首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ongoing research in recirculation aquaculture focuses on evaluating and improving the purification potential of different types of filters. Algal Turf Scrubber (ATS) are special as they combine sedimentation and biofiltration. An ATS was subjected to high nutrient loads of catfish effluent to examine the effect of total suspended solids (TSS), sludge accumulation and nutrient loading rate on total ammonia nitrogen (TAN), nitrite and nitrate removal. Nutrient removal rates were not affected at TSS concentration of up to 0.08 g L?1 (P > 0.05). TAN removal rate was higher (0.656 ± 0.088 g m?² day?1 TAN) in young biofilm than (0.302 ± 0.098 g m?² day?1 TAN) in mature biofilm at loading rates of 3.81 and 3.76 g m?² day?1 TAN (P < 0.05), respectively, which were considered close to maximum loading. TAN removal increased with TAN loading, which increased with hydraulic loading rate. There was no significant difference in removal rate for both nitrite and nitrate between young and mature biofilms (P > 0.05). The ATS ably removed nitrogen at high rates from catfish effluent at high loading rates. ATS‐based nitrogen removal exhibits high potential for use with high feed loads in intensive aquaculture.  相似文献   

2.
A packed tower (trickling filter), empty, half full and full of a medium (styrofoam packing material) and a rotating biological contactor (RBC, rotating disc) were tested at various recirculating flow rates, with and without supplemental aeration, to determine oxygen recharge and ammonia stripping capabilities. Oxygen recharge capabilities increased with increasing flow rates, but at different rates for each filter. Oxygen recharge efficiencies decreased as flow rates increased in the half full and empty towers, were about constant for the full tower and increased in the RBC. Oxygen recharge capabilities were significantly increased with the addition of surface agitation; greater than the sum of the component contributions. With supplemental aeration, the full tower with a recirculation flow of 45·4 liters/min was most efficient and capable of supplying the most oxygen. Ammonia stripping was found to be insignificant in all systems tested.  相似文献   

3.
The objective of this research was to evaluate the dissolved carbon dioxide stripping efficiency of two types of 1-m tall structured plastic packing (tubular NORPAC and structured block CF-3000 Accu-Pac media) that were placed separately in two full-scale forced-ventilation cascade columns that were located within a coldwater recirculating aquaculture system at the Freshwater Institute. These two structured packing types were selected because they both provide large 4–5 cm void spaces that are either vertically-continuous (e.g. the tubular NORPAC) or an open structure with zigzagging but continuous void spaces (e.g. the blocks of cross-corrugated sheet media), which should reduce the likelihood of plugging with biosolids. Water flow rates were adjusted so that each cascade column was loaded with either 87, 136 and 187 m3/h water flow per m2 of cascade column plan area (i.e. 35, 56 and 76 gpm/ft2). Air:water loading rates of 2.2:1 to 3.4:1, 5.1:1 to 5.6:1, and 9.5:1 to 9.9:1 were produced by setting the water flow rates through each column at 1.62, 2.54 and 3.48 m3/min, respectively, and then measuring the resulting air flow rate through the column under these conditions. As expected, the dissolved carbon dioxide removal efficiencies of both structured packing tested were found to depend on the volumetric air:water loading rate applied. The lowest volumetric air:water loading rate (i.e. 2.2:1 to 3.4:1) resulted in only 21–24% dissolved carbon dioxide removal. However, the dissolved carbon dioxide removal efficiencies rose to 32.4–33.6 and 35.8–37.2% for the medium and high air:water loading rates, i.e. 5.1:1 to 5.6:1 and 9.5:1 to 9.9:1, respectively. A second objective of this research was to determine if either packing would plug with biosolids after long-term operation. At the end of approximately 1 year of operation, both of the plastic packing materials were examined from the top of the packing to determine if potential fouling or plugging problems were apparent. A thin layer of brown biofilm covered both packings, but the biofilm did not appear to threaten water or airflow through the packing. In addition, no large mats of biosolids were visible from the top of either column. However, flooding at the interface of the support screen and the tubular NORPAC was suspected to have reduced air flows measured at the highest hydraulic loading rate tested (i.e. at 187 m3/h per m2), which coincided with the lowest air:water loading rates tested.  相似文献   

4.
AquaMats are high surface–area polymer filters whose use produces higher yields with reduced health risks for the aquaculture product. We used AquaMats in pilot-scale systems and in intensive commercial Pacific white shrimp Litopenaeus vannamei production systems to stabilize and improve water quality by removing ammonia. In the pilot-scale systems, evaluation of the effects of temperature and hydraulic retention time (HRT) on ammonia removal rate indicated that the surface total ammonia nitrogen (TAN) conversion rate (STR, mg TAN/m2-day) increased with increasing temperature and decreasing HRT. The highest STR of 319.8 mg TAN/m2-day was observed at a temperature of 30 °C and a HRT of 5 min. In the commercial shrimp production systems, ammonia levels were significantly greater in the control systems (without AquaMats) than in the treatment systems (with AquaMats) after 6 days (P < 0.05). Results suggested that eight 150 cm × 90 cm pieces of AquaMats (0.057 m2 surface area per m3 culture volume) were sufficient for promoting nitrification in this system. The growth rate of juvenile shrimp was most enhanced in treatment C (with 12 pieces of AquaMats, 0.085 m2/m3), which exhibited a significant decrease in ammonia.  相似文献   

5.
The nitrification process is a widely used biological approach responsible for ammonia and nitrite removal in recirculating aquaculture system (RAS) biofilters. Given this pivotal role, the influence of different water quality parameter on nitrification efficiency is important information for RAS operations. One influencing parameter is salinity, and salinity fluctuations in freshwater RAS biofilters are reported to affect the nitrifying bacteria. This study investigated the effects of abrupt increase in salinity in freshwater RAS on substrate-dependent (1’-order) as well as substrate independent (0’-order) nitrification rates. A 100% inhibition was found for surface specific removal (STR) of total ammonia nitrogen (TAN) and surface specific nitrite removal (SNR) when salinity was abruptly increased to 25‰ and above. A fast turnover (i.e. steep decline in [NH4-N+] and [NO2-N]) were observed at lower salinities (≤10‰), while limited/no degradation of either ammonia or nitrite was seen at salinities above 25‰. At low substrate loading (1’-order process), removal rate constants (k1a) of 0.22 and 0.23 m d-1 were observed for ammonia and nitrite degradation, respectively, declining to 0.01 m d-1when adding marine RAS water increasing the salinity to 15‰. Similar observations followed at high nutrient loadings (0’-order process) with STR and SNR of 0.10 and 0.12 g N m-2 d-1, respectively, declining to 0.01 g N m-2 d-1 at 15‰. When salinities of 25‰ and 35‰ were applied, neither TAN nor nitrite degradation was seen. The results thus demonstrate a pronounced effect of salinity changes when freshwater RAS biofilters are subjected to fast/abrupt changes in salinity. RAS facility operators should be aware of such potential effects and take relevant precautions.  相似文献   

6.
Four fixed-film biological filters (rotating biological contactor, biodrum, trickling filter, and a submerged anaerobic filter) were tested for the removal of ammonia using a simulated warmwater fish and invertebrate culture water supply. Filter design may be determined based on the results of ammonia removal efficiency over a wide range of hydraulic loads. The rotating biological contactor (RBC) provided the best ammonia removal (over 90%) up to about 0·06 m3 m?2 day?1 (1·2 gpd ft?2). The biodrum removed over 80% of the ammonia to a hydraulic load of 0·05 m3 m?2 day?1 (0·9 gpd ft?2). The trickling filter removed 50% of the ammonia at a hydraulic loading of 0·012 m3 m?2 day?1 (0·3 gpd ft?2).  相似文献   

7.
The survival of milkfish broodstock (body weight range 1–11 kg) was determined until 30 days after handling and transport in open tanks or in sealed oxygenated bags containing chilled sea water (20–25 °C). Maintenance of cool sea water was achieved by the gradual addition of ice chunks or frozen gel packs. A survival rate of 50% after transporting fish at a loading density of 45 kg m?3 for 4 h in open tanks was not significantly different from those that were handled but not transported (86%). Similarly, survival rates (67–83%) among broodstock confined for 8 h in chilled sea water at 40 and 60 kg m?3 were not significantly different from each other or from a group not subjected to confinement. Nevertheless, low dissolved oxygen (DO) and accumulation of total ammonia–nitrogen beginning 1 h after transport and confinement may be responsible for low survival rates of milkfish in open tanks. In contrast, all milkfish survived 10 h of overland transport in sealed bags with chilled and diluted (28 g L?1) sea water. Likewise, all milkfish survived after being bagged and immediately transferred to a communal rearing tank, or bagged and placed in a styrofoam box for 10 h. Except for total ammonia–nitrogen levels, which increased slightly (0.7–0.8 mg L?1) above background, seawater temperature (20–24 °C), salinity (28 g L?1) and DO (6 to > 20 mg mL?1) titres in transport bags were maintained during the 10‐h test. The effectiveness of handling and transporting milkfish broodstock in sealed bags containing chilled sea water was verified in actual field trials. Spawning of sexually mature milkfish subjected to these stressors was not impaired. These results demonstrate that mortalities of large milkfish broodstock can be minimized when fish are handled and transported in sealed oxygenated bags containing chilled sea water.  相似文献   

8.
Comparing effects of air volumes of zero, 6.9, and 10.4 m3/min per ha (0, 100, and 150 ft3/min per acre) indicated that greater volumes of air resulted in increased fish production. Increased volumes of air resulted in proportionate increases in dissolved oxygen content, allowing greater weights of food to be offered to fish without depleting the oxygen content of the pond water. Chemical oxygen demand was inversely related to the volume of air delivered.  相似文献   

9.
Ammonia removal and disinfection are two major problems in aquaculture systems, which require clean and reliable water to support long-term growth and health of target animals. In this study, we report electrochemical ammonia removal and disinfection of wastewater from an aquaculture farm (Mari’s Gardens) in Hawaii. First, we attempted to reproduce the work of Zollig and co-authors, who reported that direct ammonia oxidation can occur between 1 V and 1.6 V vs SHE on a graphite electrode in a solution (pH = 9.0) containing 1 M NaClO4, 0.25 M NH4ClO4, and 0.085 M NaCl. Our results, however, show that direct ammonia oxidation is unlikely to occur, at least at significant rates, on a graphite electrode in aqueous solutions (pH = 9.0) containing 0.7 M Na2SO4, 0.1 M (NH4)2SO4, and 0.02 M NaCl. We tentatively attribute this discrepancy to the different physico-chemical characteristics of graphite electrodes made by different manufacturers. Second, PtRu/graphite electrodes were prepared using a pulsed electrodeposition method, and electrode activity towards ammonia removal and disinfection was examined in both synthetic and real aquaculture wastewater using batch and flow reactors. The PtRu catalyst was partially oxidized at the beginning of electrolysis, and a significant increase in the electrode activity towards indirect ammonia oxidation was observed. Ammonia removal was slow when NaCl concentration was 0.66 mM, but the addition of NaCl (up to 20 mM) led to a drastic increase in the ammonia removal rate, indicating that ammonia removal proceeds via indirect oxidation. The ammonia removal rate depends primarily on NaCl concentration and current density and is independent of the initial ammonia concentration and solution pH. The ammonia removal rates can be modeled by pseudo zero-order kinetics, and a linear correlation can be drawn between the ammonia removal rate (k, mg L−1 min−1) and the product of NaCl concentration ([Cl-], mM) and current density (j, mA/cm2): k = 0.0047 [Cl-] j (R2 = 0.99). Free chlorine (Cl2, HOCl, and OCl-) was not detected in the solution until the complete removal of ammonia. Combined chlorine (NH2Cl, NHCl2, and NCl3) was measured at concentrations of 2–15 mg/L (as Cl2) during the ammonia removal process but was eliminated as soon as ammonia was depleted and an excess of free chlorine was available. Our detailed findings on the formation of both free chlorine and combined chlorine are significant to the mechanistic study of indirect ammonia oxidation. Ammonia removal experiments in synthetic and real aquaculture wastewater showed similar results. However, ammonia removal in the flow reactor took about three times longer than that in the batch reactor under similar conditions, likely due to hydrodynamic mixing differences. In addition, it was found that E. coli bacteria can be completely inactivated (5-log reduction) within a short time (e.g., 5 min).  相似文献   

10.
Three different commercially available structural plastic media were evaluated in triplicate in moving bed biofilters under low salinity (11–12 ppt) warm water culture conditions and two different feed loading rates. The culture system consisted of nine separate modules that include a double drain fish culture tank paired to a moving bed biofilter. The biofilters were filled with 0.11 m3 of one of three different types of floating plastic structured media. The three types of media evaluated were K1 kaldnes media, MB3 media, and AMB media. Volumetric total ammonia nitrogen (TAN) removal rates (g TAN removed/m3 media-day), TAN removal efficiency, and biofilm kinetic constants, Ki (h−1) were determined for the three media types at two different daily feed load rates of 3.5 and 8.2 kg feed/m3 media. The feed provided was a 4.8 mm slow sinking marine grower diet pellet (45% protein, 17% fat). Average (±standard deviation, SD) volumetric TAN removal rates (VTR) at the lower feed load for the three media types were 92.2 ± 26.3, 86.1 ± 27.5, and 82.5 ± 25.9 for the MB3, AMB, and K1 kaldnes media, respectively. At the higher feed load the average VTR for the three media types was 186.4 ± 53.7, 172.9 ± 47.8, and 139.9 ± 38.9 for the MB3, AMB, and K1 kaldnes media, respectively. Influent TAN concentrations varied by the feed load rate and ranged from 0.55 to 0.93 mg/L and 0.83 to 1.87 mg/L for the low and higher feed loads, respectively. The percent TAN removal rates for the MB3 media was the highest of the three media types at both the low and high feed load rates averaging 12.3% and 14.4%, respectively. The MB3 media was selected for use in the moving bed biofilters because of the greater VTR and removal efficiency results for use in the 0.11 m3 moving bed biofilters of the hatchery recirculating aquaculture system.  相似文献   

11.
A mathematical model is used to investigate the impact of farming intensity and water management on nitrogen dynamics in the water column of intensive aquaculture ponds. The model describes the input of ammonia, its assimilation by phytoplankton or nitrification, and the loss of nitrogen through sedimentation, volatilization, and discharge. The model is calibrated for two commercial shrimp (Penaeus monodon Fabricius) farms in Thailand. Assimilation by phytoplankton with subsequent sedimentation or discharge is the principal process of ammonia removal. When inputs of ammonia exceed the algal assimilation capacity (carrying capacity), nitrification and volatilization of excess ammonia become significant. Carrying capacity is negatively affected by non-chlorophyll turbidity, and was estimated as 6 t ha?1 cycle?1 at a non-chlorophyll extinction of 2.6 m?1. In ponds managed within their carrying capacity, ammonia concentrations are lowest at no water exchange, reach a maximum at exchange rates between 0.2 and 0.4 day?1, and decline again at higher rates. When the carrying capacity is exceeded, excess ammonia concentrations decline continuously with increasing water exchange. Average exchange rates used in intensive shrimp farms (up to 0.2 day?1) reduce phytoplankton abundance and sedimentation within ponds, but not ammonia concentrations. Discharges are high in particulate nitrogen at water exchange rates up to 0.3 day?1, but contain mainly dissolved nitrogen at higher rates.  相似文献   

12.

Gilthead sea bream (Sparus aurata) was raised in six individual recirculating aquaculture systems (RAS) whose biofilters’ performance was analyzed. Fish were fed with three different diets (a control diet, a fishmeal-based diet (FM), and a plant meal-based diet (VM)) and with three different feeding strategies (manual feeding to apparent satiation, automatic feeding with restricted ration, and auto-demand feeding). For every combination of diet and feeding strategy, the mean oxygen consumption, ammonia excretion, and ammonia removal rate were determined. Fish fed with the VM diet consumed the most oxygen (20.06?±?1.80 gO2 consumed kg?1 day?1). There were significant differences in ammonia excretion depending on the protein content and protein efficiency of the diet, as well as depending on feeding strategy, which in turn affected ammonia removal rates. Fish fed by auto-demand feeders led to the highest mean ammonia removal rate (0.10 gN-TAN removed m?2 biofiltration area day?1), while not leading to peaks of high ammonia concentration in water, which preserve fish welfare and growth.

  相似文献   

13.
An experimental study was done to evaluate the biodeposition dynamics associated with mussels and two fouling tunicates, Ciona intestinalis and Styela clava, in mussel aquaculture in Prince Edward Island (PEI), eastern Canada. The presence of C. intestinalis on small constructed mussel socks increased biodeposition by a factor of about 2 relative to mussel socks without tunicates. S. clava were small and had a negligible effect on total biodeposition from mussel socks although they increased sedimentation rates relative to that of abiotic control socks. Sinking rates of faecal pellets from large C. intestinalis varied between 1.39 and 6.54 cm s− 1 (LSMean = 2.35 cm s− 1). Using biodeposit production and sinking rates and hydrological data obtained in the present study, footprints of benthic loading due to mussel and tunicate biodeposition for a typical mussel farm in PEI were modelled using Shellfish-DEPOMOD. The results show benthic loading below longlines with C. intestinalis to be ca. 2 times greater than those from lines with only mussels with rates of up to 15.2 g m− 2 d− 1. However, given the greater settling rate of C. intestinalis biodeposits relative to mussel biodeposits, the extent of the footprint (≥ 1 g m− 2 d− 1) is similar or even more restrained.  相似文献   

14.
Aquaculture and hydroponics have experienced significant growth and market presence in recent years. While aquaponics, the combination of fish and plant culture systems, is beginning to experience the same exponential growth and interest that hydroponics did many years ago, very little information is available on sizing and design of these systems. Incorporation of hydroponic plants with recirculating aquaculture systems (RAS) aids in removal of ammonia/ammonium based wastes, thus reducing the need for water discharge to control water quality. Surface only nitrification rates were quantified to be 0.83g/m2/day for inert surfaces and 0.20/m2/day for root surfaces. Direct assimilation of ammonia by the lettuce plants was less than 2% of the total ammonia and ammonium nitrogen (TAN) removed from the culture water, with the remainder being removal by oxidation of TAN into nitrate.  相似文献   

15.
The Northeastern U.S. has the ideal location and unique opportunity to be a leader in cold water marine finfish aquaculture. However, problems and regulations on environmental issues, mandatory stocking of 100% native North American salmon, and disease have impacted economic viability of the U.S. salmon industry. In response to these problems, the USDA ARS developed the National Cold Water Marine Aquaculture Center (NCWMAC) in Franklin, Maine. The NCWMAC is adjacent to the University of Maine Center for Cooperative Aquaculture Research on the shore of Taunton Bay and shares essential infrastructure to maximize efficiency. Facilities are used to conduct research on Atlantic salmon and other cold water marine finfish species. The initial research focus for the Franklin location is to develop a comprehensive Atlantic salmon breeding program from native North American fish stocks leading to the development and release of genetically improved salmon to commercial producers. The Franklin location has unique ground water resources to supply freshwater, brackish water, salt water or filtered seawater to fish culture tanks. Research facilities include office space, primary and secondary hygiene rooms, and research tank bays for culturing 200+ Atlantic salmon families with incubation, parr, smolt, on-grow, and broodstock tanks. Tank sizes are 0.14 m3 for parr, 9 m3 for smolts, and 36, 46 and 90 m3 for subadults and broodfish. Culture tanks are equipped with recirculating systems utilizing biological (fluidized sand) filtration, carbon dioxide stripping, supplemental oxygenation and ozonation, and ultraviolet sterilization. Water from the research facility discharges into a wastewater treatment building and passes through micro-screen drum filtration, an inclined traveling belt screen to exclude all eggs or fish from the discharge, and UV irradiation to disinfect the water. The facility was completed in June 2007, and all water used in the facility has been from groundwater sources. Mean facility discharge has been approximately 0.50 m3/min (130 gpm). The facility was designed for stocking densities of 20–47 kg/m3 and a maximum biomass of 26,000 kg. The maximum system density obtained from June 2007 through January 2008 has approached 40 kg/m3, maximum facility biomass was 11,021 kg, water exchange rates have typically been 2–3% of the recirculating system flow rate, and tank temperatures have ranged from a high of 15.4 °C in July to a low of 6.6 °C in January 2008 without supplemental heating or cooling.  相似文献   

16.
This study investigated how removal rates of urea, ammonia, and nitrite in laboratory scale moving bed biofilters were affected by long-term feed loading. To generate different loadings, five identical freshwater flow-through systems (100 l/h) with rainbow trout (Oncorhynchus mykiss) were fed increasing fixed rations of a commercial diet. The filtered effluent from each system was lead through a moving bed biofilter installed end-of-pipe. After an acclimatization period of four months, the moving bed biofilters were spiked separately with urea, ammonia and nitrite in batch mode in three successive trials to investigate degradation kinetics. Results showed that urea, in addition to ammonia and nitrite, was degraded although the substrate limited/dependent removal rate of urea (first order kinetic) was lower than that of ammonia and nitrite. Degradation of urea could be described as first order kinetics below 2.5 mg N/l. Degradation of total ammonia nitrogen (TAN) and nitrite was substrate independent (zero order kinetic) above 2 mg N/l and subsequently substrate dependent as substrate concentrations in the bulk water declined. The transition zone from zero to first order degradation was elevated with increase in long-term biofilter loading. For ammonia and nitrite, a significant increase in the zero order removal rate constants related to long-term loading were observed up to a long-term feed loading of 207 g/d, corresponding to 69 g feed/m2 filter media/d and an TAN + urea-N concentration of 2.70 mg N/l. Long-term feed loading had no obvious effect on first order removal rate constants of any of the three nitrogenous compounds. Degradation of urea resulted in generation of ammonia demonstrating that urea degradation contributes to the ongoing nitrification activity in aquaculture biofilters. For all three types of spiking (urea, ammonia and nitrite) accumulation of nitrate was observed in the moving bed biofilters, sustaining that nitrification had occurred.  相似文献   

17.
A series of outdoor, continuous-flow seawater cultures (50 l; 0.23 m2) were used to investigate the effects of culture density (kg/m2), nutrient loading (total nitrogen input/day) with both NH4+N and NO3?N, and turnover rate (flow rateculture volume) on the growth and yield of Gracilaria tikvahiae. Although specific growth rates as high as 60% per day were recorded for Gracilaria at low densities (0.4 kg wet wt/m2) in summer conditions, maximum year-round yields were obtained at densities of 2.0–3.0 kg wet wt/m2. Above a minimal daily nitrogen loading the yield of Gracilaria was independent of (1) nutrient concentration, (2) nitrogen loading, or (3) whether nitrogen was in the form of NH4+N or NO3?N, but was (4) highly dependent upon flow rate. The time weighted mean annual production during 1976–1977 was 34.8 g dry wt/m2·day or 127 t/ha·yr based on 12-months continuous operation at near optimal densities and flow rates in the non-nutrient limited culture system.  相似文献   

18.
The effects of feeding frequency (1, 2, 3, or 15 times daily) on oxygen consumption (OC, mg O2 kg−1 h−1) and ammonia excretion, (AE, mg TAN kg−1 h−1) of walleye (Stizostedion vitreum) are described. Walleye were reared at a practical culture density of 35·4 kg m−3 in a single-pass system at 23·2°C. Diurnal variation in metabolic rates were related to feeding, not to photoperiod. Minimum OC rates occurred 30 min before the first feeding of the day, which was the longest average time since the last feeding. Metabolic rates increased immediately after feeding. The maximum rates for OC were 36–49% higher than the minimum rates, and 14–22% higher than the 24-h mean rate. Maximum rates for AE were 137–409% higher than the minimum rates, and 39–87% higher than the mean rates. There was a highly significant difference in the mean metabolic rates related to feeding frequency. The mean OC rate for 1 feeding day−1 (222·0 mg O2 kg−1 h−1) was greater than the mean rates for 2, 3 and 15 feedings day−1. The OC rate for 1 feeding day−1 was 50·6% greater than the rate for 15 feedings day−1 (147·4 mg O2 kg−1 h−1), the lowest mean rate. Mean and maximum oxygen/feed ratio (OFR, kg O2 kg−1 feed fed day−1), varied inversely with feeding frequency. The mean ammonia/feed ratio (AFR) was similar for all but the 3 feedings day−1 treatment, but the maximum AFRs for 2 and 15 feedings day−1 were lower than the AFRs for 1 and 3 feedings day−1. AE was directly proportional to OC; the regression equations were highly significant, but specific for feeding frequency.  相似文献   

19.
Clinoptilolite, an ammonium-selective ion exchanger, is being used to control ammonia accumulation in recirculating culture systems. Studies were conducted to establish a correlation among the ammonium exchange capacity of clinoptilolite, level of organic matter in aquacultural wastewater, and regenerant solution type. A recirculating culture system of 2300-I capacity provided wastewater with a represantative organic matrix. Treatment of the wastewater led to a decrease in the performance of clinoptilolite under non-equilibrium (packed-column) and equilibrium operating conditions. The extent of the effects increased with an increase in organic level of the treatment solution. In packed-column tests, the maximum observed reductions in mean removal efficiency (3.5%), volume of wastewater treated prior to reaching breakthrough (14.9%), and operating exchange capacity (19.7%), occurred in columns regenerated with a brine of pH 7.0. Columns regenerated with a brine of pH 10.5 showed little response. Treatment of aquacultural wastewater produced a brown discoloration of the packing which was removed by treatment with 1 bed volume of a hypochlorite restorant solution (0.5% Cl2).  相似文献   

20.
Daily cycles of biological oxidation efficiency were studied in three different biofilters: high-load trickling filter A, 64 kg fish m−3, BIO-NET® material (Norddeutsche Seekabelwerke), 260 m2 active surface area per m3 volume; low-load trickling filter B, 1·2 kg fish m−3, lower section Hydropak®-foil (Friedrich Uhde GmbH), 200 m2 m−3, upper section BIO-NET® material, 260 m2 m−3; and low-load submerged rotating contactor (SRC), BIO-NET® material, 380 m2 m−3.The dissolved BOD5 removal efficiency of trickling filter A was dependent on the pH and on the space-load of organic matter. The total ammonia-nitrogen oxidation efficiency decreased directly after feeding from 60% to just over 20% and returned 4 h later to the earlier oxidationrate of 60% fluctuating between 60% and 30% (initial total ammonia-nitrogen concentrations ranged between 0·78 and 2·89 mg N litre−1 8 h after feeding). This decreasing efficiency was caused by an increasing initial carbonaceous (BOD) level from 4 to 20 mg O2 litre−1. In the low-load trickling filter B the total ammonia oxidation efficiency ranged between 35% early in the morning to 60%, 10 h after the first feeding. The removal efficiency in the SRC increased constantly from nearly 2% to more than 40% 7 h after the first feeding and decreased during night time to values of about 4%.The degradation efficiency of total nitrogen in both trickling filters fell drastically after feeding (from 75 to 23% and from 88 to 42%). The SRC showed a relatively constant increase from 28% directly after feeding to 58% 7 h later.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号