首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The buffering of protons and hydroxyl ions in acid soils was studied by the addition of small amounts of HCl, H2SO4, and NaOH in consecutive batch experiments using surface soils and subsoils from two Cambisols and one Podzol. A chemical equilibrium model was used to study the main buffer processes. The model included inorganic complexation and multiple cation exchange, and also the solubility of jurbanite and Al(OH)3 for the subsoils. Buffering of protons was predicted quite well by the model for the surface soil of the Spodi-Dystric and Spodic Cambisols, suggesting that multiple cation exchange was the main buffer process. For the Podzol surface soil, however, the model overestimated proton buffering by cation exchange considerably. Hydroxyl buffering in acid surface soils could be described well by the model for the Podzol soil only. For the Cambisols, hydroxyl buffer reactions included not only cation exchange, but also solubilization of large amounts of organic matter and presumably deprotonation of dissolved organic carbon (DOC). Modelling proton and hydroxyl buffering in subsoils suggested that equilibrium with AJ(OH)3 was not maintained for the Podzol and spodic Cambisol. Sulphate sorption had to be considered to describe titration experiments in all three soils. The assumption of jurbanite being in equilibrium with soil extracts was useful only for the Spodi-Dystric Cambisol.  相似文献   

2.
Predictions of changes in soil solution chemistry and exchangeable cations which occur on ash deposition after slash burning are complex and may be facilitated by the use of chemical models. Multi-ion sorption in the topsoil of an Amazonian Acrisol was studied by sequentially adding small amounts of electrolytes to soil and mixtures of soil and ash in batch experiments. A chemical equilibrium model that included inorganic complexation, multiple cation exchange and sparingly soluble salts (aluminium hydroxide and magnesian calcites) was used to interpret the results. The model predicted well the pH and sorption values in all experiments in which there was no addition of ash. The model suggested that cation exchange was the main process determining concentrations of soil solutions in all cases where neutral salt solutions were added, and that proton buffering was achieved by the dissolution of Al(OH)3 which was followed by Al3+ adsorption. Calculation of ion activity products in solutions from various batch experiments in soil + ash mixtures suggested that magnesian calcites of differing solubility may be in equilibrium with the activities of Mg2+ and Ca2+ in solution. An incongruent dissolution of Mg resulted in less soluble magnesian calcites in the ash. The model estimated satisfactorily the pH and the sorption of ions for all experiments with differing ash additions to the soil. Most of the Ca and significant amounts of Mg added in the ash are expected to remain for a long time in the soil and may determine the Ca and Mg status of the soil solution, primarily controlled by principles of solubility products.  相似文献   

3.
Cation exchange is often studied with disturbed and dried soils, but the applicability of the results to undisturbed soils is not straightforward. We investigated the value of exchange coefficients obtained from standard procedures for predicting cation exchange in soil. Columns of undisturbed and disturbed subsoil of a Luvisol (SBt horizon) were leached under saturated conditions with 0.4, 4, 20, 41, 102 and 205 mm BaCl2 at a Darcy velocity of 1400 mm day?1. The model PHREEQC was used to calculate one‐dimensional transport, inorganic complexation and multiple cation exchange. Two model variants were tested: m1 (exchangeable cations obtained by percolation with NH4Cl) and m2 (exchangeable cations obtained by shaking the soil with BaCl2). The exchange coefficients (Gaines–Thomas formalism) were calculated from the ion activities in solution and exchangeable cations obtained by NH4Cl percolation (m1) or shaking with BaCl2 (m2). Variant m1 predicted cation exchange of the disturbed (homogenized) soil for the entire BaCl2 concentration range, whereas variant m2 resulted in a two‐fold overestimation of desorbed K for all experiments, which was related to large amounts of K released from the soil by shaking with BaCl2. In experiments with undisturbed soil, variant m1 predicted the concentrations of Mg, Ca, K, and Na in the solution phase and the sum of cations released from exchange sites. However, variant m2 predicted changes in ion concentrations and exchangeable cations somewhat less well. This study suggests that the amounts of exchangeable cations and exchange coefficients obtained from experiments with homogenized soil by percolation are useful to predict cation concentrations in column experiments with undisturbed soils.  相似文献   

4.
5.
水溶性有机碳在各种粘土底土中的吸附:土壤性质的影响   总被引:3,自引:0,他引:3  
Clay-rich subsoils are added to sandy soils to improve crop yield and increase organic carbon (C) sequestration; however, little is known about the influence of clay subsoil properties on organic C sorption and desorption. Batch sorption experiments were conducted with nine clay subsoils with a range of properties. The clay subsoils were shaken for 16 h at 4 oC with water-extractable organic C (WEOC, 1 224 g C L-1) from mature wheat residue at a soil to extract ratio of 1:10. After removal of the supernatant, the residual pellet was shaken with deionised water to determine organic C desorption. The WEOC sorption was positively correlated with smectite and illite contents, cation exchange capacity (CEC) and total organic C, but negatively correlated with kaolinite content. Desorption of WEOC expressed as a percentage of WEOC sorbed was negatively correlated with smectite and illite contents, CEC, total and exchangeable calcium (Ca) concentrations and clay content, but positively correlated with kaolinite content. The relative importance of these properties varied among soil types. The soils with a high WEOC sorption capacity had medium CEC and their dominant clay minerals were smectite and illite. In contrast, kaolinite was the dominant clay mineral in the soils with a low WEOC sorption capacity and low-to-medium CEC. However, most soils had properties which could increase WEOC sorption as well as those that could decrease WEOC sorption. The relative importance of properties increasing or decreasing WEOC sorption varied with soils. The soils with high desorption had a low total Ca concentration, low-to-medium CEC and low clay content, whereas the soils with low desorption were characterised by medium-to-high CEC and smectite and illite were the dominant clay minerals. We conclude that WEOC sorption and desorption depend not on a single property but rather a combination of several properties of the subsoils in this study.  相似文献   

6.
A model of P-sorption kinetics was developed, that accounts for the dependency of reaction rate on concentration, sorbed P content, sorption maximum and time. The sorption phenomena predicted by the model agree with available observations in the literature. The model was tested with batch experiments for 17 acid top– and subsoils. The experiments revealed a significant correlation between the sorption maximum, Fm, and the sum of amorphous iron and aluminium in soils. Plotting the dimensionless P–sorption ratio, F(c, t)/Fm, which may be interpreted as the fractional saturation of the sorption capacity of a soil, against the natural logarithm of the exposure variable, I, gave S–shaped curves. Different parts of the S–shaped curve can be experimentally assessed, depending on the initial fractional saturation of the P–sorption capacity of soils. Apart from this dependency, one set of parameter values sufficed to describe the sorption kinetics of 10 different sandy top– and subsoils. For non–sandy soils, the parameter values differed and depended on the initial P content. The model enables extrapolation to long times, which is necessary for applications to field conditions.  相似文献   

7.
Apparent cation–exchange equilibria and solubility of aluminium were analysed in two acidic forest soils: a Cambisol and a Cambic Podzol. Soil solution was obtained by a centrifuge drainage method from fresh soil samples and with suction lysimeters. The total positive charge of the measured cations as well as the concentrations of the cations were generally much larger in the centrifugates than in the lysimeter solutions, which implies that total charge of soil solution is larger in small pores than in large pores. Hydrogen ion in particular was concentrated in some of the centrifugates, the ratio centrifugate:lysimeter solution being over 10. The total positive charge of the measured cationsdecreased with increasing depth with both methods. Theapparent cation–exchange coefficients K H-Ca, K Al-Ca, and K K-Ca had different values in the methods, and the variation in the cation exchange coefficients was larger in the lysimeter method than in the centrifuging method. The coefficient K Mg-Ca had similar values in both methods. The results imply that mobile solution could not have cation–exchange equilibria with bulk exchangeable cations in the soils, although solution in small pores seemed to have equilibria. Solubility of Al did not follow the solubility of an Al(OH)3 phase in the centrifugates, and the centrifugates with a H+ activity larger than 60 μmol were undersaturated with respect to the gibbsite. Solubility of Al was between gibbsite and amorphousAl(OH)3 in the lysimeter solutions. Differencesbetween the centrifugates and the lysimeter solutionsin the ion concentrations and in the apparent chemicalequilibria were similar for both soils studied.  相似文献   

8.
Both the ion accumulation on cation exchange resin and the transformation of test vermiculite in situ have been used to identify current processes in acid forest soils. We used such test materials to study weathering in a toposequence Dystric Luvisol–Spodo‐Dystric Cambisol on loess under deciduous forest in Belgium. The resin and a trioctahedral vermiculite were inserted for 2 years in the major horizons, down to a depth of 60 cm. The cation accumulation on the resin revealed that four main acid‐consuming systems are currently active in the toposequence. With decreasing acid neutralizing capacity, these systems are in the Luvisols: (i) the pool of exchangeable bases, (ii) the Al‐bearing minerals controlling the Al concentration in the liquid phase; and in the podzolized Cambisols: (iii) the less weatherable K‐bearing minerals, (iv) the Mg‐bearing phyllosilicates made free of Al interlayers in complexing conditions. The loss of cation exchange capacity in the test vermiculite is related to Al interlayering. However, this process masks a significant interlayer accumulation of magnesium, which is generated by the weathering of the test mineral itself. The largest interlayer accumulation of Mg occurs in the podzolized Cambisol, suggesting more intense weathering of the test vermiculite in this soil.  相似文献   

9.
The ‘Gaines and Thomas’ method for calculating the thermodynamic parameters of a cation exchange process has been criticized because equivalent rather than mole fractions were used in the definition of adsorbed ion activity coefficients. Although such coefficients are thus not theoretically correct, comparison with directly measured enthalpies of exchange shows that they indicate heterogeneity in the exchange process correctly. They also differ little from coefficients defined in terms of mole fractions. Such a re-definition alters values of the thermodynamic equilibrium constant, and free energy and entropy of exchange by a constant factor, independent of cations and exchanger. Comparisons of series of cations, soils or clays using these parameters are therefore not affected.  相似文献   

10.
土层性质对铜和铅在土壤中保持和迁移的影响   总被引:1,自引:0,他引:1  
The mobility and bioavailability of heavy metals in soils is largely governed by sorption and desorption phenomena.Cu2+ and Pb2+ are among the most potentially toxic heavy metals and they are present,often concomitantly,in many polluting spills and in agrochemicals.The objective was to assess and compare the competitive sorption and desorption capacities and sorption hysteresis of Cu2+ and Pb2+,as well as their migration through the profiles of four natural soils:a Humic Umbrisol,an Umbric Cambisol,an Endoleptic Luvisol and a Humic Cambisol.In all horizons Pb2+ was invariably sorbed and retained to a greater extent than Cu2+.The sorption and retention of Cu2+ were most in?uenced by pH,e?ective cation exchange capacity(CECe) and Mn oxide content.On the other hand,the fixation capacity of Pb2+ was most in?uenced by pH,CECe,and Mn oxide and organic matter contents.pH and CECe were the individual soil properties most markedly in?uencing Cu2+ and Pb2+ sorption and retention.In all the horizons Pb2+ exhibited greater hysteresis than Cu2+.In each soil the hysteresis in the A horizon was greater than that in the B horizon,except in the Bt horizon of the Endoleptic Luvisol,due to its high pH and vermiculite content.Based on migration indices,Pb2+ was less mobile than Cu2+ in the studied soils.  相似文献   

11.
The adsorption of Cd, Cu, Pb, and Zn from 0.025 M NaClO4 solutions by two ferruginous subsoils, Christiana silty clay loam and Dothan sandy clay, was investigated. Under acidic conditions, selective dissolution and removal of the Fe oxide soil component by dithionite-citrate-bicarbonate (DCB) generally increased heavy metal adsorption by the soils. This effect was attributed to increased electrostatic attraction of cations to the DCB-washed soils as evidenced by substantial reduction in the zero point of charge (ZPC) for the Dothan soil following DCB extraction. Alternately, the DCB extraction stripped Fe and Al species bound to structural exchange sites or eliminated coatings which reduce cation accessibility to such sites. Addition of low levels (10?6 M) of ferric iron suppressed heavy metal adsorption capacity of the DCB-extracted Christiana soil to values comparable to the unmodified whole soil system. While hydrous oxide surfaces represent highly reactive sites for cation binding, Fe oxides can modify both the pH-dependent and structural exchange sites in a manner which hinders heavy metal adsorption. Thus, a soil's Fe-oxide content is unlikely to be a reliable guide to heavy metal adsorption capacity.  相似文献   

12.
We have examined the charge characteristics, with special emphasis on the role of free Fe and organic matter, of humid tropical soils from Bambouto Mountains, Western Cameroon. The soils, which are formed from tuff, basalt and trachyte, are dominated by kaolinite and sesquioxides. The amounts of Fe oxides in them increase somewhat with depth. Open 2:1 phyllosilicates are present in trace amounts. The point of zero charge of the variable charge components, pH0, is around 4 in the topsoil (0–20 cm) and around 6 at 100–150 cm depth. In the subsoils, pH0 exceeds soil pH presumably because of large quantities of Fe oxides. Deferration increases both soil pH and pH0, but diminishes the anion exchange capacity. Oxides and oxyhydrates of Fe have positive surface charge, so their removal from the soils would result in overall loss of positive charge. Increases in soil pH would bring about an increase in the cation exchange capacity of the soils. Hence, management practices that reduce soil acidity should reduce loss of essential basic cations via leaching.  相似文献   

13.
Adsorption coefficients are valuable tools used to estimate the environmental relevance of heavy metal contamination. However, their determination with batch experiments is laborious. Thus, attempts have been made to deduce these coefficients from soil parameters. However, the application of the resulting parameterized equations to different sets of samples has often yielded poor results. Hence, the objectives of the present study were (1) to deduce basic soil properties governing the coefficients of Freundlich adsorption isotherms for Cd, Cu, Ni, Pb, and Zn, and (2) to derive parameterized isotherms and examine their accuracy. For this purpose, 30 topsoil and nine subsoil samples were investigated which represented one Podzol‐Cambisol‐Gleysol soilscape in an area with intensive livestock production in Lower Saxony, Germany. Total background concentrations (aqua regia digestion) of heavy metals in topsoils ranged from 0.290 (Cd) to 19.2 mg kg—1 (Zn) and exhibited elevated mobilizable proportions (NH4EDTA pH 4.6 extract) of 17 (Ni) — 66 % (Zn) from the total concentration. Background concentrations were higher in topsoils than in subsoils by factors of 1.7 (Ni) — 28 (Zn). These differences were assigned to the special situation of heavy metal input mostly originating from animal excrements. The isotherms obtained by batch experiments showed larger coefficients KF for partition among soil solid phase and soil solution in topsoils than in subsoils by a factor of 3.5. The coefficients of the isotherms were significantly correlated with routinely determined soil properties such as cation exchange capacity and pH (R = 0.36—0.89). Parameterized isotherms were calculated for each metal by inserting the relevant parameters in multiple linear regression equations. Among these parameters were the soil pH, cation exchange capacity, total metal concentration, and the concentrations of organic carbon, clay, fine silt, and various pedogenic oxides. The KF values, separately calculated for topsoils and subsoils, agreed well with those determined by batch experiments (R = 0.63—0.97). Therefore, parameterized isotherms are valuable tools for the prediction of heavy metal partition in soils from one soilscape and for a risk assessment in the investigated, densely stocked area and similar areas.  相似文献   

14.
Biological activities greatly influence the formation of many soils, especially forest soils under cool humid climates. The objective of this study was to investigate the effects of vegetation and soil biota on the formation of selected soils. Field morphology, micromorphology, and carbon and organic matter analysis were determined on six Podzols (Spodosols) and two Cambisols (Inceptisols) from the eastern United States and north-east Scotland. Humification of plant material by soil fauna and fungi occurs in all organic horizons. Thick organic coatings are observed on soil peds and rock fragments from the E1 to the Bs horizon in a Haplic Podzol from Clingmans Dome Mt., TN. Thin sections reveal large accumulations of root material in different stages of decomposition in the spodic horizons of a Haplic Podzol from Whiteface Mt., NY. Organic carbon ranges from 5.4 to 8.5% in the spodic B horizons of the Whiteface Mt. Podzol. Earthworms and enchytraeids have a great effect on the structure of the surface and subsurface horizons in the Dystric Cambisols from Huntly and Clashindarroch Forests, Scotland and a Cambic Podzol from the Corrie Burn Basin, Scotland. Podzols from Speymouth Forest, Scotland (Gleyic Podzol), Clingmans Dome Mt., and Whiteface Mt. have thick organic horizons. The Podzols from the Flatwoods in Georgia, the Pine Barrens in New Jersey, the Corrie Burn Basin, and the Cambisol from Huntly Forest have only A horizons at the surface. The Clashindarroch Forest soil has a very thin organic horizon. Warm and humid climates and sandy parent material are responsible for thick E horizons and lack of thick organic horizons in the Flatwoods (Carbic Podzol) and Pine Barrens (Ferric Podzol) soils. Earthworms and enchytraeids thrive in the Corrie Burn Basin and Huntly Forest soils due to the vegetation and the highly weathered basic parent material. The site at Clashindarroch once carried oak, and then birch forest, both of which produce a mild litter and also encourage earthworm and enchytraeids. This fauna is responsible for much mixing of the topsoil. The present conifer vegetation will eventually produce a deep litter and cause podzolization.  相似文献   

15.
The accumulation of heavy metals in the soils of the Braunschweig wastewater irrigation area The concentration of lead, zink and cadmium in the Ap-horizons and subsoils of sandy Podzols and Cambisols were investigated. As compared with same soils outside the irrigation area an accumulation of the heavy metals in the Ap-horizons of the older sprinkler irrigation plots was found. On the rill irrigation area the heavy metals also were concentrated in the subsoils.  相似文献   

16.
17.
Allophanic soils are known to accumulate organic matter, but the underlying mechanism is not well understood. Here we have investigated the sorption of humic acid (HA) by an allophanic clay in the presence of varied concentrations of either CaCl2 or NaCl as background electrolytes. Both the HA and the clay were separated from New Zealand soils. Much more HA was sorbed in CaCl2 than in NaCl of the same ionic strength. Apparently Ca2+ ions were more effective than Na+ ions in screening the negative charge on HA. In CaCl2 the HA molecule might also assume a more compact configuration than in NaCl. In the presence of CaCl2 sorption increased, reached a maximum, and then declined as the concentration of HA in solution was increased. This behaviour was not observed in NaCl where sorption showed a gradual and steady increase with HA concentration. We propose that ligand exchange occurs between the surface hydroxyl groups of allophane and the carboxylate groups of HA. As a result, the allophane–HA complex acquires negative charges, requiring the co‐sorption of extraneous cations (Ca2+ or Na+) for charge balance. The Ca2+ co‐sorbed can attract more HA to the complex possibly by a cation‐bridging mechanism, giving rise to a maximum in sorption. The decline in sorption beyond the maximum may be ascribed to a decrease in the concentration of free Ca2+ ions through binding to HA molecules in solution. The increase in supernatant pH may be attributed to a ligand exchange reaction between the surface hydroxyls of allophane and the carboxylate groups of HA, and proton binding to the allophane–HA complex.  相似文献   

18.
The long‐term sustainability of forest soils may be affected by the retention of exchangeable nutrient cations such as Ca2+ and the availability of potentially toxic cations such as Al3+. Many of our current concepts of cation exchange and base cation saturation are largely unchanged since the beginnings of soil chemistry over a century ago. Many of the same methods are still in use even though they were developed in a period when exchangeable aluminium (Al) and variable charge were not generally recognized. These concepts and methods are not easily applicable to acid, highly organic forest soils. The source of charge in these soils is primarily derived from organic matter (OM) but the retention of cations, especially Al species, cannot be described by simple exchange phenomena. In this review, we trace the development of modern cation exchange definitions and procedures, and focus on how these are challenged by recent research on the behaviour of acid forest soils. Although the effective cation exchange capacity (CECe) in an individual forest soil sample can be easily shown to vary with the addition of strong base or acid, it is difficult to find a pH effect in a population of different acid forest soil samples. In the very acidic pH range below ca 4.5, soils will generally have smaller concentrations of adsorbed Al3+. This can be ascribed to a reduced availability of weatherable Al‐containing minerals and a large amount of weak, organic acidity. Base cation saturation calculations in this pH range do not provide a useful metric and, in fact, pH is modelled better if Al3+ is considered to be a base cation. Measurement of exchangeable Al3+ with a neutral salt represents an ill‐defined but repeatable portion of organically complexed Al, affected by the pH of the extractant. Cation exchange in these soils can be modelled if assumptions are made as to the proportion of individual cations that are non‐specifically bound by soil OM. Future research should recognize these challenges and focus on redefining our concepts of cation retention in these important soils.  相似文献   

19.
This is a mini-review of the research work conducted by the authors with the objective of studying ion transport in variable charge subsoils collected from different areas around the world. An attempt is made in these studies to relate the unique behavior manifested during ionic transport in these subsoils with their mineralogical, physical and chemical properties, which are markedly different from those in soils from temperate regions. The variable charge subsoils have a relatively high salt sorption capacity and anion exchange capacity (AEC) that retards anions downward movement. The AEC correlates closely with the anion retardation coefficients. Ca2+ applied with gypsum in topsoil may be transported to the subsoil and may improve the subsoil chemical properties. These results may help in developing appropriate management strategies under a range of mineralogical, physical, and chemical conditions.  相似文献   

20.
Large zinc and lead concentrations occur in strongly weathered soils of Cambisol–Ferralsol toposequences in the Paracatu‐Vazante area (Central Plateau, Brazil). Weathering of the mineralized dolomite parent material of the Cambisols is hypothesized to be the geogenic source of zinc (Zn) and lead (Pb), with dissemination downslope into the Ferralsols. This leads to different metal distribution patterns in the two soils. We studied Zn and Pb distributions in selected A and B horizons of two typical profiles to examine this hypothesis and assess the contribution of sesquioxides to the retention of these metals. Physical separation into 200–2000, 50–200, 20–50 and < 20‐µm size fractions in water without chemical dispersants was carried out before (F1) and after (F2) ultrasonification. The fractions were analysed for total and extractable Zn and Pb concentrations and studied by X‐ray diffraction and optical microscopy. Microscale Zn and Pb distribution maps were obtained by using micro‐X‐ray fluorescence on thin sections. For the Cambisol, the composition, morphology and large Zn and Pb concentrations of coarse‐sized F2 fractions were consistent with a geogenic metal origin. In both soils, < 20‐µm fractions contained the largest amounts of Zn and Pb. In the Cambisol, this < 20‐µm fraction included poorly crystalline Mn‐rich material, encouraging strong Pb sorption. The Ferralsol < 20‐µm fractions contained more Al‐ and Fe‐oxide‐rich microaggregates, which also enhanced strong metal retention. Large sesquioxide contents in these and similar tropical soils reduce metal mobilities. This limits the risk of toxicity when such soils, with metal contents exceeding guidelines, are used for agriculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号