

8.
基于日降雨的沂蒙山区降雨侵蚀力时空变化研究   总被引:3,自引:0,他引:3  
降雨侵蚀力是水土流失最为重要的外部驱动力,是土壤侵蚀相关领域的研究重点。以沂蒙山区及周边38个气象台站1971—2008年逐日降雨量资料为数据源,利用基于日降雨信息的月降雨侵蚀力模型,估算了研究区多年月、年降雨侵蚀力,并初步分析了降雨侵蚀力的时空分布规律。结果表明:沂蒙山区降雨侵蚀力总体趋势为西北、中南高,北部低,泗水县、曲阜市东部一带是研究区降雨侵蚀力的高值中心;R值与年降雨量和年侵蚀性降雨量的年际变化趋势基本一致,但也有部分异常年份;沂蒙山区降雨侵蚀力年内主要集中分布在6—9月份,占全年的97.07%,其中最大月降雨侵蚀力出现在7月份,占年降雨侵蚀力的51%。研究结果可为该区域水土流失预报、农业面源污染状况预报等提供理论依据。  相似文献   

9.
黑龙江省降雨侵蚀力的变化规律   总被引:4,自引:1,他引:3  
 利用黑龙江省16个气象站1960—2000年日降雨量资料,采用日降雨量侵蚀力模型计算降雨侵蚀力,对黑龙江省降雨侵蚀力变化规律及其与降雨量的关系进行分析。结果表明:1)黑龙江省1960—2000年年降雨侵蚀力、年降雨量、侵蚀性降雨量都呈升高的趋势,年降雨侵蚀力、年降雨量和侵蚀性降雨量变化速率分别为1.47MJ.mm/(hm2.h.a)、0.29 mm/a和0.35mm/a;2)黑龙江省16个气象站中有11个气象站降雨侵蚀力倾向率为正值,牡丹江降雨侵蚀力升高幅度最大,为15.6MJ.mm/(hm2.h.a),有5个气象站的倾向率为负值,其中齐齐哈尔降雨侵蚀力降低幅度最大,为-16.8MJ.mm/(hm2.h.a);3)16个气象站除哈尔滨、克山、呼玛、通河外,侵蚀性降雨时间变化对侵蚀性降雨量变化的作用大于侵蚀性降雨强度变化对侵蚀性降雨量变化的作用,显示大部分站点侵蚀性降雨量变化主要由侵蚀性降雨时间变化引起的。研究结果可为土壤侵蚀预报以及水土保持规划与决策提供依据。  相似文献   

10.
利用协同克里金空间内插法和半月降雨侵蚀力估算模型,结合2005—2021年日降雨量资料研究分析全省年均降雨侵蚀力时空分布特征。结果表明:(1)全省降雨侵蚀力平均值1 542.68 MJ·mm/(hm2·h·a),其变化范围为651.02~2 716.45 MJ·mm/(hm2·h·a)。(2)在时间变化上,年内降雨侵蚀力表现出先增大后减小的变化特征,其中6~9月降雨侵蚀力占全年80%以上;从空间分布上,自东南向西北降雨侵蚀力程递减的变化规律,即东南部>南部>中部>北部。(3)年侵蚀性降雨量、年降雨量与降雨侵蚀力之间具有极显著相关性,可以利用幂函数做简易估算,为区域土壤侵蚀治理、预报、评估和监测等提供决策依据。  相似文献   

11.
The Tibetan Plateau (TP) in China has been experiencing severe water erosion because of climate warming. The rapid development of weather station network provides an opportunity to improve our understanding of rainfall erosivity in the TP. In this study, 1-min precipitation data obtained from 1226 weather stations during 2018–2019 were used to estimate rainfall erosivity, and subsequently the spatial-temporal patterns of rainfall erosivity in the TP were identified. The mean annual erosive rainfall was 295 mm, which accounted for 53% of the annual rainfall. An average of 14 erosive events occurred yearly per weather station, with the erosive events in the wet season being more likely to extend beyond midnight. In these cases, the precipitation amounts of the erosive events were found to be higher than those of the daily precipitations, which may result in implicit bias as the daily precipitation data were used for estimating the rainfall erosivity. The mean annual rainfall erosivity in the TP was 528 MJ mm·ha?1·h?1, with a broader range of 0–3402 MJ mm·ha?1·h?1, indicating a significant spatial variability. Regions with the highest mean annual rainfall erosivity were located in the forest zones, followed by steppe and desert zones. Finally, the precipitation phase records obtained from 140 weather stations showed that snowfall events slightly impacted the accuracy of rainfall erosivity calculation, but attention should be paid to the erosion process of snowmelt in the inner part of the TP. These results can be used as the reference data for soil erosion prediction in normal precipitation years.  相似文献   

12.
山东省降雨侵蚀力多年变化特征分析   总被引:3,自引:1,他引:2       下载免费PDF全文
 降雨侵蚀力变化特征分析是揭示土壤水蚀对降水变化响应的基础,为水土保持规划及管理提供依据。利用1951—2008年山东省22个气象站的降雨资料,采用Mann-Kendall非参数检验等方法,计算并分析了该省58年降雨侵蚀力变化的时间及空间特征。结果表明:山东省年降雨侵蚀力序列总体上未呈现显著增减趋势,这与占全年比例最高的夏季降雨侵蚀力未有明显变化相关;但通过季、月值的时间序列检验,春、冬季降雨侵蚀力有明显的升高趋势,特别2、5和12月升高显著。空间分布上,山东各地降雨侵蚀力变化趋势的差异明显,分布有国家级、省级水土流失重点治理区的鲁中南呈明显升高趋势,应作为未来防治重点区域。  相似文献   

13.
Despite the high variability of the precipitation regime characterizing the Mediterranean area, the records of rainfall depth are usually not appropriate for long‐term calculations of erosivity and soil losses, because they do not reveal details of short lengths or long durations (daily, monthly). In this work, we present a simple approach to calculate annual erosivity through monthly precipitation records. The study area (olive groves on steep slopes) has a high erosion risk associated to the main soil land use, combined with an irregular and erosive rainfall regime. The relationships between rainfall data at intervals of 10 min for a period of 3 years, daily rainfall records over 10 years and a long‐term monthly dataset of 60 years were checked to calculate the annual erosivity values through daily data, Fourier's index and modified Fourier's index values. A good, adjusted linear relationship between modified Fourier's index and the erosivity was found, which allowed us to optimize the use of the 60‐year monthly data series and to carry out a long‐term analysis of the erosivity quantiles in the study area. The estimated mean erosivity showed a return period of between 2 and 5 years and a variation coefficient of over 50 per cent, which illustrate its high variability and frequency. This approach to calculate erosivity and the use of quantiles could be applied in other areas with month‐long data series in order to study and model the erosion risk using suitable temporal periods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
中国降雨侵蚀力的时空分布及重现期研究   总被引:11,自引:3,他引:8  
降雨侵蚀力是土壤侵蚀模型USLE的一个重要因子。基于中国中东部水蚀区18个气象站1961(1971)-2000年逐分钟降水数据和全国范围内774个气象站1961-2016年逐日降水数据,采用克里金插值方法,得到全国多年平均年、多年平均24个半月、不同重现期年和次侵蚀力空间分布特征,可满足USLE模型对侵蚀力因子相关参数输入的要求。交叉验证结果表明:以上所有指标的空间插值模型精度较好,模型有效系数NSE不低于0.74,偏差百分比PBIAS低于1%,均方根误差与观测值标准差的比值RSR小于等于0.51。侵蚀力年内变化曲线具有较好的区域相似性,使用K均值聚类分析方法将中国侵蚀力年内变化特征划分为4个区域,每个区域概化出一条侵蚀力年内变化曲线。  相似文献   

15.
赣江上游平江流域降雨侵蚀力的时空分布特征   总被引:1,自引:0,他引:1  
[目的]研究赣江上游平江流域降雨侵蚀力的时空变化规律,为流域治理措施的制定提供参考。[方法]利用平江流域内10个雨量站点1989—2018年共30 a的日降雨量数据,采用降雨侵蚀力日降雨简易计算模型和Mann-Kendall趋势检验等方法,对平江流域降雨侵蚀力的时间分布规律进行研究;借助ArcGIS 10.1中的克里金插值法对平江流域的降雨侵蚀力进行空间分析。[结果]平江流域降雨侵蚀力在1989—2018年间平均值为4 233 MJ·mm/(hm~2·h·a),最大值为6 766.5 MJ·mm/(hm~2·h)(2015年),最小值为2 191 MJ·mm/(hm~2·h)(2003年);流域内30 a降雨侵蚀力变化较为平稳,年际间呈现出不显著的增加趋势,年内分布同降水量一致,表现为双峰型,分别在6月和8月。降雨侵蚀力在空间上表现为由东北向中南方向递减,而后向西南方向递增,最大值出现在北部城冈站附近,最小值出现在中南部龙口站附近。[结论]平江流域降雨侵蚀力的时空分布特征与流域内降水时空分布基本一致。对流域水土流失防治工作而言,春季应尤其注意降雨侵蚀力较大且出现上升趋势的流域北部地区,夏季和冬季应更加注意流域西南部。  相似文献   

16.
降雨侵蚀力反映了降雨对土壤侵蚀的潜在能力,准确评估降雨侵蚀力对水土保持规划和水土流失治理具有重要意义。近年来,网格化降水产品在计算中国的降雨侵蚀力方面发挥了积极作用,但不同降水产品存在一定的区域差异性。因此,为评估各类降水产品在不同区域的适应性以利于降雨侵蚀力的准确估计,该研究选用了4种网格化降水产品:中国逐日网格降水量实时分析系统数据集(China gauge-based daily precipitation analysis,CGDPA)、中国区域地面气象要素数据集(China meteorological forcing dataset,CMFD)、中国地面降水日值0.5°×0.5°格点数据集(v2.0)(Dataset of gridded daily precipitation in China(Version2.0),CN0.5)、热带降水测量计划—多卫星降水分析测量产品(tropical rainfall measurement mission-multisatellite precipitation analysis,TRMM-TMPA)3B42V7,采用日降雨侵蚀力...  相似文献   

17.
1961-2015年吉林省降雨侵蚀力的时空变化特征   总被引:1,自引:1,他引:0  
[目的]分析吉林省1961-2015年降雨侵蚀力的时空变化趋势,为该省的农业和生态保护、水土保持等工作提供科学依据.[方法]利用吉林省46个自动气象站1961-2015年逐日降雨量资料估算吉林省逐气象站的降雨侵蚀力,并采用相关系数、气候倾向率和反距离空间插值方法分析吉林省降雨侵蚀力的时空变化趋势.[结果]吉林省年平均降雨侵蚀力在空间分布上从集安开始呈向西北和东北逐渐递减的变化趋势,其空间分布特征与年平均降水量的空间分布特征基本一致.时间分布上与多年平均降水量的时间分布特征具有高度一致性,在7月达到峰值.有34.8%的气象站点降雨侵蚀力呈上升趋势,中、西部大部分地区呈下降趋势,东部有1/2以上呈上升趋势,但只有长白站的下降趋势通过显著性检验.不同地区各年代平均降雨侵蚀力变化也不一致,具有波动性.不同年代各降雨侵蚀力等值线在空间分布上总体变化不大.[结论]吉林省降雨侵蚀力在时空变化上与降水量一致,不同地区降雨侵蚀力变化趋势不一样,几乎没有通过显著性检验.  相似文献   

18.
变化环境下区域降雨侵蚀力的时空变化问题对区域水土流失防治工作提出了新的挑战。降雨侵蚀力序列不再是纯随机序列,往往存在趋势、跳跃或者周期的变化,在对降雨侵蚀力序列分析与计算时,现有研究往往采用单一的检验方法,缺乏对降雨侵蚀力序列各类成分的综合比较,所得到的结果可信度及其程度如何无法判断。该研究提出了基于Hurst系数和相关系数的降雨侵蚀力序列联合分析方法。该方法首先计算降雨侵蚀力序列的Hurst系数,引用水文序列变异的概念,从统计学角度将降雨侵蚀力序列确定性成分分为三级(无变异、弱变异和强变异)。然后通过多种检验方法综合检验,将得到的结果与原序列进行相关性分析提取相关系数最大的确定性成分(趋势、跳跃和周期),对其进行剔除,重复上述步骤,将降雨侵蚀力序列中的确定性成分进行一一分解,最终得出的降雨侵蚀力序列将是一个随机序列与确定性序列的组合。实际应用中,根据长江流域174个气象站点1961—2014年逐日降雨资料,对流域内各气象站点年降雨侵蚀力序列进行确定性成分分析与分级结果表明:长江流域174个气象站点中有130个站点降雨侵蚀力序列无明显变异,有31个站点降雨侵蚀力序列出现弱变异,有13个站点降雨侵蚀力序列出现强变异。以重庆奉节站为例进行综合检验,分析结果为整体强变异,该站年降雨侵蚀力序列存在复合周期和跳跃成分,其中复合周期为5 a和16 a,向下的跳跃点为2011年。该研究为变化环境下区域降雨侵蚀力预测提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号