首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fifty weanling crossbred pigs averaging 6.2 kg of initial BW and 21 d of age were used in a 5-wk experiment to evaluate lower dietary concentrations of an organic source of Zn as a Zn-polysaccharide (Zn-PS) compared with 2,000 ppm of inorganic Zn as ZnO, with growth performance, plasma concentrations of Zn and Cu, and Zn and Cu balance as the criteria. The pigs were fed individually in metabolism crates, and Zn and Cu balance were measured on individual pigs (10 replications per treatment) from d 22 to 26. The basal Phase 1 (d 0 to 14) and Phase 2 (d 14 to 35) diets contained 125 or 100 ppm added Zn as Zn sulfate, respectively, and met all nutrient requirements. Treatments were the basal Phase 1 and 2 diets supplemented with 0, 150, 300, or 450 ppm of Zn as Zn-PS or 2,000 ppm Zn as ZnO. Blood samples were collected from all pigs on d 7, 14, and 28. For pigs fed increasing Zn as Zn-PS, there were no linear or quadratic responses (P > or = 0.16) in ADG, ADFI, or G:F for Phases 1 or 2 or overall. For single degree of freedom treatment comparisons, Phase 1 ADG and G:F were greater (P < or = 0.05) for pigs fed 2,000 ppm Zn as ZnO than for pigs fed the control diet or the diet containing 150 ppm Zn as Zn-PS. For Phase 2 and overall, ADG and G:F for pigs fed the diets containing 300 or 450 ppm of Zn as Zn-PS did not differ (P > or = 0.29) from pigs fed the diet containing ZnO. Pigs fed the diet containing ZnO also had a greater Phase 2 (P < or = 0.10) and overall (P < or = 0.05) ADG and G:F than pigs fed the control diet. There were no differences (P > or = 0.46) in ADFI for any planned comparison. There were linear increases (P < 0.001) in the Zn excreted (mg/d) with increasing dietary Zn-PS. Pigs fed the diet containing ZnO absorbed, retained, and excreted more Zn (P < 0.001) than pigs fed the control diet or any of the diets containing Zn-PS. In conclusion, Phase 2 and overall growth performance by pigs fed diets containing 300 or 450 ppm Zn as Zn-PS did not differ from that of pigs fed 2,000 ppm Zn as ZnO; however, feeding 300 ppm Zn as Zn-PS decreased Zn excretion by 76% compared with feeding 2,000 ppm Zn as ZnO.  相似文献   

2.
Three experiments were conducted to evaluate the effect of feeding pharmacological concentrations of zinc (Zn), from organic and inorganic sources, on growth performance, plasma and tissue Zn accumulation, and Zn excretion of nursery pigs. Blood from all pigs was collected for plasma Zn determination on d 14 in Exp. 1, d 7 and 28 in Exp. 2, and d 15 in Exp. 3. In Exp. 1, 2, and 3, 90, 100, and 15 crossbred (GenetiPorc USA, LLC, Morris, MN) pigs were weaned at 24+/-0.5, 18, and 17 d of age (6.45, 5.47, and 5.3 kg avg initial BW), respectively, and allotted to dietary treatment based on initial weight, sex, and litter. A Phase 1 nursery diet was fed as crumbles from d 0 to 14 in Exp. 1, 2, and 3, and a Phase 2 nursery diet was fed as pellets from d 15 to 28 in Exp. 1 and 2. The Phase 1 and Phase 2 basal diets were supplemented with 100 ppm Zn as ZnSO4. Both dietary phases contained the same five dietary treatments: 150 ppm additional Zn as zinc oxide (ZnO), 500 ppm added Zn as ZnO, 500 ppm added Zn as a Zn-amino acid complex (Availa-Zn 100), 500 ppm added Zn as a Zn-polysaccharide complex (SQM-Zn), and 3,000 ppm added Zn as ZnO. Overall in Exp. 1, pigs fed 500 ppm added Zn as SQM-Zn or 3,000 ppm added Zn as ZnO had greater ADG (P < 0.05) than pigs fed 150 ppm, 500 ppm added Zn as ZnO, or 500 ppm added Zn as Availa-Zn 100 (0.44 and 0.46 kg/d vs 0.35, 0.38, and 0.33 kg/d respectively). Overall in Exp. 2, pigs fed 3,000 ppm added Zn as ZnO had greater (P < 0.05) ADG and ADFI than pigs fed any other dietary treatment. On d 14 of Exp. 1 and d 28 of Exp. 2, pigs fed 3,000 ppm added Zn as ZnO had higher (P < 0.05) plasma Zn concentrations than pigs on any other treatment. In Exp. 3, fecal, urinary, and liver Zn concentrations were greatest (P < 0.05) in pigs fed 3,000 ppm added Zn as ZnO. On d 10 to 15 of Exp. 3, pigs fed 3,000 ppm added Zn as ZnO had the most negative Zn balance (P < 0.05) compared with pigs fed the other four dietary Zn treatments. In conclusion, feeding 3,000 ppm added Zn as ZnO improves nursery pig performance; however, under certain nursery conditions the use of 500 ppm added Zn as SQM-Zn may also enhance performance. The major factor affecting nutrient excretion appears to be dietary concentration, independent of source.  相似文献   

3.
Two experiments were conducted to evaluate the effects of dietary Zn and Fe supplementation on mineral excretion, body composition, and mineral status of nursery pigs. In Exp. 1 (n = 24; 6.5 kg; 16 to 20 d of age) and 2 (n = 24; 7.2 kg; 19 to 21 d of age), littermate crossbred barrows were weaned and allotted randomly by BW, within litter, to dietary treatments and housed individually in stainless steel pens. In Exp. 1, Phases 1 (d 0 to 7) and 2 (d 7 to 14) diets (as-fed basis) were: 1) NC (negative control, no added Zn source); 2) ZnO (NC + 2,000 mg/kg as Zn oxide); and 3) ZnM (NC + 2,000 mg/kg as Zn Met). In Exp. 2, diets for each phase (Phase 1 = d 0 to 7; Phase 2 = d 7 to 21; Phase 3 = d 21 to 35) were the basal diet supplemented with 0, 25, 50, 100, and 150 mg/kg Fe (as-fed basis) as ferrous sulfate. Orts, feces, and urine were collected daily in Exp. 1; whereas pigs had a 4-d adjustment period followed by a 3-d total collection period (Period 1 = d 5 to 7; Period 2 = d 12 to 14; Period 3 = d 26 to 28) during each phase in Exp. 2. Blood samples were obtained from pigs on d 0, 7, and 14 in Exp. 1 and d 0, 7, 21, and 35 in Exp. 2 to determine hemoglobin (Hb), hematocrit (Hct), and plasma Cu, (PCu), Fe (PFe), and Zn (PZn). Pigs in Exp. 1 were killed at d 14 (mean BW = 8.7 kg) to determine whole-body, liver, and kidney mineral concentrations. There were no differences in growth performance in Exp. 1 or 2. In Exp. 1, pigs fed ZnO or ZnM diets had greater (P < 0.001) dietary Zn intake during the 14-d study and greater fecal Zn excretion during Phase 2 compared with pigs fed the NC diet. Pigs fed 2,000 mg/kg, regardless of Zn source, had greater (P < 0.010) PZn on d 7 and 14 than pigs fed the NC diet. Whole-body Zn, liver Fe and Zn, and kidney Cu concentrations were greater (P < 0.010), whereas kidney Fe and Zn concentrations were less (P < 0.010) in pigs fed pharmacological Zn diets than pigs fed the NC diet. In Exp. 2, dietary Fe supplementation tended to increase (linear, P = 0.075) dietary DMI, resulting in a linear increase (P < 0.050) in dietary Fe, Cu, Mg, Mn, P, and Zn intake. Subsequently, a linear increase (P < 0.010) in fecal Fe and Zn excretion was observed. Increasing dietary Fe resulted in a linear increase in Hb, Hct, and PFe on d 21 (P < 0.050) and 35 (P < 0.010). Results suggest that dietary Zn or Fe additions increase mineral status of nursery pigs. Once tissue mineral stores are loaded, dietary minerals in excess of the body's requirement are excreted.  相似文献   

4.
Three experiments were conducted to determine the effects of phytase, excess Zn, or their combination in diets for nursery pigs. In all experiments, treatments were replicated with five to seven pens of six to seven pigs per pen, dietary Ca and available P (aP) levels were decreased by 0.1% when phytase was added to the diets, excess Zn was added as ZnO, a basal level of 127 mg/kg of Zn (Zn sulfate) was present in all diets, and the experimental periods were 19 to 21 d. In Exp. 1, pigs (5.7 kg and 18 d of age) were fed two levels of phytase (0 or 500 phytase units/kg) and three levels of excess Zn (0, 1,000, or 2,000 ppm) in a 2 x 3 factorial arrangement. Added Zn linearly increased ADG and ADFI during Phase 1 (P = 0.01 to 0.06), Phase 2 (P = 0.02 to 0.09), and overall (P = 0.01 to 0.02). Gain:feed was linearly increased by Zn during Phase 1 (P = 0.01) but not at other times. Dietary phytase decreased ADG in pigs fed 1,000 or 2,000 ppm Zn during Phase 2 (Zn linear x phytase interaction; P = 0.10), did not affect (P = 0.27 to 0.62) ADFI during any period, and decreased G:F during Phase 2 (P = 0.01) and for the overall (P = 0.07) period. Plasma Zn was increased by supplemental Zn (Zn quadratic, P = 0.01) but not affected (P = 0.70) by phytase addition. In Exp. 2, pigs (5.2 kg and 18 d of age) were fed two levels of phytase (0 or 500 phytase units/kg) and two levels of Zn (0 or 2,000 ppm) in a 2 x 2 factorial arrangement. Supplemental Zn increased ADG and G:F during Phase 2 (P = 0.02 to 0.09) and overall (P = 0.07 to 0.08), but it had no effect (P = 0.11 to 0.89) on ADG during Phase 1 or ADFI during any period. Phytase supplementation increased ADG (P = 0.06) and G:F (P = 0.01) during Phase 2. Gain:feed was greatest for pigs fed 2,000 ppm Zn and phytase (Zn x phytase interaction; P = 0.01). Bone (d 20) and plasma Zn (d 7 and 20) were increased (P = 0.01) by added Zn but not affected (P = 0.51 to 0.90) by phytase. In Exp. 3, pigs (5.7 kg and 19 d of age) were fed a basal diet or the basal diet with Ca and aP levels decreased by 0.10% and these two diets with or without 500 phytase units/kg. Supplemental phytase had no effect (P = 0.21 to 0.81) on growth performance. Reduction of dietary Ca and aP decreased (P = 0.02 to 0.08) ADG, ADFI, and G:F for the overall data. These results indicate that excess dietary supplemental Zn increases ADG and plasma and bone Zn concentrations. Dietary phytase did not affect plasma or bone Zn concentrations.  相似文献   

5.
Two 28-d experiments were conducted to evaluate the efficacy of low dietary concentrations of Cu as Cu-proteinate compared with 250 ppm Cu as CuSO4 with growth performance, plasma Cu concentrations, and Cu balance of weanling swine as the criteria. In the production study (Exp. 1), 240 crossbred pigs that averaged 19.8 d of age and 6.31 kg BW initially were group-fed (two or three pigs per pen) the basal diets (Phase 1: d 0 to 14 and Phase 2: d 14 to 28) supplemented with 0 (control), 25, 50, 100, or 200 ppm Cu as Cu-proteinate, or 250 ppm Cu as CuSO4 (as-fed basis). The basal diets contained 16.5 ppm Cu supplied as CuSO4 before supplementation with Cu-proteinate or 250 ppm Cu as CuSO4. There were quadratic responses (P < or = 0.05) in ADFI and ADG for wk 1, Phases 1 and 2, and overall because ADFI was higher for pigs fed 25 or 50 ppm Cu as Cu-proteinate, and ADG increased with increasing Cu-proteinate up to 50 ppm Cu. The Cu-proteinate treatment groups combined had a higher (P < or = 0.05) Phase 2 and overall ADFI and ADG than the CuSO4 group. In the mineral balance study (Exp. 2), 20 crossbred barrows that averaged 35 d of age and 11.2 kg/BW initially were placed in individual metabolism pens with total urine and fecal grab sample collections on d 22 to 26. Treatments were the basal Phase 2 diet supplemented with 0, 50, or 100 ppm Cu as Cu-proteinate, or 250 ppm Cu as CuSO4 (as-fed basis). Treatments did not differ in growth performance criteria. There were linear increases (P < 0.001) in Cu absorption, retention, and excretion (milligrams per day) with increasing Cu-proteinate. Pigs fed 100 ppm Cu as Cu-proteinate absorbed and retained more Cu and excreted less Cu (mg/d, P < or = 0.003) than pigs fed 250 ppm Cu as CuSO4. Plasma Cu concentrations increased linearly (P = 0.06) with increasing Cu-proteinate. In conclusion, weanling pig growth performance was increased by 50 or 100 ppm Cu as Cu-proteinate in our production Exp. 1, but not in our balance Exp. 2, compared with 250 ppm Cu as CuSO4. However, 50 or 100 ppm Cu as Cu-proteinate increased Cu absorption and retention, and decreased Cu excretion 77 and 61%, respectively, compared with 250 ppm Cu as CuSO4.  相似文献   

6.
Benefits of feeding pharmacological concentrations of zinc (Zn) provided by Zn oxide (ZnO) to 21-d conventionally weaned pigs in the nursery have been documented; however, several management questions remain. We conducted two experiments to evaluate the effect on growth from feeding 3,000 ppm Zn as ZnO during different weeks of the nursery period. In Exp. 1 (n = 138, 11.5 d of age, 3.8 kg BW) and Exp. 2 (n = 246, 24.5 d of age, 7.2 kg BW), pigs were fed either basal diets containing 100 ppm supplemental Zn (adequate) or the same diet with an additional 3,000 ppm Zn (high) supplied as ZnO. Pigs were fed four or two dietary phases in Exp. 1 and 2, respectively, that changed in dietary ingredients and nutrient content (lysine and crude protein) to meet the changing physiological needs of the pigs for the 28-d nursery period. Dietary Zn treatments were 1) adequate Zn fed wk 1 to 4, 2) high Zn fed wk 1, 3) high Zn fed wk 2, 4) high Zn fed wk 1 and 2, 5) high Zn fed wk 2 and 3, and 6) high Zn fed wk 1 to 4. In Exp. 1 and 2, pigs fed high Zn for wk 1 and 2 or the entire 28-d nursery period had the greatest (P < .05) ADG. During any week, pigs fed high Zn had greater concentrations of hepatic metallothionein and Zn in plasma, liver, and kidney than those pigs fed adequate Zn (P < .05). In summary, both early- and traditionally weaned pigs need to be fed pharmacological concentrations of Zn provided as ZnO for a minimum of 2 wk immediately after weaning to enhance growth.  相似文献   

7.
Two 28-d randomized complete block design experiments were conducted to evaluate the effects of concentrations and sources of Zn on growth performance of nursery pigs. Seven stations participated in Exp. 1, which evaluated the efficacy of replacing 2,500 ppm of Zn from ZnO with 125, 250, or 500 ppm of Zn from Zn methionine. A control diet with 125 ppm of supplemental Zn was included at all stations. A total of 615 pigs were used in 26 replicates. Average weaning age was 20.6 d and the average initial BW was 6.3 kg. There were no differences in any growth response among the three supplemental Zn methionine levels fed in Exp. 1. Zinc supplementation from Zn methionine improved ADG compared with the control during all phases (P < 0.05), due primarily to an increase in ADFI. Pigs fed 2,500 ppm of Zn from ZnO gained faster (P < 0.01) than those fed the control diet during all phases, and faster (P < 0.05) than those fed supplemental Zn from Zn methionine for the 28-d experiment. Differences in gain were again due mainly to differences in feed intake. A second experiment compared five sources of supplemental organic Zn (500 ppm of Zn) with 500 and 2,000 ppm supplemental Zn from ZnO and a control (140 ppm total Zn). Six stations used a total of 624 pigs, with an average weaning age of 20.4 d and averaging 6.2 kg BW in 15 replicates. Pigs fed 2,000 ppm of Zn from ZnO gained faster (P < 0.05) than pigs fed the control or any of the 500 ppm of Zn treatments (ZnO or organic Zn). Pigs fed the 2,000 ppm of Zn from ZnO also consumed more feed than those receiving 500 ppm of Zn from ZnO or from any of the organic Zn sources (P < 0.05). Organic sources of Zn did not improve gain, feed intake, or feed efficiency beyond that achieved with the control diet. Supplemental Zn at a concentration of 500 ppm, whether in the form of the oxide or in an organic form, was not as efficacious for improved ADG as 2,000 to 2,500 ppm of Zn from ZnO.  相似文献   

8.
Two experiments were conducted to determine the interactive effects of phytase with and without a trace mineral premix (TMP) in diets for nursery, growing, and finishing pigs on growth performance, bone responses, and tissue mineral concentrations. Pigs (initial and final BW of 5.5 and 111.6 kg [Exp. 1] or 5.4 and 22.6 kg [Exp. 2]) were allotted to treatments on the basis of BW with eight (Exp. 1) or six (Exp. 2) replications of six or seven pigs per replicate pen. Pigs were started on the diets the day of weaning (average of 18 d). In both experiments, the treatments were with or without 500 phytase units/kg of diet and with or without the TMP in a 2 x 2 factorial arrangement. The Ca and available P concentrations were decreased by 0.10% in diets with phytase. The nursery phase consisted of Phase I (7 d), Phase II (14 d), and Phase III (13 d) periods. In Exp. 1, 26 of 52 pigs fed the diet without the TMP and without phytase had severe skin lesions and decreased growth performance; therefore, pigs fed this diet were switched to the positive control diet. In Exp. 2, the treatment without the TMP and without phytase had 12 replications instead of six. At the end of Phase III, half these replications were switched to the positive control diet and half were switched to the diet without the TMP but with phytase. In Exp. 1 during Phases II and III and in the overall data, pigs fed the diet without the TMP had decreased ADG and ADFI, but the addition of phytase prevented these responses (phytase x TMP; P < 0.02). Growth performance was not affected by diet during the growing-finishing period. Coccygeal bone Zn and Na concentrations were decreased (P < 0.09) in pigs fed the diet without the TMP, and adding phytase increased (P < 0.03) Zn and Fe concentrations. In Exp. 2 during Phases I and II, pigs fed the diet without the TMP had decreased ADG, but the addition of phytase prevented this response (phytase x TMP; P < 0.10). Pigs fed the diet without the TMP had decreased (P < 0.10) ADG (Phase II and overall), ADFI (Phases II and III and in the overall data), and G:F (Phase III). Coccygeal bone Zn and Cu concentrations were decreased (P < 0.09) in pigs fed the diet without the TMP, and adding phytase increased (P < 0.03) Zn concentration in the bones. These data indicate that removing the TMP in diets for nursery pigs decreases growth performance and bone mineral content, and that phytase addition to the diet without the TMP prevented the decreased growth performance.  相似文献   

9.
Three experiments were conducted to evaluate the efficacy of phosphorylated mannans (MAN) and pharmacological levels of ZnO on performance and immunity when added to nursery pig diets. Pigs (216 in each experiment), averaging 19 d of age and 6.2, 4.6, and 5.6 kg of BW in Exp. 1, 2, and 3, respectively, were blocked by BW in each experiment, and penned in groups of six. A lymphocyte blastogenesis assay was performed in each experiment to measure in vitro lymphocyte proliferation response. In Exp. 1, diets were arranged as a 2 x 2 factorial with two levels of Zn (200 and 2,500 ppm) and two levels of MAN (0 and 0.3% from d 0 to 10, and 0 and 0.2% from d 10 to 38). Zinc oxide increased (P < 0.05) ADG, ADFI, and G:F from d 0 to 10, and ADG and ADFI from d 10 to 24. In Exp. 2, diets were arranged as a 2 x 3 factorial with two levels of Zn (200 and 2,500 ppm) and three levels of MAN (0, 0.2, and 0.3%). Pigs fed 2,500 ppm Zn from d 0 to 10 had greater (P < 0.05) ADG, ADFI, and G:F than pigs fed 200 ppm Zn. From d 10 to 24, ADG was similar when pigs were fed 200 ppm Zn, regardless of MAN supplementation; however, ADG increased (P < 0.05) when 0.2% MAN was added to dietscontaining 2,500 ppm Zn (MAN x Zn interaction, P < 0.05). In Exp. 3, diets were arranged as a 2 x 3 factorial with two levels of MAN (0 and 0.3%) and three levels of Zn (200, 500, and 2,500 ppm). Zinc was maintained at 200 ppm from d 21 to 35, so only two dietary treatments (0 and 0.3% MAN) were fed during this period. Average daily gain was greater (P < 0.05) from d 7 to 21 when pigs were fed 2,500 ppm Zn compared with pigs fed 200 or 500 ppm Zn. The addition of MAN improved (P < 0.05) G:F from d 7 to 21 and d 0 to 35. Lymphocyte proliferation of unstimulated cells and phytohemagglutinin-stimulated cells was decreased (P < 0.05) in cells isolated from pigs fed MAN compared with cells isolated from pigs fed diets without MAN. Lymphocyte proliferation of pokeweed mitogen-stimulated cells isolated from pigs fed MAN was less (P < 0.05) than for pigs fed diets devoid of MAN when diets contained 200 ppm Zn; however, MAN had no effect on lymphocyte proliferation when the diet contained 500 or 2,500 ppm Zn (MAN x Zn interaction, P < 0.05). Although the magnitude of response to MAN was not equivalent to that of pharmacological concentrations of Zn, MAN mayimprove growth response when pharmacological Zn levels are restricted.  相似文献   

10.
Three hundred sixteen crossbred pigs were used in two experiments to determine the effect of supplemental manganese source and dietary inclusion level during the growing-finishing period on performance and pork carcass characteristics. All pigs were blocked by weight, and treatments were assigned randomly to pens within blocks. In Exp. 1, a total of 20 pens (five pigs/pen) was randomly assigned to one of five dietary treatments consisting of control grower and finisher diets, or control diets supplemented with either 350 or 700 ppm (as-fed basis) Mn either from MnSO4 or a Mn AA complex (MnAA). In Exp. 2, a total of 36 pens (six pigs per pen) was assigned randomly to one of six dietary treatments formulated with 0, 20, 40, 80, 160, or 320 ppm (as-fed basis) Mn from MnAA. Pigs were slaughtered when the lightest block averaged 120.0 kg (Exp. 1) or at a mean BW of 106.8 kg (Exp. 2). Neither ADG nor ADFI was affected (P > 0.21) by Mn source or high inclusion level (Exp. 1); however, across the entire feeding trial, pigs consuming 320 ppm Mn from MnAA were more (P < 0.04) efficient than pigs fed diets formulated with 20 to 160 ppm Mn from MnAA (Exp. 2). Color scores did not differ (P > 0.79) at the low inclusion (20 to 320 ppm Mn) levels used in Exp. 2; however, in Exp. 1, the LM from pigs fed Mn tended to receive higher (P = 0.10) American color scores than that of pigs fed the control diet, and Japanese color scores were higher for the LM from pigs fed diets containing 350 ppm Mn from MnAA than 350 Mn from ppm MnSO4 or 700 ppm Mn from MnAA (source x inclusion level; P = 0.04; Exp. 2). Chops of pigs fed 350 ppm Mn from MnAA were darker than the LM of pigs fed 350 ppm Mn from MnSO4, and 700 ppm Mn from MnAA diets (source x inclusion level; P = 0.03; Exp. 1), but L* values were not (P = 0.76) affected by lower MnAA inclusion levels (Exp. 2). Even though the LM tended to became redder as dietary MnAA inclusion level increased from 20 to 320 ppm Mn (linear effect; P < 0.10), a* values were not (P = 0.71) altered by including 350 or 700 ppm Mn (Exp. 1). Chops of pigs fed MnAA had lower cooking losses (P = 0.01) and shear force values (P = 0.07) after 2 d of aging than did chops from pigs fed diets formulated with MnSO4. Results from these experiments indicate that feeding 320 to 350 ppm Mn from MnAA during the growing-finishing period may enhance pork quality without adversely affecting pig performance or carcass composition.  相似文献   

11.
Five experiments were conducted to determine the true ileal digestible Trp (tidTrp) requirement of growing and finishing pigs fed diets (as-fed basis) containing 0.87% (Exp. 3), 0.70% (Exp. 4), 0.61% (Exp. 5), and 0.52% (Exp. 1 and 2) tidLys during the early-grower, late-grower, early-finisher, and late-finisher periods, respectively. Treatments were replicated with three or four replications, with three or four pigs per replicate pen. Treatment differences were considered significant at P = 0.10. Experiment 1 was conducted with 27 pigs (initial and final BW of 78.3 +/- 0.5 and 109.8 +/- 1.9 kg) to validate whether a corn-feather meal (FM) tidTrp-deficient (0.07%) diet, when supplemented with 0.07% crystalline l-Trp, would result in growth performance and carcass traits similar to a conventional corn-soybean meal (C-SBM) diet. Pigs fed the corn-FM diet without Trp supplementation had decreased growth performance and carcass traits, and increased plasma urea N (PUN) concentration. Supplementing the corn-FM diet with Trp resulted in greater ADG and G:F than pigs fed the positive control C-SBM diet. Pigs fed the corn-FM diet had similar carcass traits as pigs fed the C-SBM diet, but loin muscle area was decreased and fat thickness was increased. In Exp. 2, 60 pigs (initial and final BW of 74.6 +/- 0.50 and 104.5 +/- 1.64 kg) were used to estimate the tidTrp requirement of finishing pigs. The levels of tidTrp used in Exp. 2 were 0.06, 0.08, 0.10, 0.12, or 0.14% (as-fed basis). Response variables were growth performance, PUN concentrations, and carcass traits and quality. For Exp. 2, the average of the estimates calculated by broken-line regression was 0.104% tidTrp. In Exp. 3, 4, and 5, barrows (n = 60, 60, or 80, respectively) were allotted to five dietary treatments supplemented with crystalline l-Trp at increments of 0.02%. The basal diets contained 0.13, 0.09, and 0.07% tidTrp (as-fed basis) in Exp. 3, 4, and 5, and initial BW of the pigs in these experiments were 30.9 +/- 0.7, 51.3 +/- 1.1, and 69.4 +/- 3.0 kg, respectively. The response variable was PUN, and the basal diet used in Exp. 3 and 4 contained corn, SBM, and Canadian field peas. The tidTrp requirements were estimated to be 0.167% for pigs weighing 30.9 kg, 0.134% for pigs weighing 51.3 kg, and 0.096% for pigs weighing 69.4 kg. Based on our data and a summary of the cited literature, we suggest the following total Trp and tidTrp requirement estimates (as-fed basis): 30-kg pigs, 0.21 and 0.18%; 50-kg pigs, 0.17 and 0.14%; 70-kg pigs, 0.13 and 0.11%; and in 90-kg pigs, 0.13 and 0.11%.  相似文献   

12.
Three experiments were conducted to evaluate pet food-grade poultry by-product meal (PBM) as a replacement protein source for fish meal (FM), blood meal (BM), and spray-dried plasma protein (SDPP) in weanling pig diets. In the first study, 200 crossbred pigs (initial BW = 6.5 kg) were weaned (21 d) and randomly allotted to one of four dietary treatments, which included a control and three test diets where PBM was substituted for FM, blood products, or both. Experimental diets were fed during Phase I (d 0 to 5 postweaning) and Phase II (d 5 to 19), and a common Phase III diet was fed from d 19 to 26. Overall (d 0 to 26), there was no difference in performance of pigs fed PBM in place of the other ingredients. However, during Phase I, BW (P < 0.05), ADG (P < 0.02), and intake (P < 0.001) in pigs fed diets containing SDPP were greater than those fed diets with PBM. In Exp. 2, the performance of pigs (n = 100, initial BW = 6.5 kg) fed diets containing 20% PBM (as-fed basis, replacing SDPP, BM, FM, and a portion of the soybean meal) in all phases of the nursery diet was compared with a group fed conventional diets without PBM. There were no differences in overall performance (d 0 to 26); however, ADG (P < 0.10) and feed intake were higher (P < 0.01) for pigs fed the conventional diet than for pigs fed the 20% PBM diet during Phase I (d 0 to 5). Experiment 3 was a slope-ratio assay to determine the ability of PBM to replace SDPP. A total of 320 pigs (initial BW = 7.32 kg) was weaned (21 d) and allotted to five treatment groups in three trials in a blocked design with product (SDPP or PBM) as the first factor, and lysine level (1.08, 1.28, 1.49%; as-fed basis) as the second factor. Growth rate increased with increasing lysine (P < 0.05), regardless of the source. These results indicate that PBM can be used in nursery diets in place of blood meal and fish meal without affecting performance. Furthermore, although feeding PBM in Phase I diets was not equivalent to SDPP during the first week, there was no overall difference in performance at the end of the nursery phase.  相似文献   

13.
Five experiments were conducted to determine the effects of different wheat gluten (WG) sources (Source 1 = enzymatically hydrolyzed, Source 2 = nonmodified ring-dried, Source 3 = spray-dried, and Source 4 = flash-dried) on growth performance of nursery pigs compared with soybean meal (SBM), spray-dried animal plasma (SDAP), or other specialty protein sources. In Exp. 1, pigs (n = 220, initially 6.1 +/- 2.5 kg) were fed a control diet containing (as-fed basis) 6% SDAP or WG Source 1 or 2. The WG and l-lysine*HCl replaced 50 or 100% of the SDAP. From d 0 to 21, increasing WG (either source) decreased ADG and ADFI (linear, P < 0.01), but improved (linear, P < 0.02) G:F. In Exp. 2, pigs (n = 252, initially 6.2 +/- 3.0 kg) were fed a negative control diet containing no SDAP or WG, diets containing (as-fed basis) 9% WG Source 1 or 5% SDAP, or combinations of WG and SDAP where WG and l-lysine*HCl replaced 25, 50, or 75% of SDAP. From d 0 to 14, pigs fed increasing WG had decreased ADG (linear, P < 0.05). In Exp. 3, pigs (n = 240, initially 7.0 +/- 2.5 kg) were fed a negative control diet, a diet containing (as-fed basis) either 3, 6, 9, or 12% WG Source 3, or a positive control diet containing 5% SDAP. The diets containing 9% WG and 5% SDAP had the same amount of SBM. From d 0 to 7, pigs fed 5% SDAP had greater (P < 0.04) ADG than pigs fed the diet containing 9% WG. From d 0 to 14, increasing WG had no effect on ADG, ADFI, or G:F. In Exp. 4, pigs (n = 200, initially 6.0 +/- 2.4 kg) were fed a negative control diet, the control diet with (as-fed basis) 4.5 or 9.0% WG Source 1, or the control diet with 2.5 or 5.0% SDAP. Diets containing WG and SDAP had similar SBM levels. From d 0 to 7 and 0 to 14, increasing SDAP tended to improve (linear, P < 0.06) ADG, but increasing WG had no effect. In Exp. 5, 170 barrows and gilts (initially 7.5 +/- 2.8 kg) were used to determine the effects of WG Source 1 and 4 compared with select Menhaden fish meal or spray-dried blood cells and a negative control diet (SBM) on the growth performance of nursery pigs from d 5 to 26 postweaning (d 0 to 21 of experiment). No differences were found in ADG or G:F, but pigs fed the diet containing (as-fed basis) 2.5% spray-dried blood cells had greater ADFI than pigs fed the negative control from d 0 to 21. Wheat gluten source had no effect on ADG, ADFI, or G:F. The results of these studies suggest that increasing WG in diets fed immediately after weaning did not improve growth performance relative to SBM or SDAP.  相似文献   

14.
Two experiments, each with 36 barrows with high-lean-gain potential, were conducted to evaluate apparent nutrient digestibilities and performance and plasma metabolites of pigs fed corn-soybean meal diets (CONTROL) and low-protein diets. The low-protein diets were supplemented with crystalline lysine, threonine, tryptophan, and methionine either on an ideal protein basis (IDEAL) or in a pattern similar to that of the control diet (AACON). Amino acids were added on a true ileally digestible basis. The initial and final BW were, respectively, 31.5 and 82.3 kg in Exp. 1 and 32.7 and 57.1 kg in Exp. 2. In Exp. 1, the CONTROL and IDEAL diets were offered on an ad libitum basis or by feeding 90 or 80% of ad libitum intake. Pigs were fed for 55 d. In Exp. 2, the CONTROL, IDEAL, and AACON diets were offered on an ad libitum basis or by feeding 80% of the ad libitum intake. Pigs were fed for 27 d. Pigs fed the CONTROL diet had greater (P < 0.05) ADG and feed efficiency (G/F) than pigs fed the IDEAL (Exp. 1 and 2) and AACON diets (Exp. 2). As the level of feed intake decreased, ADG decreased (P < 0.05), but G/F tended to improve (P < 0.10) for pigs fed 90% of ad libitum in Exp. 1 and for pigs fed 80% of ad libitum in Exp. 2. In Exp. 1, the apparent total tract digestibilities of DM and energy were greater (P < 0.01) for pigs fed the IDEAL diet than for pigs fed the CONTROL diet. In Exp. 2, the apparent total tract digestibility of protein was greatest in pigs fed the CONTROL diet (P < 0.05) and was greater (P < 0.05) in pigs fed the AACON diet than in pigs fed the IDEAL diet. Plasma urea concentrations were lower in pigs fed the IDEAL diet than in pigs fed the CONTROL diet, regardless of feeding level. For pigs fed the CONTROL diet, plasma urea concentrations were lower when feed intake was 80% of ad libitum (diet level, P < 0.01). In summary, pigs fed the IDEAL and the AACON diets gained less and had lower plasma urea concentrations than pigs fed the CONTROL diet. Based on these data, it seems that the growth potential of pigs fed the IDEAL and AACON diets may have been limited by a deficiency of lysine, threonine, and(or) tryptophan and that the amino acid pattern(s) used was not ideal for these pigs.  相似文献   

15.
An experiment was conducted to compare the effects of organic (Zn AA complex, ZnAA) and inorganic Zn (ZnSO4) sources on sows and their progeny during gestation and lactation and on the pigs during the nursery period. The dietary treatments were 1) a corn-soybean meal diet with 100 ppm Zn from ZnSO4 (control); 2) diet 1 + 100 ppm additional Zn from ZnSO4; and 3) diet 1 + 100 ppm additional Zn from ZnAA. Dietary additions were on an as-fed basis. Thirty-one primaparous and multiparous sows were allotted to the treatment diet beginning on d 15 of gestation and continuing through lactation. At weaning (d 17 of age), 202 pigs (63, 55, and 84 pigs for treatments 1 to 3, respectively) were allotted to the same dietary treatment as their dam. The pigs were fed a 3-phase diet regimen during the nursery period: d 0 to 7 (phase I); d 7 to 21 (phase II); and d 21 to 28 (phase III). At weaning and at the end of phase III, 1 gilt per replicate was killed, and the left front foot, liver, pancreas, and entire small intestine were removed. Diet had no effect (P > 0.10) on any response during gestation. During lactation, there was an increase (P < 0.10) in litter birth weight in sows fed ZnAA compared with those fed the control or ZnSO4 diets. The sows fed ZnAA nursed more pigs (P < 0.10) than sows fed the ZnSO4 diet, and they weaned more pigs (P < 0.05) than sows fed the control diet. Jejunal villus height of the weaned pigs from sows fed ZnSO4 was increased (P < 0.05) compared with those from the sows fed the control diet. During the nursery period, growth performance was not affected (P > 0.10) by diet. Pigs fed ZnSO4 had greater duodenal villus width (P < 0.05) than those fed ZnAA, and pigs fed ZnSO4 or the control diet had greater ileal villus width (P < 0.05) than those fed ZnAA. Pigs fed ZnSO4 or ZnAA had more (P < 0.05) bone Zn than those fed the control diet. Liver Zn concentration was greatest in pigs fed ZnSO4, followed by those fed ZnAA, and then by those fed the control diet (P < 0.05). Pancreas Zn was increased (P < 0.05) in pigs fed ZnSO4 compared with those fed the control diet. These results suggest that 100 ppm Zn in trace mineral premixes provides adequate Zn for optimal growth performance of nursery pigs, but that 100 ppm additional Zn from ZnAA in sow diets may increase pigs born and weaned per litter.  相似文献   

16.
Four experiments involving 1,005 crossbred pigs weaned at 19 +/- 2 d of age evaluated the effect of diet complexity and lactose level on starter pig performances. Experiment 1 was a randomized complete block (RCB) conducted in nine replicates with 135 pigs. A complex diet using several protein sources, a semicomplex diet with fewer protein sources, and a simple diet of corn and soybean meal comprised the three treatment groups. All diets contained 25% lactose (as-fed basis) with lysine (total) constant from d 0 to 14 (1.55%) and d 14 to 28 (1.45%), respectively. Gain, feed intake, and feed efficiency (P < 0.05) improved as diet complexity increased during both periods. In Exp. 2, 240 pigs in eight replicates in a RCB design were fed complex diets, but dietary lactose (total; as-fed basis) levels ranged from 10 to 35% in 5% increments from 0 to 14 d after weaning. From 14 to 30 d, a common 17% lactose diet was fed to evaluate the effects of early lactose level on subsequent responses. Gains (P < 0.05) increased for the 0- to 7- and 0- to 14-d periods as lactose increased to 30%. Similar gains resulted for all treatment groups from 14 to 30 d after weaning, with no evidence of compensatory responses to early lactose levels. In Exp. 3, 330 pigs were fed complex diets. From 0 to 7 d after weaning, the diets contained 25% lactose (as-fed basis), and from 7 to 21 d postweaning, the lactose levels ranged from 7 to 31% in 5% increments. Gain (P < 0.01) and feed efficiency (P < 0.05) increased from 7 to 21 d to the 17% lactose level. In Exp. 4, 300 pigs were fed 25 and 17% (as-fed basis) lactose diets from 0 to 7 and 7 to 21 d postweaning, respectively. From 21 to 35 d postweaning, lactose levels of 0 to 20% in 5% increments were added to a corn-soybean meal diet. The experiment was conducted as a RCB design in 12 replicates. Gain (P < 0.05) and feed intake (P < 0.05) increased to 10 to 15% lactose. When the data from Exp. 4 were partitioned into lighter (15.0 kg) and heavier (17.7 kg) pig weight replicates, only the lighter replicates had significant improvements in gain, feed intake, and feed efficiency (P < 0.05) in response to dietary lactose. These results demonstrated that starter pigs performed better when fed complex diets, that dietary lactose levels of 25 to 30% (to 7 kg BW) during the initial week postweaning, 15 to 20% lactose during d 7 to 21 (to 12.5 kg BW), and 10 to 15% lactose during d 21 to 35 postweaning (to 25 kg BW) resulted in maximum performance.  相似文献   

17.
Four experiments were conducted to determine the effects of adding a beta-mannanase preparation (Hemicell, ChemGen, Gaithersburg, MD) to corn-soybean meal-based diets on growth performance and nutrient digestibility of weanling and growing-finishing pigs. In Exp. 1, 156 weanling pigs (20 d, 6.27 kg BW) were allotted to four dietary treatments in a randomized complete block design. Treatments were a factorial arrangement of diet complexity (complex vs simple) and addition of 3-mannanase preparation (0 vs 0.05%). Pigs were fed in three dietary phases (Phase 1, d 0 to 14; Phase 2, d 14 to 28; and Phase 3, d 28 to 42). Pigs fed complex diets gained faster and were more efficient (P < 0.05) during Phase 1 compared with pigs fed simple diets. Overall, gain:feed ratio (G:F) tended to be improved (P < 0.10) for pigs fed complex diets and it was improved (P < 0.01) for those fed diets with beta-mannanase. In Exp. 2, 117 pigs (44 d, 13.62 kg BW) were allotted randomly to three dietary treatments. Dietary treatments were 1) a corn-soybean meal-based control, 2) the control diet with soybean oil added to increase metabolizable energy (ME) by 100 kcal/kg, and 3) the control diet with 0.05% beta-mannanase preparation. Beta-mannanase or soybean oil improved (P < 0.05) G:F compared with pigs fed the control diet. In Exp. 3, 60 pigs (22.5 kg BW) were allotted randomly to the three dietary treatments used in Exp. 2. Dietary treatments were fed in three phases (23 to 53 kg, 53 to 82 kg, and 82 to 109 kg with 0.95, 0.80, and 0.65% lysine, respectively). Overall, the addition of soybean oil tended to improve G:F (P < 0.10) compared with that of pigs fed the control diet, and G:F was similar (P > 0.54) for pigs fed diets with soybean oil or beta-mannanase. Also, addition of beta-mannanase increased ADG (P < 0.05) compared with that of pigs fed the control or soybean oil diets. There were no differences (P > or = 0.10) in longissimus muscle area or backfat; however, on a fat-free basis, pigs fed the diet with beta-mannanase had greater (P < 0.05) lean gain than pigs fed the control or soybean oil diets. In Exp. 4, 12 barrows (93 kg BW) were allotted randomly to one of the three dietary treatments used in Exp. 3. Addition of 3-mannanase had no effect (P > 0.10) on energy, nitrogen, phosphorus, or dry matter digestibility. These results suggest that beta-mannanase may improve growth performance in weanling and growing-finishing pigs but has minimal effects on nutrient digestibility.  相似文献   

18.
Three experiments were conducted to evaluate spray-dried blood cells (SDBC) and crystalline isoleucine in nursery pigs. In Exp. 1, 120 pigs were used to evaluate 0, 2, 4, and 6% SDBC (as-fed basis) in a sorghum-based diet. There were six replicates of each treatment and five pigs per pen, with treatments imposed at an initial BW of 9.3 kg and continued for 16 d. Increasing SDBC from 0 to 4% had no effect on ADG, ADFI, and G:F. Pigs fed the 6% SDBC diet had decreased ADG (P < 0.01) and G:F (P = 0.06) compared with pigs fed diets containing 0, 2, or 4% SDBC. In Exp. 2, 936 pigs were used to test diets containing 2.5 or 5% SDBC (as-fed basis) vs. two control diets. There were six replicates of each treatment at industry (20 pigs per pen) and university (six pigs per pen) locations. Treatments were imposed at an initial BW of 5.9 and 8.1 kg at the industry and the university locations, respectively, and continued for 16 d. Little effect on pig performance was noted by supplementing 2.5% SDBC, with or without crystalline Ile, in nursery diets. Pigs fed the 5% SDBC diet without crystalline Ile had decreased ADG (P < 0.01), ADFI (P < or = 0.10), and G:F (P < 0.05) compared with pigs fed the control diets. Supplementation of Ile restored ADG, ADFI, and G:F to levels that were not different from that of pigs fed the control diets. In Exp. 3, 1,050 pigs were used to test diets containing 5, 7.5, or 9% SDBC (as-fed basis) vs. a control diet. There were six replicates of each treatment at the industry (20 pigs per pen) location and five replicates at the university (six pigs per pen) locations. Treatments were imposed at an initial BW of 6.3 and 7.0 kg at the industry and university locations, respectively, and continued for 16 d. Supplementation of 5% SDBC without crystalline Ile decreased ADG and G:F (P < 0.01) compared with pigs fed the control diet, but addition of Ile increased ADG (P < 0.01) to a level not different from that of pigs fed the control diet. The decreased ADG, ADFI, and G:F noted in pigs fed the 7.5% SDBC diet was improved by addition of Ile (P < 0.01), such that ADG and ADFI did not differ from those of pigs fed the control diet. Pigs fed diets containing 9.5% SDBC exhibited decreased ADG, ADFI, and G:F (P < 0.01), all of which were improved by Ile addition (P < 0.01); however, ADG (P < 0.05) and G:F (P = 0.09) remained lower than for pigs fed the control diet. These data indicate that SDBC can be supplemented at relatively high levels to nursery diets, provided that Ile requirements are met.  相似文献   

19.
Four experiments were conducted with weanling pigs fitted with a simple T-cannula at the distal ileum, to determine the effect of phytase supplementation to four diets on the apparent ileal digestibilities (AID) of CP and AA, and the apparent total-tract digestibilities (ATTD) of CP and DE. Phytase (Natuphos, DSM Food Specialties, Delft, The Netherlands) was supplemented at rates of 0, 500 or 1,000 FTU/kg to the four diets. A 20% CP (as-fed basis) corn-soybean meal diet was used in Exp. 1; a 20% CP wheat-soybean meal diet in Exp. 2; a 20% CP wheat-soybean meal-canola meal diet in Exp. 3; and a 19% CP barley-peas-canola meal diet in Exp. 4. In each experiment, six barrows, fitted with a simple T-cannula at the distal ileum, were fed the basal plus phytase-supplemented diets according to a repeated 3 x 3 Latin square design. Each experimental period comprised 14 d. The piglets were at fed 0800 and 2000 daily, equal amounts for each meal, at a daily rate of at least 2.4 times the maintenance requirement for ME. Feces were collected from 0800 on d 8 until 0800 on d 12 of each experimental period. Ileal digesta were collected from 0800 to 2000 on d 12, 13, and 14. Chromic oxide was used as the digestibility marker. The average initial and final BW (average of all experiments) were 7.9 and 16.5 kg, respectively. Phytase supplementation did not improve the AID of CP and AA in Exp. 1, 2, and 4; however, there were improvements (P < 0.05) or tendencies (P < 0.10) toward improvements in the AID of CP and AA or the ATTD of CP and the content of DE with phytase supplementation in Exp. 3. These results suggest that the AA response factor to microbial phytase supplementation depends on diet composition.  相似文献   

20.
Commercial sources of zinc oxide (ZnO) differ widely in Zn relative bioavailability (RBV), but it is unknown whether growth-promoting efficacy in young pigs is influenced by RBV of the ZnO sources used. We compared a low-RBV (39%) ZnO manufactured by the Waelz process (W) to a high-RBV (93%) ZnO manufactured by the hydrosulfide process (HS). Antibacterial agents were included in the diet in only one of the four trials (Exp. 4). In Exp. 1, pigs (n = 36, 6.5 kg, 28 d of age) were randomly assigned in three replicates to receive 0, 1,500, or 3,000 mg Zn/kg from HS Zn in a 21-d growth assay. Growth rates and feed intake responded linearly (P < 0.01) to incremental doses of Zn. In Exp. 2, pigs (n = 60, 6.1 kg, 28 d of age) were randomly assigned in five replicates to receive either 0 or 1,500 mg W or HS Zn/kg during a 21-d feeding period. Growth performance was improved (P < 0.01) by the addition of ZnO. During wk 1, however, pigs receiving HS Zn grew faster (P < 0.03) than those receiving W Zn, but the difference diminished to a trend (P < 0.08) during wk 2. Morphology of duodenal, jejunal, and ileal intestinal sections was examined at d 21 of the assay, but neither source of ZnO had an effect on crypt depth or on villus height or width. In Exp. 3, weaned pigs (n = 48, 5.4 kg, 21 d of age) were randomly assigned in four replicates to the same dietary treatments as in Exp. 2 for a 17-d growth assay. Growth performance was improved (P < 0.05) by the addition of ZnO, but no difference was detected between the two sources. In Exp. 4, pigs (n = 60, 6.2 kg, 28 d of age) were randomly assigned in five replicates to receive either 0 or 1,500 mg/kg W or HS Zn in an 11-d growth assay wherein antimicrobial agents were included in the basal diet. Growth rates during the first 6-d were improved (P < 0.06) by the addition of ZnO, with a trend (P < 0.10) for greater weight gain in pigs receiving HS than in those fed W Zn. During the entire 11-d, however, there was no difference in growth rates between pigs fed the two sources of ZnO. In conclusion, RBV of Zn in ZnO did not substantially affect the growth-promoting efficacy of ZnO in young pigs fed diets with or without antimicrobial agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号