首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Roasting is a critical process in coffee production as it enables the development of flavor and aroma. At the same time, roasting may lead to the formation of nondesirable compounds, such as polycyclic aromatic hydrocarbons (PAHs). In this study, Arabica green coffee beans from Cuba were roasted under controlled conditions to monitor PAH formation during the roasting process. Roasting was performed in a pilot spouted bed roaster, with the inlet air temperature varying from 180 to 260 degrees C, using both dark (20 min) and light (5 min) roasting conditions. Several PAHs were determined in both roasted coffee samples and green coffee samples. Also, coffee brews, obtained using an electric coffee maker, were analyzed for final estimation of PAH transfer coefficients to the infusion. Formation of phenanthrene, anthracene, and benzo[a]anthracene in coffee beans was observed at temperatures above 220 degrees C, whereas formation of pyrene and chrysene required 260 degrees C. Low levels of benzo[g,h,i]perylene were also noted for dark roasting under 260 degrees C, with simultaneous partial degradation of three-cycle PAHs, suggesting that transformation of low molecular PAHs to high molecular PAHs occurs as the roasting degree is increased. The PAH transfer to the infusion was quite moderate (<35%), with a slightly lower extractability for dark-roasted coffee as compared to light-roasted coffee.  相似文献   

2.
Screening for aflatoxins (Afs), isolation and identification of Aspergillus flavus, and the effect of decaffeination and roasting on the level of contamination in coffee beans are studied. The percent frequency of A. flavus ranged between 4 and 80% in green coffee beans (GCB), whereas in ground roasted coffee beans (GRCB), it ranged between 1 and 71%. Aflatoxins were detected in 76.5 and 54.6% of the infected samples with averages of 4.28 and 2.85 microg/kg of GCB and GRCB, respectively. Roasting was demonstrated to lower the concentration of Afs in GCB. The Afs levels were reduced by approximately 42.2-55.9% depending on the type and temperature of roasting. The highest yields of Afs were detected in the decaffeinated green coffee beans (24.29 microg/kg) and roasted coffee beans (16.00 microg/kg). The growth of A. flavus in liquid medium containing 1 or 2% caffeine was reduced by 50%, and the level of aflatoxin in the medium was undetectable.  相似文献   

3.
Initial moisture of green coffee may vary as a function of green coffee processing and storage conditions. The impact of initial moisture and steam treatment on roasting behavior and aroma formation was investigated. Steam treated coffees as well as coffees with initial moisture content of 5.10, 10.04, and 14.70 g water per 100 g wb were roasted. Light and dark roasting trials were carried out using a fluidizing-bed roaster with a batch size of 100 g of green beans. Differences in roast coffee attributes, that is, color, density, and organic roast loss, and odorant concentrations were more marked in light roasted than in dark roasted coffees. The results of roasting steam treated coffee suggest that this step affects roasting behavior primarily by extracting some aroma precursor compounds.  相似文献   

4.
The specific antiradical activity against the hydroxyl radical of the water soluble components in green and dark roasted Coffea arabica and Coffea robusta coffee samples, both in vitro by the chemical deoxiribose assay and ex vivo in a biological cellular system (IMR32 cells), were determined. All the tested coffee solutions showed remarkable antiradical activity. In the deoxiribose assay, all the tested solutions showed similar inhibitory activity (IA%) against the sugar degradation (IA values ranged from 45.2 to 46.9%). In the cell cultures, the survival increase (SI%) ranged from 197.0 to 394.0% with C. robusta roasted coffee being significantly more active than the other samples. The coffee solutions underwent dialysis (3500 Da cutoff membrane) to fraction their components. In both systems, the dialysates (MW < 3500 Da) either from green or roasted coffee, showed antiradical activity, while the only retentates (MW > 3500 Da) from the roasted coffee samples were active. The preparative gel-filtration chromatography of roasted coffee C. robusta dialysate gave three fractions active in the biological system, all containing chlorogenic acid derivatives. The most active fraction was found to be that containing the 5-O-caffeoilquinic acid, which shows a linear relation dose-response ranging from 0.02 to 0.10 mM. The results show that both green and roasted coffee possess antiradical activity, that their more active component is 5-O-caffeoyl-quinic acid, and moreover that roasting process induces high MW components (later Maillard reaction products, i.e., melanoidins), also possessing antiradical activity in coffee. These results could explain the neuroprotective effects found for coffee consumption in recent epidemiological studies.  相似文献   

5.
A commercial lot of green coffee, naturally contaminated with ochratoxin A (OTA), was roasted under various conditions, and the effects on its final OTA content were determined. Precautions were taken in sampling the coffee to cope with OTA inhomogeneity. The roasting conditions were kept within the range of commercial practice. Roasting time was varied from 2.5 to 10 min, and the roast color varied from light medium to dark. The differences in OTA reduction between the different levels of roasting times and colors did not reach statistical significance. However, for all roasting conditions, the reduction was highly significant, 69% reduction over the combined results. In total, nine studies by various authors about OTA reduction during coffee roasting are now available. Seven out of these nine reported that the relevant range of OTA reductions was between 69 and 96%. Among these seven,are all four studies that reported using naturally contaminated beans, a sampling procedure adapted to mycotoxin inhomogeneity, and roasting conditions within the range of actual practice. Three different explanations are available for this reduction: physical removal of OTA with chaff, isomerization at the C-3 position into another diastereomer, and thermal degradation with possible involvement of moisture. All three explanations may play a partial role in the OTA reduction during coffee roasting.  相似文献   

6.
To study the mechanism of coffee melanoidin formation, green coffee beans were prepared by (1) removal of the hot water extractable components (WECoffee); (2) direct incorporation of sucrose (SucCoffee); and (3) direct incorporation of type II arabinogalactan-proteins (AGPCoffee). As a control of sucrose and AGP incorporation, lyophilized green coffee beans were also immersed in water (control). The original coffee and the four modified "in bean" coffee models were roasted and their chemical characteristics compared. The formation of material not identified as carbohydrates or protein, usually referred to as "unknown material" and related to melanoidins, and the development of the brown color during coffee roasting have distinct origins. Therefore, a new parameter for coffee melanoidin evaluation, named the "melanoidin browning index" (MBI), was introduced to handle simultaneously the two concepts. Sucrose is important for the formation of colored structures but not to the formation of "unknown material". Type II AGPs also increase the brown color of the melanoidins, but did not increase the amount of "unknown material". The green coffee hot water extractable components are essential for coffee melanoidin formation during roasting. The cell wall material was able to generate a large amount of "unknown material". The galactomannans modified by the roasting and the melanoidin populations enriched in galactomannans accounted for 47% of the high molecular weight brown color material, showing that these polysaccharides are very relevant for coffee melanoidin formation.  相似文献   

7.
The market for decaffeinated coffees has been increasingly expanding over the years. Caffeine extraction may result in losses of other compounds such as chlorogenic acids (CGA) and, consequently, their 1,5-gamma-quinolactones (CGL) in roasted coffee. These phenolic compounds are important for flavor formation as well as the health effects of coffee; therefore, losses due to decaffeination need to be investigated. The present study evaluates the impact of decaffeination processing on CGA and CGL levels of green and roasted arabica coffees. Decaffeination produced a 16% average increase in the levels of total CGA in green coffee (dry matter), along with a 237% increase in CGL direct precursors. Different degrees of roasting showed average increments of 5.5-18% in CGL levels of decaffeinated coffee, compared to regular, a change more consistent with observed levels of total CGA than with those of CGL direct precursors in green samples. On the other hand, CGA levels in roasted coffee were 3-9% lower in decaffeinated coffee compared to regular coffee. Although differences in CGA and CGL contents of regular and decaffeinated roasted coffees appear to be relatively small, they may be enough to affect flavor characteristics as well as the biopharmacological properties of the final beverage, suggesting the need for further study.  相似文献   

8.
The antioxidant properties of green and roasted coffee, in relation to species (Coffea arabica and Coffea robusta) and degree of roasting (light, medium, dark), were investigated. These properties were evaluated by determining the reducing substances (RS) of coffee and its antioxidant activity (AA) in vitro (model system beta-carotene-linoleic acid) and ex vivo as protective activity (PA) against rat liver cell microsome lipid peroxidation measured as TBA-reacting substances. RS of C. robustasamples were found to be significantly higher when compared to those of C. arabica samples (p < 0.001). AA for green coffee samples were slightly higher than for the corresponding roasted samples while PA was significantly lower in green coffee compared to that of all roasted samples (p < 0.001). Extraction with three different organic solvents (ethyl acetate, ethyl ether, and dichloromethane) showed that the most protective compounds are extracted from acidified dark roasted coffee solutions with ethyl acetate. The analysis of acidic extract by gel filtration chromatography (GFC) gave five fractions. Higher molecular mass fractions were found to possess antioxidant activity while the lower molecular mass fractions showed protective activity. The small amounts of these acidic, low molecular mass protective fractions isolated indicate that they contain very strong protective agents.  相似文献   

9.
Coffee has been an important and heavily used beverage in many cultures over a long period of time. Although sulfur species have been found to be abundant constituents, no work to date has explored the presence of selenium analogues. Investigation of volatile selenium species from green coffee beans, roasted beans, and brewed coffee drink was performed using solid phase microextraction (SPME) sample preconcentration in conjunction with GC/ICP-MS. Several volatile selenium species at trace levels were detected from roasted coffee beans as well as in the steam from brewed coffee drinks. No detectable selenium (and sulfur) species, however, were found in the headspace of green beans, indicating that selenium-containing volatiles are formed during roasting, as is the case for the sulfur volatiles. Matching standards were prepared and used to identify the compounds found in coffee. Artificial supplementation of the green coffee beans with selenium before roasting was performed to further characterize the selenium-containing volatiles formed during the coffee-roasting process.  相似文献   

10.
The hot-water-soluble polymeric material from green and roasted Uganda robusta coffees submitted to different degrees of roasting was isolated and characterized, and the changes in structure and amount of galactomannans and arabinogalactans were determined and discussed in relation to the data already available for arabica coffees, obtained under the same experimental conditions. The content of arabinogalactans extracted from robusta green coffee was higher than that extracted from arabica. For roasted coffees, the amount of galactomannans extracted ranged from 0.66% to 0.92% (w/w). These values were near 50% of those obtained from the arabica coffees using the same extraction procedure. However, the amount of arabinogalactans extracted from robusta coffees (0.56-0.72%) was in the range obtained from arabica. The structures of arabinogalactans and galactomannans extracted from green and roasted coffees were not sufficiently different between robusta and arabica coffees to explain the observed differences in extraction yields for the arabinogalactans from green coffees and for the galactomannans from roasted coffees. The total polysaccharide content and the structures of the galactomannans and arabinogalactans in the two green coffee varieties investigated were also very similar. These differences in the extraction of high-molecular-weight polysaccharides between arabica and robusta roasted coffees may be related to the different susceptibility of the cell walls during the roasting process, known to result in a different porosity between arabica and robusta roasted coffees.  相似文献   

11.
Of all plant constituents, coffee has one of the highest concentrations of chlorogenic acids. When roasting coffee, some of these are transformed into chlorogenic acid lactones (CGL). We have studied the formation of CGL during the roasting of coffee beans in Coffea arabica cv. Bourbon; C. arabicacv. Longberry; and C. canephora cv. Robusta. Individual CGL levels were determined by comparison of HPLC peaks with those of synthetic CGL standards. Seven CGL were identified: 3-caffeoylquinic-1,5-lactone (3-CQL), 4- caffeoylquinic-1,5-lactone (4-CQL), 3-coumaroylquinic-1,5-lactone (3-pCoQL), 4-coumaroylquinic-1,5-lactone (4-pCoQL), 3-feruloylquinic-1,5-lactone (3-FQL), 4-feruloylquinic-1,5-lactone (4-FQL), and 3,4-dicaffeoylquinic-1,5-lactone (3,4-diCQL). 3-CQL was the most abundant lactone in C. arabica and C. canephora, reaching peak values of 230 +/- 9 and 254 +/- 4 mg/100 g (dry weight), respectively, at light medium roast ( approximately 14% weight loss). 4-CQL was the second most abundant lactone (116 +/- 3 and 139 +/- 2 mg/100 g, respectively. The maximum amount of CGL represents approximately 30% of the available precursors. The relative levels of 3-CQL and 4-CQL in roasted coffee were reverse to those of their precursors in green coffee. This suggests that roasting causes isomerization of chlorogenic acids prior to the formation of lactones and that the levels of lactones in roasted coffee do not reflect the levels of precursors in green coffee.  相似文献   

12.
The influences of composition and roasting conditions on acrylamide formation in almonds and hazelnuts were investigated. Eighteen samples of almonds originating from the U.S. and Europe were analyzed for sugars and free amino acids, and acrylamide formed during roasting was determined. Asparagine was the main free amino acid in raw almonds and correlated with the acrylamide content of dark roasted almonds. Roasting temperature was another key factor and had a very strong influence on acrylamide formation. Almonds of European origin contained significantly less free asparagine and formed significantly less acrylamide during roasting as compared to the almonds from the U.S. Roasted hazelnuts contained very little acrylamide because of the low content of free asparagine in the raw nut. Reducing sugars, although being consumed much faster than free amino acids in both types of nuts, were not decisive for the extent of acrylamide formation during roasting.  相似文献   

13.
Near-infrared spectroscopy (NIRS), combined with diverse feature selection techniques and multivariate calibration methods, has been used to develop robust and reliable reduced-spectrum regression models based on a few NIR filter sensors for determining two key parameters for the characterization of roasted coffees, which are extremely relevant from a quality assurance standpoint: roasting color and caffeine content. The application of the stepwise orthogonalization of predictors (an "old" technique recently revisited, known by the acronym SELECT) provided notably improved regression models for the two response variables modeled, with root-mean-square errors of the residuals in external prediction (RMSEP) equal to 3.68 and 1.46% for roasting color and caffeine content of roasted coffee samples, respectively. The improvement achieved by the application of the SELECT-OLS method was particularly remarkable when the very low complexities associated with the final models obtained for predicting both roasting color (only 9 selected wavelengths) and caffeine content (17 significant wavelengths) were taken into account. The simple and reliable calibration models proposed in the present study encourage the possibility of implementing them in online and routine applications to predict quality parameters of unknown coffee samples via their NIR spectra, thanks to the use of a NIR instrument equipped with a proper filter system, which would imply a considerable simplification with regard to the recording and interpretation of the spectra, as well as an important economic saving.  相似文献   

14.
Effect of roasting on the antioxidant activity of coffee brews   总被引:3,自引:0,他引:3  
Colombian Arabica coffee beans were roasted to give light, medium, and dark samples. Their aqueous extracts were analyzed by gel filtration chromatography, UV-visible spectrophotometry, capillary electrophoresis, and the ABTS(*)(+) assay. A progressive decrease in antioxidant activity (associated mainly with chlorogenic acids in the green beans) with degree of roasting was observed with the simultaneous generation of high (HMM) and low molecular mass (LMM) compounds possessing antioxidant activity. Maximum antioxidant activity was observed for the medium-roasted coffee; the dark coffee had a lower antioxidant activity despite the increase in color. Analysis of the gel filtration chromatography fractions showed that the LMM fraction made a greater contribution to total antioxidant activity than the HMM components.  相似文献   

15.
In this feasibility study, Fourier transform infrared (FTIR) spectroscopy and chemometric analysis were adopted to discriminate coffees from different geographical origins and of different roasting degrees. Roasted coffee grounds were extracted using two methods: (1) solvent alone (dichloromethane, ethyl acetate, hexane, acetone, ethanol, or acetic acid) and (2) coextraction using a mixture of equal volume of the solvent and water. Experiment results showed that the coextraction method resulted in cleaner extract and provided a greater amount of spectral information, which was important for sample discrimination. Principal component analysis of infrared spectra of ethyl acetate extracts for dark and medium roast coffees showed separated clusters according to their geographical origins and roast degrees. Classification models based on soft independent modeling of class analogy analysis were used to classify different coffee samples. Coffees from four different countries, which were roasted to dark, were 100% correctly classified when ethyl acetate was used as a solvent. The FTIR-chemometric technique developed here may serve as a rapid tool for discriminating geographical origin of roasted coffees. Future studies involving green coffee beans and the use of larger sample size are needed to further validate the robustness of this technique.  相似文献   

16.
Because of inconsistent and contradictory results from investigations concerning the influence of roasting process on the ochratoxin A content in coffee beans, a study was undertaken to assess the elimination of ochratoxin A during the roasting process. Four different green coffee samples, naturally contaminated with ochratoxin A, were submitted to different roasting conditions (light, medium, and dark) and analyzed for roasting parameters (weight loss, color change, density, and moisture content) and ochratoxin A content. The ochratoxin A content of green coffee was reduced by the roasting process; in particular, consistently high percentages of ochratoxin A reduction were found in the highest contaminated samples. This reduction was influenced by the severity of the thermal process and was generally related to the initial ochratoxin A content. Samples obtained with roasting parameters suitable for a typical Italian espresso coffee brew showed reductions of >90% in the ochratoxin A content, in both high and low contaminated samples. Moreover, the presence of off-flavors and visual defects was not found to be directly related to the ochratoxin A content in the green coffee samples.  相似文献   

17.
Glyoxal, methylglyoxal, and diacetyl formed as Maillard reaction products in heat-treated food were determined in coffee extracts (coffee brews) obtained from green beans and beans with different degrees of roast. The compounds have been reported to be mutagenic in vitro and genotoxic in experimental animals in a number of papers. More recently, alpha-dicarbonyl compounds have been implicated in the glycation process. Our data show that small amounts of glyoxal and methylglyoxal occur naturally in green coffee beans. Their concentrations increase in the early phases of the roasting process and then decline. Conversely, diacetyl is not found in green beans and forms later in the roasting process. Therefore, light and medium roasted coffees had the highest glyoxal and methylglyoxal content, whereas dark roasted coffee contained smaller amounts of glyoxal, methylglyoxal, and diacetyl. For the determination of coffee alpha-dicarbonyl compounds, a reversed-phase high performance liquid chromatography with a diode array detector (RP-HPLC-DAD) method was devised that involved the elimination of interfering compounds, such as chlorogenic acids, by solid phase extraction (SPE) and their derivatization with 1,2-diaminobenzene to give quinoxaline derivatives. Checks of SPE and derivatization conditions to verify recovery and yield, respectively, resulted in rates of 100%. The results of the validation procedure showed that the proposed method is selective, precise, accurate, and sensitive.  相似文献   

18.
The processes of peanut maturation, curing, and roasting are known to have an important role in peanut flavors. One of these processes (i.e., roasting) has been found to have an effect on allergenicity. To determine if the other processes (i.e., maturation and curing) affect allergenicity, mature and immature roasted peanuts and peanuts cured at different temperatures (35-77 degrees C) were, respectively, tested for IgE binding and advanced glycation end adducts (AGEs). Peanuts with and without stress proteins, which are associated with peanut maturation and curing, were also tested. Results showed that mature roasted peanuts exhibited a higher IgE binding and AGEs level than immature roasted peanuts. Curing temperatures between 35 and 60 degrees C gave no difference in the profiles. However, a higher curing temperature (i.e., 77 degrees C) exhibited a profile of higher levels of AGEs and IgE binding. These levels were higher in peanuts with stress proteins than without stress proteins. Roasting increased stress protein level and IgE binding. From these results, the processes of maturation and curing, in conjunction with roasting, may be associated with allergenicity, suggesting that these processes may lead to changes in the allergenic properties of peanuts.  相似文献   

19.
Ochratoxin A is an important mycotoxin that can enter the human food chain in cereals, wine, coffee, spices, beer, cocoa, dried fruits, and pork meats. Coffee is one of the most common beverages and, consequently, it has a potential risk factor for human health related to ochratoxin A exposure. In this study, coffee and corresponding byproducts from seven different geographic regions were investigated for ochratoxin A natural occurrence by HPLC-FLD, nutritional characterization, and antioxidant activities by spectrophotometric assay. The research focused on composition changes in coffee during the processing step "from field to cup". Costa Rica and Indian green coffees were the most contaminated samples, with 13 and 11 microg/kg, respectively, while the Ethiopian coffee was the least contaminated, with 3.8 microg/kg of ochratoxin A. The reduction of ochratoxin A contamination during the roasting step was comparable for any samples that were considered under the recommended level of 4 microg/kg. Total dietary fibers ranged from 58.7% for Vietnam and 48.6% for Ivory Coast in green coffees and ranged from 58.6% for Costa Rica to 61.2% for India in roasted coffee. Coffee silverskin byproduct obtained from Ivory Coast was the highest, with 69.2 and 64.2% of insoluble dietary fibers, respectively.  相似文献   

20.
Brazilian green coffee beans of Coffea arabica and Coffea canephora species were roasted to light, medium, and dark roast degrees and analyzed in relation to furan content by using an in-house validated method based on gas chromatography coupled to mass spectrometry preceded by headspace solid-phase microextraction. Furan was not detected in green coffees, whereas levels between 911 and 5852 μg/kg were found in the roasted samples. Higher concentrations were found in Coffea canephora species and darker ground coffees. Some of the potential furan precursors were observed in significant amounts in green coffee, especially sucrose and linoleic acid, but their concentrations could not be correlated to furan formation. Additionally, coffee brews were prepared from roasted ground coffees by using two different procedures, and furan levels in the beverages varied from <10 to 288 μg/kg. The factor that most influenced the furan content in coffee brew was the brewing procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号