共查询到20条相似文献,搜索用时 15 毫秒
1.
Drying and rewetting of soil is an important process in soil aggregation, soil organic matter (SOM) decomposition, and nutrient cycling. We investigated the source of the C and N flush that occurs upon rewetting of dry soil, and whether it is from microbial death and/or aggregate destruction. A moderately well drained Kennebec silt loam (Fine-silty, mixed, superactive, mesic Cumulic Hapludoll) was sampled to a 10 cm depth. Soil under constant water content (CWC) was compared with soil subjected to a series of four dry-wet (DW) cycles during the experimental period (96 d) and incubated at 25 °C. Mineralized C and N were measured during the drying and rewetting periods. Aggregate size distributions were studied by separating the soil into four aggregate size classes (>2000, 250-2000, 53-250, and 20-53 μm) by wet sieving. Repeated DW cycles significantly reduced cumulative N mineralization compared with CWC. The reduction in cumulative mineralized C resulting from DW compared with CWC increased as the DW treatments were subjected to additional cycles. The flush of mineralized C significantly decreased with repeated DW cycles. There was no significant effect on aggregate size distributions resulting from to the DW cycles compared with CWC treatment. Therefore, the flush of mineralized C and N seemed to be mostly microbial in origin in as much as aggregate distribution was unaffected by DW cycles. 相似文献
2.
Carbon and nitrogen storage in plant and soil as related to nitrogen and water amendment in a temperate steppe of northern China 总被引:1,自引:0,他引:1
Fu-Mei Lü Xiao-Tao Lü Wei Liu Xu Han Guang-Ming Zhang De-Liang Kong Xing-Guo Han 《Biology and Fertility of Soils》2011,47(2):187-196
We conducted a field-manipulated experiment to assess whether changes in precipitation and nitrogen (N) deposition alter ecosystem
carbon (C) and N storage. Both C and N pools of plant and soil were monitored when urea-N (17.5 g N m−2) and water (increasing mean annual precipitation by 50%) were added to a temperate steppe. After 2 years of treatments, both
N and water addition significantly increased soil inorganic N availability by 125% and 62% during the growing season. While
water addition significantly increased ecosystem C storage by 6% and N storage by 8%, N addition showed significant effects
on neither of them. There were no interactions between N and water addition to affect both total C and N storage in this ecosystem,
though they did interact to affect several individual pools (e.g., aboveground biomass N pool, litter C, and N pool). Results
from the present study indicate that water availability is more important than N availability for C sequestration and that
increasing precipitation will favor C sequestration in this semi-arid grassland. 相似文献
3.
Abstract. The main inputs, outputs and transfers of potassium (K) in soils and swards under typical south west England conditions were determined during 1999/00 and 2000/01 to establish soil and field gate K budgets under different fertilizer nitrogen (N) (0 and 280 kg ha−1 yr−1 ) and drainage (undrained and drained) treatments. Plots receiving fertilizer N also received farmyard manure (FYM). Potassium soil budgets ranged, on average for the two years, from −5 (+N, drained) to +9 (no N and undrained) kg K ha−1 yr−1 and field gate budgets from +23 (+N, drained) to +89 (+N, undrained). The main inputs and outputs to the soil K budgets were fertilizer application (65%) and plant uptake (93%). Animals had a minor effect on K export but a major impact on K recycling. Nitrogen fertilizer application and drainage increased K uptake by the grass and, with it, the efficiency of K used. It also depleted easily available soil K, which could be associated with smaller K losses by leaching. 相似文献
4.
Asymbiotic biological nitrogen fixation in a temperate grassland as affected by management practices
Estimates of asymbiotic biological N fixation (BNF) in temperate grasslands are few with large variations. In the past six decades, European grasslands have been subjected to intensive management practices and presently it is not known how asymbiotic BNF is influenced by these practices. Our objective was to assess the impact of fertilizer application and mowing frequency on asymbiotic BNF in a Central European grassland. In 2008, we established a three-factorial experiment with two fertilizer treatments (no fertilizer application and combined nitrogen (N), phosphorus (P) and potassium (K) fertilization at 180–30–100 kg ha−1 yr−1), two mowing frequencies (cut once and thrice per year) and three sward compositions through the application of herbicides (control, monocot- and dicot-enhanced swards). Three years after the initial sward manipulation, there was no more difference in functional group composition. Between June 2011 and May 2012, we measured in-situ asymbiotic BNF using the acetylene reduction assay, calibrated with 15N2-fixation method. Across treatments, asymbiotic BNF rates in the 0–5-cm soil depth ranged from 1.7 (±0.2 SE) kg ha−1 yr−1 for fertilized plots cut once a year to 5.7 (±2.3 SE) kg ha−1 yr−1 for unfertilized plots cut thrice a year. Fertilization decreased asymbiotic BNF, suggesting that the potential positive effect of increased soil P levels might have been overruled by the negative effect of increased soil mineral N levels. Intensive mowing stimulated asymbiotic BNF, which was probably due to an increase in rhizodeposition. Our calibration of the acetylene reduction assay with the 15N2-fixation method resulted in a conversion factor of 0.61, which largely deviates from the theoretical conversion factor of 3. Furthermore, laboratory incubations under increased soil moisture and temperature conditions overestimated BNF rates compared to in-situ measurements. Thus, laboratory measurements with altered soil moisture, temperature or disturbed soil may lead to strong biases in estimates of asymbiotic BNF. Our results suggest that input of N through BNF may be considerable in temperate grasslands. We conclude that BNF studies should be conducted in-situ and that the acetylene reduction assay should be calibrated against 15N2-fixation calibration for reliable estimates. 相似文献
5.
Storage and dynamics of carbon and nitrogen in soil physical fractions following woody plant invasion of grassland 总被引:1,自引:0,他引:1
Woody plant invasion of grasslands is prevalent worldwide. In the Rio Grande Plains of Texas, subtropical thorn woodlands dominated by C3 trees/shrubs have been replacing C4 grasslands over the past 150 yr, resulting in increased soil organic carbon (SOC) storage and concomitant increases in soil total nitrogen (STN). To elucidate mechanisms of change in SOC and STN, we separated soil organic matter into specific size/density fractions and determined the concentration of C and N in these fractions. Soils were collected from remnant grasslands (Time 0) and woody plant stands (ages 10-130 yr). Rates of whole-soil C and N accrual in the upper 15 cm of the soil profile averaged 10-30 g C m−2 yr−1 and 1-3 g N m−2 yr−1, respectively, over the past 130 yr of woodland development. These rates of accumulation have increased soil C and N stocks in older wooded areas by 100-500% relative to remnant grasslands. Probable causes of these increased pool sizes include higher rates of organic matter production in wooded areas, greater inherent biochemical resistance of woody litter to decomposition, and protection of organic matter by stabilization within soil macro- and microaggregates. The mass proportions of the free light fraction (<1.0 g cm−3) and macroaggregate fraction (>250 μm) increased linearly with time following woody plant invasion of grassland. Conversely, the mass proportions of free microaggregate (53-250 μm) and free silt+clay (<53 μm) fractions decreased linearly with time after woody invasion, likely reflecting stabilization of these fractions within macroaggregate structures. Carbon and N concentrations increased in all soil fractions with time following woody invasion. Approximately half of the C and N accumulated in free particulate organic matter (POM) fractions, while the remainder accrued in stable macro- and microaggregate structures. Soil C/N ratios indicated that the organic C associated with POM and macroaggregates was of more recent origin (less decomposed) than C associated with the microaggregate and silt+clay fractions. Because grassland-to-woodland conversion has been geographically extensive in grassland ecosystems worldwide during the past century, changes in soil C and N storage and dynamics documented here could have significance for global cycles of those elements. 相似文献
6.
Impact of land-use types on soil nitrogen net mineralization in the sandstorm and water source area of Beijing,China 总被引:1,自引:0,他引:1
Changes of land-use type (LUT) can affect soil nutrient pools and cycling processes that relate long-term sustainability of ecosystem, and can also affect atmospheric CO2 concentrations and global warming through soil respiration. We conducted a comparative study to determine NH4+ and NO3− concentrations in soil profiles (0–200 cm) and examined the net nitrogen (N) mineralization and net nitrification in soil surface (0–20 cm) of adjacent naturally regenerated secondary forests (NSF), man-made forests (MMF), grasslands and cropland soils from the windy arid and semi-arid Hebei plateau, the sandstorm and water source area of Beijing, China. Cropland and grassland soils showed significantly higher inorganic N concentrations than forest soils. NO3−-N accounted for 50–90% of inorganic N in cropland and grassland soils, while NH4+-N was the main form of inorganic N in NSF and MMF soils. Average net N-mineralization rates (mg kg−1 d−1) were much higher in native ecosystems (1.51 for NSF soils and 1.24 for grassland soils) than in human disturbed LUT (0.15 for cropland soils and 0.85 for MMF soils). Net ammonification was low in all the LUT while net nitrification was the major process of net N mineralization. For more insight in urea transformation, the increase in NH4+ and, NO3− concentrations as well as C mineralization after urea addition was analyzed on whole soils. Urea application stimulated the net soil C mineralization and urea transformation pattern was consistent with net soil N mineralization, except that the rate was slightly slower. Land-use conversion from NSF to MMF, or from grassland to cropland decreased soil net N mineralization, but increased net nitrification after 40 years or 70 years, respectively. The observed higher rates of net nitrification suggested that land-use conversions in the Hebei plateau might lead to N losses in the form of nitrate. 相似文献
7.
Quality of agricultural soils is largely a function of soil organic matter. Tillage and crop management impact soil organic matter dynamics by modification of the soil environment and quantity and quality of C input. We investigated changes in pools and fluxes of soil organic C (SOC) during the ninth and tenth year of cropping with various intensities under conventional disk-and-bed tillage (CT) and no tillage (NT). Soil organic C to a depth of 0.2 m increased with cropping intensity as a result of greater C input and was 10% to 30% greater under NT than under CT. Sequestration of crop-derived C input into SOC was 22±2% under NT and 9±4% under CT (mean of cropping intensities ± standard deviation of cropping systems). Greater sequestration of SOC under NT was due to a lower rate of in situ soil CO2 evolution than under CT (0.22±0.03 vs. 0.27±0.06 g CO2–C g−1 SOC yr−1). Despite a similar labile pool of SOC under NT than under CT (1.1±0.1 vs. 1.0±0.1 g mineralizable C kg−1 SOC d−1), the ratio of in situ to potential CO2 evolution was less under NT (0.56±0.03) than under CT (0.73±0.08), suggesting strong environmental controls on SOC turnover, such as temperature, moisture, and residue placement. Both increased C sequestration and a greater labile SOC pool were achieved in this low-SOC soil using NT and high-intensity cropping. 相似文献
8.
Transformation of nitrogen and nitrous oxide emission from grassland soils as affected by compaction
Animal trampling is one of the main factors responsible for soil compaction under grazed pastures. Soil compaction is known to change the physical properties of the soil thereby affecting the transformation of nitrogen (N) and the subsequent of release of N as nitrous oxide (N2O). The form of N source added to these compacted soils further affects N emissions. Here we determine the interactive effects of soil compaction and form of N sources (cattle urine and ammonium, nitrate and urea fertilizers) on the loss of N through N2O emission from grassland soil. Overall, soil compaction caused a seven-fold increase in the N2O flux, the total N2O fluxes for the entire experimental period ranged from 2.62 to 61.74 kg N2O-N ha−1 for the compacted soil and 1.12 to 4.37 kg N2O-N ha−1 for the uncompacted soil. Among the N sources, the highest emissions were measured with nitrate application, emissions being 10 times more than those from other N sources for compacted soil, suggesting that the choice of N fertilizer can go a long way in mitigating N2O emissions in compacted grasslands. 相似文献
9.
室内模拟实验研究中国北方不同管理方式对土壤固碳潜力的影响 总被引:1,自引:0,他引:1
Soil has been identified as a possible carbon(C) sink for sequestering atmospheric carbon dioxide(CO_2).However,soil organic carbon(SOC) dynamics in agro-ecosystems is affected by complex interactions of various factors including climate,soil and agricultural management practices,which hinders our understanding of the underlying mechanisms.The objectives of this study were to use the Agricultural Production Systems sIMulator(APSIM) model to simulate the long-term SOC dynamics under different management practices at four long-term experimental sites,Zhengzhou and Xuzhou with double cropping systems and Gongzhuling and Uriimqi with single cropping systems,located in northern China.Firstly,the model was calibrated using information from the sites and literature,and its performance to predict crop growth and SOC dynamics was examined.The calibrated model was then used to assess the impacts of different management practices,including fertilizer application,irrigation,and residue retention,on C dynamics in the top 30 cm of the soil by scenario modelling.Results indicate a significant SOC sequestration potential through improved management practices of nitrogen(N) fertilizer application,stubble retention,and irrigation.Optimal N fertilization(N_(opt)) and 100%stubble retention(R100) increased SOC by about 11.2%,208.29%,and 283.67%under irrigation at Gongzhuling,Zhengzhou,and Xuzhou,respectively.Soil organic carbon decreased rapidly at(U|¨)rumqi under irrigation,which was due to the enhanced decomposition by increased soil moisture.Under rainfed condition,SOC remained at a higher level.The combination of N_(opt) and R100 increased SOC by about 0.46%under rainfed condition at Uriimqi.Generally,agricultural soils with double cropping systems(Zhengzhou and Xuzhou) showed a greater potential to sequester C than those with single cropping systems(Gongzhuling and(U|¨)r(u|¨)mqi). 相似文献
10.
Sequestering C in biomass and soils in hybrid poplar plantations can help mitigate global climate change caused by the rising atmospheric CO2 concentration. However, the impact of the establishment of hybrid poplar plantations on C and N storage and dynamics is poorly understood. We studied the distribution and temporal changes of C and N in soil organic matter (SOM) density fractions in 2-, 5-, 11-, and 13-year-old (age as in 2006) hybrid poplar stands that form a chronosequence by sampling the plantations in both 2004 and 2006. Sodium polytungstate (SPT, density = 1.6 g mL- 1) was used to fractionate the soil into light (LF, density < 1.6 g mL- 1), occluded light (LFo, density < 1.6 g mL- 1) and heavy fractions (HF density > 1.6 g mL- 1). The results showed that C and N concentrations (g kg- 1 of fraction) in the SOM density fractions decreased in the order of LFo > LF > HF, while the C/N ratio was in the order of LF > LFo > HF. The amount of C and N stored in the LF, LFo and HF fractions and bulk soil in the top 10 cm of soil was: 149-504, 70-336, 1380-2876 and 1617-3776 g m- 2, respectively, for C, and 6-26, 3-20, 149-271 and 152-299 g m- 2, respectively, for N. From 2004 to 2006, C and N storage decreased in the LF and LFo fractions but increased in the HF fraction in the youngest stand. However, stand-age effects were likely muted by high inherent soil variability among the stands. Carbon storage in the light fraction was responsive in the short term to hybrid poplar plantation establishment. 相似文献
11.
12.
Influences of continuous grazing and livestock exclusion on soil properties in a degraded sandy grassland, Inner Mongolia, northern China 总被引:10,自引:0,他引:10
Overgrazing is one of the main causes of desertification in the semiarid Horqin sandy grassland of northern China. Excluding grazing livestock is considered as an alternative to restore vegetation in degraded sandy grassland in this region. However, few data are available concerning the impacts of continuous grazing and livestock exclusion on soil properties. In this paper, characteristics of vegetation and soil properties under continuous grazing and exclusion of livestock for 5 and 10 years were examined in representative degraded sandy grassland. Continuous grazing resulted in a considerable decrease in ground cover, which accelerates soil erosion by wind, leading to a further coarseness in surface soil, loss of soil organic C and N, and a decrease in soil biological properties. The grassland under continuous grazing is in the stage of very strong degradation. Excluding livestock grazing enhances vegetation recovery, litter accumulation, and development of annual and perennial grasses. Soil organic C and total N concentrations, soil biological properties including some enzyme activities and basal soil respiration improved following 10-year exclusion of livestock, suggesting that degradation of the grassland is being reversed. The results suggest that excluding grazing livestock on the desertified sandy grassland in the erosion-prone Horqin region has a great potential to restore soil fertility, sequester soil organic carbon and improve biological activity. Soil restoration is a slow process although the vegetation can recover rapidly after removal of livestock. A viable option for sandy grassland management should be to adopt proper exclosure in a rotation grazing system in the initial stage of grassland degradation. 相似文献
13.
R. Bol E. KandelerW. Amelung B. GlaserM.C. Marx N. PreedyK. Lorenz 《Soil biology & biochemistry》2003,35(11):1411-1421
Land application of animal wastes from intensive grassland farming has resulted in growing environmental problems relating to greenhouse gas emissions, ammonia volatilisation, and nitrate and phosphorus leaching into surface and groundwater. We examined the short-term effects of dairy slurry amendment on carbon sequestration and enzyme activities in a temperate grassland (Southwest England). Slurry was collected from cows fed either on perennial ryegrass (C3) or maize (C4) silages. Fifty m3 ha−1 of each of the obtained C3 or C4 slurries (δ13C=−30.7 and −21.3‰, respectively) were applied to a C3 pasture soil with δ13C of −30.0±0.2‰. We found that water soluble organic carbon (WSOC) content was two to three times higher in the slurry amended plots compared with the unamended control. No significant change in the soil microbial biomass (SMB) carbon content was observed in the four weeks (772 h) following slurry application. Natural abundance 13C isotope analysis suggested a rapid initial incorporation (>25% within 2 h of application) of slurry-derived C in the SMB-C and WSOC pools of the 0-2 cm layer. Linear relationships were found between slurry-derived C in the whole soil, SMB, and WSOC for the 0-2 cm depth in the soil. Applied slurry-derived C was sequestered in the SMB pool in two phases. The first phase (0-48 h) was dominated by the incorporation of labile slurry C from the liquid phase, whereas beyond 48 h slurry-derived C was mainly from less mobile particulate C. No significant differences between treatments were found for invertase and xylanase. Urease activity was always higher in slurry treatments. Cellobiohydrolase, β-N-acetyl-glucosamidase, β-glucosidase and acid phosphatase activities became significantly higher in slurry treatments after 336 h. However, the observed temporal changes in enzyme activities were not correlated with the amounts of slurry-C incorporated in the SMB and WSOC pool. 相似文献
14.
孙鸿良 《中国生态农业学报》2009,17(4):807-810
本文讨论了近年来我国西北、东北地区扩大林草面积的成功模式与导入草地生态农业体系的发展趋势.所运用的生态学依据有: 运用生态控制论, 促进生态系统耦合; 运用生态工程原理, 提高生产效率; 运用生态技术, 达到节水、节能目标.将社会调控机制与生态系统自身演化机能作良性耦合, 以生态知识资源抢救草地生态资产与草地农业体系的前景广阔. 相似文献
15.
Carbon dioxide evolution from wheat and lentil residues as affected by grinding,added nitrogen,and the absence of soil 总被引:2,自引:0,他引:2
Summary A study was conducted to determine the effects of grinding, added N, and the absence of soil on C mineralization from agricultural plant residues with a high C:N ratio. The evolution of CO2 from ground and unground wheat straw, lentil straw, and lentil green manure, with C:N ratios of 80, 36, and 9, respectively, was determined over a period of 98 days. Treatments with added N were included with the wheat and lentil straw. Although the CO2 evolution was initially much faster from the lentil green manure than from the lentil or wheat straw, by 98 days similar amounts of CO2 had evolved from all residues incubated in soil with no added N. Incubation of plant residues in the absence of soil had little effect on CO2 evolution from the lentil green manure or lentil straw but strongly reduced CO2 evolution from the wheat straw. Grinding did not affect CO2 evolution from the lentil green manure but increased CO2 evolution from the lentil straw with no added N and from the wheat straw. The addition of N increased the rate of CO2 evolution from ground wheat straw between days 4 and 14 but not from unground wheat straw, and only slightly increased the rate of CO2 evolution from lentil straw during the initial decomposition. Over 98 days, the added N reduced the amounts of CO2 evolved from both lentil and wheat straw, due to reduced rates of CO2 evolution after ca. 17 days. The lack of an N response during the early stages of decomposition may be attributed to the low C:N ratio of the soluble straw component and to microbial adaptations to an N deficiency, while the inhibitory effect of N on CO2 evolution during the later stages of decomposition may be attributed to effects of high mineral N concentrations on lignocellulolytic microorganisms and enzymes. 相似文献
16.
利用火地塘林区森林资源清查资料估算油松和华山松林的C储量和C密度,并用GIS软件Citystar 4.0对这两种森林类型的空间分布特性进行分析。结果表明,油松和华山松林的总C储量分别为0.0018 TgC和0.0510 TgC,且人工林的C储量和C密度均大于天然次生林。在森林空间分布上,油松林主要分布在海拔1800m以下,华山松在林区中部的整个海拔范围内均有分布,人工林主要分布在沿公路一侧的地段。 相似文献
17.
Carbon sequestration and saving potential associated with changes to the management of agricultural soils in England 总被引:3,自引:0,他引:3
Abstract. The potential for soil organic carbon sequestration, energy savings and the reduction of the emission of greenhouse gases were investigated for a range of changes in the management of tilled land and managed grassland. These parameters were modelled on a regional basis, according to local soils and crop rotations in England, and avoided the use of soil related indices. The largest carbon sequestration and saving contribution possible comes from an increase in the proportion of permanent woodland, such that a 10% change in land use could amount to 9 Mt C yr−1 in the initial years (arable and grassland). Changes in arable management could make a significant contribution to an abatement strategy if carried out in concert with greater use of permanent conservation field margins, increased returns of crop residues and reduced tillage systems, contributing 1.3 Mt C yr−1 in the initial years. It should be noted, however, that true soil carbon sequestration would be only a minor component of this (125 kt C yr−1 ), the main part being savings on CO2 emissions from reduced energy use, and lower N2 O emissions from reduced use of inorganic nitrogen fertilizer. 相似文献
18.
SHENTU Jia-Li HE Zhen-Li ZENG Yan-Yan HE Shan-Ying DU Shao-Ting SHEN Dong-Sheng 《土壤圈》2014,24(4):553-562
The effects of root activity on microbial response to cadmium (Cd) loading in the rhizosphere are not well understood. A pot experiment in greenhouse was conducted to investigate the effects of low Cd loading and root activity on microbial biomass and community structure in the rhizosphere of pakchoi (Brassica chinensis L.) on silty clay loam and silt loamy soil. Cd was added into soil as Cd(NO3)2 to reach concentrations ranging from 0.00 to 7.00 mg kg-1. The microbial biomass carbon (MBC) and community structure were affected by Cd concentration, root activity, and soil type. Lower Cd loading rates (〈 1.00 mg kg-1) stimulated the growth of pakchoi and microorganisms, but higher Cd concentrations inhibited the growth of microorganisms. The content of phospholipid fatty acids (PLFAs) was sensitive to increased Cd levels. MBC was linearly correlated with the total PLFAs. The content of general PLFAs in the fungi was positively correlated with the available Cd in the soil, whereas those in the bacteria and actinomycetes were negatively correlated with the available Cd in the soil. These results indicated that fungi were more resistant to Cd stress than bacteria or actinomycetes, and the latter was the most sensitive to Cd stress. Microbial biomass was more abundant in the rhizosphere than in the bulk soil. Root activity enhanced the growth of microorganisms and stabilized the microbial community structure in the rhizosphere. PLFA analysis was proven to be sensitive in detecting changes in the soil microbial community in response to Cd stress and root activity. 相似文献
19.
20.
Shaojun Xiong Thomas Kätterer 《Acta Agriculturae Scandinavica, Section B - Plant Soil Science》2013,63(1):24-32
Abstract A field experiment was conducted in northern Sweden between 1995 and 1997, with the objectives (1) to quantify the dynamics of carbon accumulation in above- and belowground crop components of reed canary grass (RCG) during the second and third year after sowing and (2) to examine the effect of fertilization and soil type (mineral vs. organic) on C allocation. Across all treatments, carbon accumulation in belowground organs in the top 20 cm was on average 3 and 3.4 Mg C by the end of the second and third year, respectively, with roots and rhizomes accounting for up to 80%. Roots contributed most to belowground C mass during the second growing season but during the preceding winter, root biomass C decreased by 44–67%, and, thereafter, during the third growing season, the proportion of rhizome C increased. The dynamics of root biomass was considerably high, suggesting high root turnover rates. Rhizomes support re-growth during spring and rhizome biomass seems to increase with crop age. Thus, early harvesting before October may impact on the productivity during the following season. Among the factors studied, harvest date was the most influential and affected C allocation in all crop components considerably. Fertilization stimulated growth of shoots, rhizomes, and BSBs (belowground shoot bases) but not that of roots. However, root biomass was higher in the organic than in the mineral soil. In this study, we considered only plant components above 20 cm depth. More detailed studies are needed to calculate more complete soil C balances. However, high belowground biomass production and root turnover indicate a high C input to the soil, which may result in positive soil C balances. Therefore, RCG cropping could have considerable carbon-sequestration potential. 相似文献