首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Application of iron (Fe) -rich amendments to soils has been proposed as a means of decreasing phosphorus (P) losses from soils. However, anoxic conditions following soil saturation are known to increase Fe and P solubility in soils, thus cancelling out the potential benefits. Our aim was to evaluate the effects of continuous oxic, continuous anoxic and alternating anoxic/oxic conditions on P exchangeability and Fe forms in soil amended with Ca(OH)2 and FeSO4. We incubated amended and unamended soils under these conditions for 8 weeks and measured Fe forms and P exchangeability. Under oxic conditions, addition of Ca(OH)2 and FeSO4 resulted in a strong decrease in P exchangeability and an increase in oxalate-extractable Fe. Mössbauer analyses suggested that an unidentified Fe oxide (D1oxide) with a strong sorbing capacity for P was precipitated. Under continuously anoxic conditions, P exchangeability and oxalate-extractable Fe increased with or without the amendments. Mössbauer analyses suggested that there was a partial dissolution of the D1oxide phase, precipitation of another unidentified Fe oxide (S3) and a reduction of structural Fe3+ in phyllosilicate, thereby increasing soil negative charge. These transformations resulted in a strong increase in rapidly exchangeable P. Alternating anoxic and oxic periods induced the dissolution and precipitation of iron oxides and the increase and decrease in P exchangeability. Implications of the results for limiting P losses from grassland soils are discussed.  相似文献   

2.
Bonemeal, coir, compost, green waste compost, peat and wood bark all potentially could be used as amendments to remediate heavy metal contamination in soils. Their ability to sorb Pb, Cu and Zn was evaluated in the laboratory, using metal solutions ranging from 0 to 5 mmol/L as contaminants. The effects on sorption of metal concentration, background salt concentration and metal competition were evaluated. Single metal sorption by the six amendments was significantly different at metal concentrations of 1.5–5 mmol/L, with green waste compost, coir, compost and wood bark having the highest capacities to adsorb Pb, Cu and Zn. Langmuir sorption maxima were approximately 87 mg Pb/g (coir and green waste compost), 30 mg Cu/g (compost and green waste compost) and 13 mg Zn/g (compost and green waste compost) (equivalent to approx. 0.5 mmol/g of Pb and Cu, and 0.2 mmol/g Zn), all in a background solution of 0.001 M Ca(NO3)2. A higher background salt concentration and a combination of all three metals led to significant reduction in the amounts of Pb, Cu and Zn sorbed by all the amendments tested. Competing heavy metal cations in solution decreased Pb sorption to about 50–60% of that from a solution containing Pb alone; Cu sorption was reduced to about 30–40%; the effect of competition on Zn sorption was variable. Overall, in both single metal and competitive sorption, the order of strength of binding was Pb>Cu>>Zn.  相似文献   

3.
Determination of the gas diffusion coefficient D s of peat soils is essential to understand the mechanisms of soil gas transport in peatlands, which have been one of major potential sources of gaseous carbons. In the present study, we aimed at determining the D s of peat soils for various values of the air-filled porosity a and we tested the validity of the Three-Porosity Model (Moldrup et al. 2004) and the Millington-Quirk model (1961) for predicting the relative gas diffusivity, the ratio of D s to D 0, the gas diffusion coefficient in free air. Undisturbed peat soil cores were sampled from aerobic layers in the Bibai mire, Hokkaido, Japan. The MQ model reproduced the measured D s/ D 0 curves better than the TPM. The TPM, a predictive model for undisturbed mineral soils, overestimated the D s/ D 0 values for peat soils, implying that in the peat soils the pore pathways were more tortuous than those in the mineral soils. Since the changes in the D s/ D 0 ratios with the a values of a well-decomposed black peat soil tended to be more remarkable than those of other high-moor peat soils, the existence of a positive feedback mechanism was assumed, such that peat soil decomposition itself would increase the soil gas diffusivity and promote soil respiration.  相似文献   

4.
Abstract. There is increasing evidence that phosphorus has been accumulating in the surface horizons of agricultural soils to the extent that some soils represent a potential diffuse source of pollution to surface waters. The relationships between equilibrium phosphorus concentration at zero sorption (EPC 0) of soil and a number of soil physicochemical variables were investigated in the surface layers of arable and grassland agricultural soils sampled from the Thame catchment, England. Soil EPC0 could be predicted from an equation including soil test (Olsen) P, soil phosphate sorption index (PSI) and organic matter content (OM) (R2=0.88; P <0.001) across a range of soil types and land use. The simple index Olsen P/PSI was found to be a good predictor of EPC0 (R2=0.77; P <0.001) and readily desorbable (0.02 m KCl extractable) P (R2=0.73; P <0.001) across a range of soil types under arable having soil organic matter contents of <10%.  相似文献   

5.
Abstract. Changes in amounts of macro-(N, P, K) and micro-nutrients (Fe, Mn, Zn and Cu) were determined in two calcareous soils amended over an eight-month period with pig slurry applications ranging from 0 to 500 m3/ha, and planted in containers with green pepper ( Capsicum annuum ). Total N and exchangeable K increased after slurry applications of 300 m3/ha or more, and available P increased after the smallest application rate (100m3/ha). Maximum crop nutrient uptakes of 41, 40 and 91% for N, P and K occurred with the smallest dose of slurry. Large losses of N, ranging from 27 to 74% (mean 55%) of N added to soil, occurred with all slurry treatments. From 41 to 71% (mean 55%) of the total P added in pig slurry was fixed in non-assimilable forms. Most of the K from the pig slurry was available to the plants. Most of the micro-nutrients (Fe, Mn, Zn and Cu) from the slurry were immobilized in the soil, probably because of the high pH and the small amounts of organic matter in both the slurries and soils tested.  相似文献   

6.
Toxic trace metals may percolate to the ground water from sewage sludge disposed onto land. Analyses are presented of the soil solution from a slightly acid loamy soil treated 7 years earlier with single applications of digested sewage sludge in amounts equivalent to 0, 150 & 330 t dry matter ha−1
These very heavy dressings correspond to 2 & 4.5 times the recommended 30–year limit. Samples of soil and soil solution from four depths to 80 cm were analysed for Al, B, Ba, Ca, Cl, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, S, Sr, V, Zn, together with the OM of the soil, and the pH, alkalinity, dissolved organic carbon, and absorbance at 350 nm of the solutions.
These very heavy sludge applications were apparently still releasing substantial quantities of NO3, and some SO4 even after 7 years. Nitrate, SO4, Mg, Ca, Sr, B, and possibly Ba are still moving through the profile, possibly to the ground water. Solution concentrations of Cu and Zn are considerably higher at all depths than those in the untreated plot, but they fall off sharply with depth. It is unlikely that any Cu or Zn is now reaching the ground water.
The paper also presents a set of published solution analyses for soils, sludge–treated soils and digested sludge, as a basis for further studies.  相似文献   

7.
Abstract. The phosphorus (P) sorption and desorption dynamics of eleven major agricultural grassland soil types in Ireland were examined using laboratory techniques, so that soils vulnerable to P loss might be identified. Desorption of P from soil using the iron-oxide paper strip test (Pfeo), water extractable P (Pw) and calcium chloride extractable P (Pcacl2) depended on soil P status in all soils. However, soil types with high organic matter levels (OM), namely peat soils (%OM >30), had lower Pfeo and Pw but higher Pcacl2 values compared to mineral soils at similar soil test P levels. Phosphorus sorption capacity remaining (PSCr) was measured using a single addition of P to soils and used to calculate total P sorption capacities (PSCt) and degree of P saturation (DPS). Phosphorus sorption capacities correlated negatively with % OM in soils indicating that OM may inhibit P sorption from solution to soil. High organic matter soils exhibited low P sorption capacities and poor P reserves (total P, oxalate extractable P) compared to mineral soils. Low P sorption capacities (PSCt) in peat soils were attributed to OM, which blocked or eliminated sorption sites with organic acids, therefore, P remained in the soil solution phase (Pcacl2). In this work, peat and high organic matter soils exhibited P sorption and desorption characteristics which suggest that these soils may not be suitable for heavy applications of manure or fertilizer P owing to their low capacities for P sorption and storage.  相似文献   

8.
Abstract. Soils in areas with high livestock density contribute to the eutrophication of aquatic ecosystems through loss of nutrients, especially phosphorus (P). In order to identify the potential for P loss from such soils we determined phosphorus extracted by water (H2O-P), by double lactate (DL-P), and P sorption capacity (PSC) and degree of P saturation (DPS) in soil samples from two counties, one with low (Harle-catchment) and the other with very high livestock density (Vechta). Both catchments are hydrologically connected with the tidal areas of the North Sea.
The mean concentrations of H2O-P (0.4mmol/kg) and DL-P (3.9 mmol/kg) were lower in the Harle-catchment than in the Vechta area (1.2 mmol/kg, 6.8mmol/kg). Although oxalate-extractable Al (Alox) and Fe (Feox) and the derived PSCs varied according to soil type and to land use, the livestock density and the resulting high concentrations of oxalate-extractable P (Pox) were shown to be the main reason for the very high DPS of up to 179% in the county of Vechta. These values exceeded DPS reported from other intensive pig feeding areas in western Europe and indicate the potential for significant P loss. Less than 40% of the variation in Pox could be explained by the routinely determined H2O-Por DL-P. Geostatistical analyses indicated that the spatial variability of Pox depended on manurial history of fields and Alox, showed still smaller-scale variability. These were the major constraints for regional assessments of P losses and eutrophication risk from agricultural soils using available soil P-test values, digital maps and geostatistical methods.  相似文献   

9.
Five soil pedons–two aquic and two udic Haplustalfs and one petrocalcic Natrustalf–from the Indo-Gangetic alluvial plain of Western Uttar Pradesh were investigated to evaluate the pedogenetic processes. Sand/silt ratios indicate that parent material discontinuities are insignificant. Higher K content and lower SiO2/R2O3 ratios of the non-clay fractions in Bt, rather than in the A, horizons suggest maximum weathering at or near the surface.
An almost linear relationship between decrease in molar SiO2/R2O3 and % increase in clay to about 100cm depth in all the pedons, presence of clay argillans in Bt horizons (where % clay, fine/coarse clay ratio and bulk density values are greatest), all indicate that the development of argillic horizons in these soils was due, at least partly, to lessivage of clay. Fe in clay fractions decreases with depth whilst Al increases, but in the fine earth both increase steadily with depth. This, together with crystalline iron concretions in the lower Bt horizons, suggests that in Haplustalfs these horizons are gaining clay by neoformation/ reorganization of illuviated constituents, especially A12O3.  相似文献   

10.
Thirty-one soil solutions were extracted by immiscible displacement with CCl4 under high speed centrifugation from sub-horizons of three podzolic soils from north-eastern Ontario, Canada. The solutions were analysed for major cations and anions and a speciation of dissolved Fe and Al was attempted to distinguish 'free', 'organically bound' and 'inorganically bound' species. Results indicated that the Ae (E) horizon solutions were of low pH and contained mainly organically bound Fe and Al. With depth, pHs increased, ionic strengths decreased and the relative proportion of inorganically bound Fe and Al increased. Although application of phase diagrams permitted only a semi-quantitative interpretation of the data, all horizon solutions, with the exception of some Ae solutions, appeared supersaturated with respect to likely occurring crystalline and amorphous aluminosilicates [kaolinite, halloysite, allophane (Al:Si=l) and imogolite]. Of the phases considered, reactions involving imogolite-allophane, gibbsite-halloysite, gibbsite-allophane and gibbsite-imogolite all appeared reasonable in controlling the content of Al3+ and H4SiO4 in solution, although the presence of gibbsite and imogolite could not be definitely confirmed in these soils.  相似文献   

11.
Abstract. The Agricultural Catchments Research Unit model (ACRU) includes a decision support system (DSS) for estimating the water content of soil at field capacity (θ fc ) and wilting point (θ wp ) when these characteristics are not directly measurable. Three methods of estimation are proposed: (a) based on silt and clay content and bulk density, (b) based on clay content only, and (c) based on soil series. These three pedotransfer functions are compared with respect to both the estimation of θ fc and θ wp and the propagation of errors when the actual evapotranspiration of a wheat crop (E) is predicted over the growing season by the ACRU model.
The standard error of estimation was between 0.066 and 0.082 m3/m3 for θ fc , between 0.056 and 0.069 m3/m3 for θ wp and between 29.9 and 34.8 mm of water for E. The method based on silt and clay contents and bulk density predicted θ fc and θ wp for non-swelling soils most precisely. The method based on soil series was better than other methods for swelling soils. It also performed better for estimating available water capacity and consequently for predicting E from a conceptual soil water model. The propagated error of estimating θ fc and θ wp using the DSS reached 15–18% of the simulated E. The error in the prediction of E can reach 26–30% when spatial variation in soil properties is also estimated.  相似文献   

12.
The reactions of copper and zinc with calcium carbonate surfaces   总被引:2,自引:0,他引:2  
The reaction of copper and zinc were studied by adding the metal nitrate to a 4g:50ml suspension of calcite and water which had been equilibrated for two days, and then equilibrating for a further three days. Zinc behaved in a similar manner to cadmium in forming a surface-solid solution of ZnχCa1-χCO3 as a result of adsorption, and the pIAP of the equilibrium solutions were close to those expected from the Thorstenson & Plummer equation. However, the continuity from adsorption to precipitation was broken by the formation of Zn5(OH)6(CO3)2 which has a higher stability than ZnCO3. The CaCO3 surface appears to constrain the adsorbed Zn to conform to a carbonate structure despite its lower stability than the hydroxy carbonate.
The adsorption data for Cu can also be explained in terms of a surface-solid solution of CuχCa1-XCO3, but CuCO3 is not found naturally because of much greater stability of Cu(OH)2, and so there is no independent value for the solubility of a CuCO3 end-member if a surface-solid solution is formed. Secondary reactions are more likely to occur for Cu, especially close to the adsorption-precipitation boundary. Continuity from adsorption to precipitation again was not found. Theory predicts that Cu is less likely to form a surface-solid solution than Zn.
Upper Chalk (calcite with 4% other minerals, mostly quartz) behaved in a similar way but with increased adsorption due to its higher surface area.  相似文献   

13.
Zinc sorption–desorption by sand, silt and clay fractions of six representative calcareous soils of Iran were measured. Sand, silt and clay particles were fractionated after dispersion of soils with an ultrasonic probe. Zinc sorption analysis was performed by adding eight rates of Zn from 6 to 120 μmol g?1. For the desorption experiment, samples retained after the measurement of Zn sorption were resuspended sequentially in 0.01 M NaNO3 solution and shaken for 24 h. Results indicated that Zn sorption by soil fractions increased in the order clay > silt > sand, and correlated negatively with CaCO3 content and positively with cation exchange capacity (CEC) and smectite content. Results indicated that for all fractions, the Langmuir equation described the sorption rates fairly well. In contrast to sorption, Zn desorption from soil fractions increased in the order sand > silt > clay, and correlated positively with CaCO3 content, CEC and smectite content. Results showed that parabolic diffusion and two constant equations adequately described the reaction rates of Zn desorption. In general, for all soils studied, the coarser the particle size, the less Zn sorption and more Zn desorption, and this reflects much higher risk of Zn leaching into groundwater or plant uptake in contaminated soils.  相似文献   

14.
Local farmers who living in South Kalimantan (Banjarese farmers) apply almost none of phosphatic (P) fertilizers to grow local rice varieties. This practice has been adopted for many years. We have investigated the mechanisms involved in P availability for the crop. This study focuses on identifying microorganisms involved in solubilizing insoluble P. The study was conducted in Balandean District, South Kalimantan, Indonesia. The soil was classified as acid sulfate soil. Three out of 8 rice varieties grown were selected for net P balance in the soil-plant system and the microbial studies. We found that the P uptakes by the rice crop was much higher than the sum of P released from soil, water and soil microbial biomass P. It was also observed that these soils harboured bacteria and fungi that have the capability of dissolving aluminium phosphate (AIPO4) and tricalcium phosphate [Ca3(PO4)2].
Based on the area of clear zone on plates, it seem that there were variations of ability in dissolving Al-P or Ca-P. DNA sequence analysis shown that Burkholderia sp. was the common P solubilizing bacterium found in the rhizosphere of rice varieties Siam Unus, Siam Ubi and Siam Puntal. The presence of other bacteria was specific for each rice variety grown.  相似文献   

15.
Abstract. Solutions collected from lysimeters of acid soils can show pH values close to or even above neutral. Laboratory experiments on an acid soil from Burundi were planned to test if denitrification or CO2 degassing might explain such a paradox. In the first experiment, soil profiles were reconstituted in columns and leached with 55 μ m Ca(NO3)2 solutions at 30 °C and 4 °C. Two drainage regimes were applied: intermittent suction or no suction at the bottom of the columns. In the second experiment, pH values were measured in solutions drained from different horizons at 30 °C, before and after equilibration with ambient air. Sterilized soil was also tested in the same way. Results from experiment 1 showed that despite the accumulation of water in the bottom of soil profiles when no suction was applied, aeration still existed so that reduction reactions, namely denitrification, are not expected to affect greatly the percolate composition. Indeed nitrate concentration was similar in both drainage regimes and was close to the input value. The pH values in percolates were close to 7 at 30 °C and they dropped to about 5.5 when the columns were at 4 °C. In experiment 2, equilibration of percolates with ambient air resulted in pH increase which was greater for the top horizon (C-rich) but negligible when the soil was first sterilized. These convergent results illustrate the very important effect of CO2 degassing on pH of drained solutions when microbial activity is stimulated at high temperatures, in C-rich soil. This is of prime importance when interpreting results from lysimeter experiments. By chance, this study also showed that large quantities of nitrate can be produced in soil at low temperatures.  相似文献   

16.
The formation of CH3ONO in 11 soils treated with HNO2 or NaNO2 in a closed system, was studied by measuring the concentration in the gas space above the soil and by absorbing CH3ONO in HI. The gaseous concentration of CH3ONO increased and then decreased following additions of HNO2 or NaNO2, and the production of CH3ONO increased with increasing concentrations of HNO2 or NaNO2 added to soils.
The amounts of CH3ONO trapped in HI were 13.5 to 20.4 times higher than those determined by integrating under the net production curves. The evolved CH3ONO amounted to 0.4 to 3.5% of added NO2, and 4.2 to 50% of the gaseous forms of N absorbed by acidic KMnO4 solution. The CH3ONO evolved from soils was positively correlated with the methoxy content of the soils, and inversely related to soil pH, with negligible amounts being evolved from alkaline soils. The results show that CH3ONO is a product of NO2 decomposition in soils, and indicate that small concentrations of the gas may be produced in N–fertilized soils in which NO2 accumulates.  相似文献   

17.
Phosphate sorption was measured by the method of Barrow (1980) using a laboratory incubation procedure for up to 60 d on four soils which had different mineralogies but medium to high phosphate retention. All the soils had slow reactions where phosphate sorption continued, but at a decreasing rate, with time. The rate of decrease in the slow reactions was similar on all the soils. Phosphate became less available to plants during the slow reactions, and results of a pot trial with white clover showed that, on all the soils, phosphate incubated with the soils for 218 d was about 65% as effective as phosphate incubated for 10d.
When 700 mg P kg−1 was added to allophanic soils (Andisols), about 100 mg kg−1 was strongly adsorbed, about 200 mg kg−1 became unavailable in about 200 days and the remainder was weakly adsorbed. A similar result was obtained on Waiarikiki soil (Inceptisol), which contained ferrihydrite and Al-humus as the predominant reactive species. On the Kerikeri soil (Oxisol) about 150 mg P kg−1 became unavailable with time as a result of reactions with geothite, hematite and Al-humus.
The phosphate uptake by the microbial biomass was similar to the uptake by the clover, and immobilization of phosphate in the biomass can contribute to the loss of availability of phosphate in soils.  相似文献   

18.
We have examined the charge characteristics, with special emphasis on the role of free Fe and organic matter, of humid tropical soils from Bambouto Mountains, Western Cameroon. The soils, which are formed from tuff, basalt and trachyte, are dominated by kaolinite and sesquioxides. The amounts of Fe oxides in them increase somewhat with depth. Open 2:1 phyllosilicates are present in trace amounts. The point of zero charge of the variable charge components, pH0, is around 4 in the topsoil (0–20 cm) and around 6 at 100–150 cm depth. In the subsoils, pH0 exceeds soil pH presumably because of large quantities of Fe oxides. Deferration increases both soil pH and pH0, but diminishes the anion exchange capacity. Oxides and oxyhydrates of Fe have positive surface charge, so their removal from the soils would result in overall loss of positive charge. Increases in soil pH would bring about an increase in the cation exchange capacity of the soils. Hence, management practices that reduce soil acidity should reduce loss of essential basic cations via leaching.  相似文献   

19.
Abstract. The effects of time and temperature on the changes in Olsen P after phosphate application were studied in 13 calcareous soils from Pakistan, an Oxisol from Colombia and an Inceptisol from England. The phosphate sorption reactions were monitored in two stages. The short-term reaction (30 min shaking with added phosphate in the presence of the Olsen bicarbonate solution) showed that over this time the nature of the sorbing material and number of available sites for P adsorption were important but temperature was not. The extent of the short-term sorption was not related to the amount of calcium carbonate. In the long-term reaction (incubating the soils with phosphate at 10, 25 and 45 °C for one year) the amount of Olsen P decreased with time following a power relationship. Increased temperature increased the rate of reaction, following the Arrhenius principle i.e. Q10⊃ 3 (activation energy 83 kJ mol–1). The effects of time and temperature were well described by a modified power equation Y = a (1 + fTt ) -b , where Y is the amount of Olsen P extracted after time t , a is the Olsen P value after the short-term reaction (the initial value), fT is the ratio of the rate constants at any two temperatures and b is a coefficient which represents the loss in extractability with time. On the basis of the initial Olsen P values and subsequent Olsen P values at different times and temperatures a unified decay curve Y/a = (1 + t )–0.20 was developed where the initial Olsen P values are normalized to 1. The parameters of this equation allow, with limitations, the prediction of changes in Olsen P in these soils if the initial Olsen P value of the soil is known.  相似文献   

20.
Distribution coefficients of Cd, Co, Ni, and Zn in soils   总被引:17,自引:0,他引:17  
Batch adsorption experiments were conducted with a mixture of solutes at low equilibrium concentrations of Cd (0.7-12.6 μg1−1), Co (18-118μg1−1, Ni (22-330 μg 1−1), and Zn (40-1480 μg1−1) in 38 different soils. Statistical correlations indicated that metal sorption onto the soils was influenced by the presence of clays and hydrous oxides of Fe and Mn. Based on calculated distribution coefficients for these metals, Co will generally exhibit the highest mobility in soils, but the mobility of Zn will increase faster with decreasing pH. Two types of empirical relationships are developed from these data to estimate values for the distribution coefficients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号