首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two trials were conducted with two sizes, grow‐out (80.0 mg b.w.) and fattening (5.0 g b.w.), of Penaeus semisulcatus to compare the production and yield of shrimp cultured at different stocking densities within an indoor running‐seawater system. In the first experiment, postlarvae were cultured at 50, 100, 150 and 200 m?3 for 68 days, while in the second experiment, juveniles were cultured at 24, 50, 74 and 100 m?3 for 126 days. The results of the two experiments showed significant decrease in weight of shrimp as the stocking density increased. During the grow‐out stage, no statistical differences were observed on survival rates among the shrimp stocked at different densities. Thus, as the primary factor to consider at this stage is the number of shrimp produced, it is recommended to use a density of 200 shrimp m?3. During the fattening stage, the survival rate at the highest density was statistically lower than the other three densities. The mean yield was 437.02, 869.16, 1217.62 and 1446.78 g m?3 for shrimp stocked at 24, 50, 74 and 100 m?3 respectively. Although the average harvest size of juveniles at the lowest stocking density was statistically higher than those stocked at the highest stocking density, both sizes (18.12 and 16.67 g) will be classified as one size group in the market, i.e. medium. As the yield significantly increases as the stocking density is increased, it is therefore recommended that the stocking density for the fattening stage be 100 shrimp m?3.  相似文献   

2.
ABSTRACT

In temperate regions, post-larvae freshwater prawn, Macrobrachium rosenbergii, are grown to more advanced sizes in tanks prior to pond stocking. This intermediate stage of culture is referred to as the nursery period. Little research has been conducted on different management practices on juvenile prawn growth and survival during this 30-60 day period. Survival during the nursery stage has been highly variable and may be related to the cannibalistic behavior of juvenile freshwater prawn when cultured at high densities in the nursery. The objective of this study was to evaluate the effect of stocking density, relative to the provision of artificial substrate (number of prawns/m2 of substrate), on growth, survival, and economic variables for freshwater prawn juveniles during nursery production. Post-larvae (0.01%0.00 g, n = 300) were stocked into nine 1900 L tanks, each provided with 20.5 m2 of artificial substrate in the form of horizontal layers of black plastic mesh (10 mm) spaced 5 cm apart. Tanks were randomly assigned one of three prawn densities (215, 430, or 860 post-larvae/m2 of substrate), which equated to 2.3,4.6 and 9.2 prawn/L, respectively. Juvenile prawn were fed a commercial trout diet (42% protein) at a percentage of body weight according to a feed rate table. Water quality was maintained using a flow rate of 8 L/min in each tank from a reservoir pond. Temperature was maintained at approximately 28°C using heat pumps. After 56 days there was no significant difference (P >0.05) in average weight of juvenile prawn stocked at the three densities (0 = 0.58%0.12 g, n = 9). Survival was significantly lower (P <0.05) for prawn stocked at 860 m2 (62%) than in those stocked at 430/m2 (78%) and 215/m2 (94%), which were not statistically different (P >0.05). Even with reduced survival, the highest stocking density produced the greatest number of nursed juveniles based on both tank volume (5.5/l) and surface area (530/m2), at the lowest average cost.  相似文献   

3.
Beginning on May 13, 1980, prawns were cultured at the Rockefeller Wildlife Refuge for 140 days from postlarvae and fed. Production in ponds receiving Ralston Purina Experimental Marine Ration #25 averaged 408 kg/ha, 619 kg/ha and 510 kg/ha for the respective replicated stocking densities of 2.5/m2, 4.9/m2 and 7.4/m2. Average feed conversion factors were 1.0, 1.0 and 1.5. Average prawn weights at harvest decreased with increased stocking density and were 21 g, 17 g and 12 g, respectively. Production per pond ranged from 390 kg/ha to 832 kg/ha. An average of 77% of prawns stocked at 2.5/m2 exceeded 115 mm TL whereas the stocking densities of 4.9/m2 and 7.4/m2 yielded only 32% and 31% over 115 mm. Extra postlarvae remaining after the stocking requirements for the feeding study were met permitting additional tests. Stocking rates selected for these additional studies were 1.2/m2, 2.5/m2 and 3.7/m2. Prawns in these ponds received no supplemental feed and yielded harvests of 124 kg/ha, 224 kg/ha and 292 kg/ha, respectively. These treatments, the first two of which were not replicated, resulted in production similar to that of an earlier study of prawn production on natural forage in brackish ponds at this facility. Average prawn sizes at harvest were 18 g, 15 g and 12 g, and were inversely related to stocking densities.  相似文献   

4.
The effects of intensification on growth, survival, productivity, population structure, and distribution of harvested biomass in individual size classes of Macrobrachium amazonicum in semi‐intensive culture were evaluated. Postlarvae (0.01 g) were stocked in 12 ponds at densities of 10, 20, 40, and 80/m2 (three replicates per treatment) and raised for 5.5 mo. Average individual weight significantly decreased and productivity significantly increased as stocking density increased (P < 0.001), while survival was not affected (P > 0.05). Prawn mean weight at harvest ranged from 3.6 (80/m2) to 7.0 g (10/m2). Average survival ranged from 65.5% (40/m2) to 72.8% (20/m2), while productivity ranged from 508 (10/m2) to 2051 kg/ha (80/m2). Harvested biomass showed a clear bimodal distribution in individual size classes indicating the occurrence of heterogeneous growth, which may affect management and market strategies. Harvested biomass of prawns weighing more than 7 g (the best market size) increases for stocking densities up to 40/m2 and stabilizes between 40 and 80/m2. Growth reduction was associated with a decreasing frequency and average weight of green claw 1 and green claw 2 male morphotypes and adult females as density increased. Thus, the distribution of male morphotypes and sexually mature females are affected by density‐dependent factors. Results suggest that prawn density plays an important role on M. amazonicum grow‐out phase, as has been demonstrated for other species of the genus Macrobrachium. M. amazonicum tolerates grow‐out intensification and may be raised in both semi‐intensive and intensive systems stocked at very high densities yielding high productivity.  相似文献   

5.
The sutchi catfish, Pangasius sutchi (Fowler 1937) was grown at 10 stocking densities in cages suspended in a river‐fed channel during the summer of 2000. Catfish fingerlings (mean length 9.1–9.7 cm and mean weight 5.9–6.7 g) were stocked at densities of 60, 70, 80, 90, 100, 110, 120, 130, 140 and 150 fish m?3. After 150 days, growth and yield parameters were studied and a simple economic analysis was carried out to calculate profitability. The mean gross yield ranged from 15.6±0.27 to 34.5±0.44 kg m?3 and the net yield ranged from 15.2±0.22 to 33.5±0.36 kg m?3 and showed significant variations (P<0.05). The mean weights of fish at harvest were inversely related to stocking density. Both gross and net yields were significantly different and were directly influenced by stocking density but the specific growth rate, survival rate and feed conversion rate were unaffected. Higher stocking density resulted in higher yield per unit of production cost and lower cost per unit of yield. The net revenue increased positively with increasing stocking density. A density of 150 fish m?3 produced the best production and farm economics among the densities tested in this experiment.  相似文献   

6.
Largemouth bass (LMB), Micropterus salmoides, are a highly desirable food fish especially among Asian populations in large cities throughout North America. The primary production method for food‐size LMB (>500 g) has been outdoor ponds that require two growing seasons (18 mo). Indoor, controlled‐environment production using recirculating aquaculture system (RAS) technologies could potentially reduce the growout period by maintaining ideal temperatures year‐round. Researchers conducted a 26‐wk study to evaluate optimal stocking densities for growout of second‐year LMB to food‐fish size in an indoor RAS. LMB fingerlings (112.0 ± 38.0 g) were randomly stocked into nine 900‐L tanks to achieve densities of 30, 60, or 120 fish/m3 with three replicate tanks per density. The RAS consisted of a 3000‐L sump, ¼ hp pump, bead filter for solids removal, mixed‐moving‐bed biofilter for nitrification, and a 400‐watt ultraviolet light for sterilization. Fish were fed a commercially available floating diet (45% protein and 16% lipid) once daily to apparent satiation. At harvest, all fish were counted, individually weighed, and measured. Total biomass densities significantly increased (P ≤ 0.05) with stocking rate achieving 6.2, 13.2, and 22.9 kg/m3 for fish stocked at 20, 60, and 120 fish/m3, respectively. The stocking densities evaluated had no significant impact (P > 0.05) on survival, average harvest weight, or feed conversion ratio which averaged 92.9 ± 5.8%, 294.5 ± 21.1 g, and 1.8 ± 0.3, respectively. After approximately 6 mo of culture, LMB did not attain target weights of >500 g. Observed competition among fish likely resulted in large size variability and overall poor growth compared to second‐year growth in ponds. Additional research is needed to better assess the suitability of LMB for culture in RAS.  相似文献   

7.
Growout production of the camouflage grouper, Epinephelus polyphekadion (Bleeker), in a 10-m3-capacity fibreglass tank culture system was evaluated, using hatchery-produced fingerlings (56-59 g initial weight) at stocking densities of five, 15 and 45 fish m?3. During the first 9 months of a 12-month growout period, the fish were fed twice a day with a moist pellet feed containing 40.9% protein. From month 10 onwards until harvest, the fish were fed moist pellets in the morning and trash fish in the evening at a 1:1 ratio. The final weight of fish at harvest was up to 900 g, with mean weights of 544.6 ± 170.72 g at five fish m?3, 540.2 ± 150.82 g at 15 fish m-?3 and 513.3 ± 134.52 g at 45 fish m?3. The results showed no significant differences (P > 0.05) in growth rate and fish size between the different stocking densities tested. The average daily growth rate ranged from 0.62 to 3.38 g fish?1 day?1, with mean weights of 1.49 ± 0.74 g fish?1 day?1 at five fish m?3 through 0.53 to 2.38 g fish?1 day?1, 1.32 ± 0.57 g fish?1 day?1 at 15 fish m?3 to 0.48-3.32 g fish?1 day?1 and 1.31 g fish?1 day?1 at 45 fish m?3 stocking density. Although up to 100% survival was observed at the lowest stocking density, the survival rate significantly decreased (P < 0.05) with increasing stocking density. The food conversion ratio (FCR) significantly decreased (P <0.05) with increasing stocking densities, showing efficient feed utilization with increasing stocking densities of E. polyphekadion. The FCR averaged 2.1 at a stocking density of 45 fish m?3. The yield in terms of kg fish produced m?3 of water used in the culture system significantly increased (P < 0.001) from five to 45 fish m?3. The yield averaged 17.3 ±0.53 kg m?3 at a stocking density of 45 fish m?3. The present results show that the present tank culture system could sustain more biomass in terms of increasing fish stocking densities. The growth performance of E. polyphekadion observed during this investigation has been reviewed with other grouper species.  相似文献   

8.
Mud spiny lobsters, Panulirus polyphagus (Herbst, 1793), were reared at four different stocking sizes and stocking densities in open sea cages to evaluate their effects on growth performance. To evaluate the effect of stocking size on the growth performance, the lobsters were segregated into four different treatment groups according to size and were stocked at a density of 300 animals per cage. To evaluate the effect of stocking density on the growth performance, lobsters of 81–100 g were stocked in four different stocking densities, i.e. 16/m2, 24/m2, 32/m2 and 40/m2. The results showed that the growth rate of (60–80 g) size group, was significantly higher compared to the size groups, i.e. 101–120 g and 121–140 g comprising of larger individuals. The final body weight, though significantly higher in 81–100 g as compared to 60–80 g, the growth performance (i.e. weight gain percentage (WG %) and specific growth rate (SGR)) were not significantly different. The density‐dependent influence on growth performance was evident in this study. The WG % and SGR during 90 days’ culture period was significantly higher in 24/m2 compared to other groups. This study provides crucial information about the appropriate stocking density and stocking size of lobsters at the field level, which would help to promote sustainable lobster cage farming by maximizing the production potential of the system.  相似文献   

9.
The effect of four stocking densities (30, 60, 100, and 150 lobsters/m2) on the growth and survival of Panulirus cygnus postpueruli was determined over a 112‐d grow‐out trial. Agonistic behavior at each experimental density was recorded using infrared filming. Survival and growth decreased with increasing density, although this trend was only significant between the lowest (30/m2) and the highest densities (150/m2) (P < 0.05) at the conclusion of the grow‐out trial. Density had no significant effect on apparent feed intake but significantly affected food conversion ratios (FCR) across all four densities, with FCR being best at 30/m2 and worst at 150/m2. The number and frequency of agonistic encounters per tank differed significantly with density, with agonistic encounters being highest at 150/m2 and lowest at 30/m2. Agonistic encounters coincided with the crepuscular foraging pattern of postpueruli. The reduction in survival and growth of postpueruli at the highest density (150/m2) can be attributed to the significant increase in the number of agonistic encounters. This study supports that P. cygnus postpueruli should be stocked at densities less than 100/m2 in order to minimize the negative effect of density on growth and survival.  相似文献   

10.
Fish waste water nutrient recycling in an aquaponic system was studied under different stocking densities of Koi Carp, Cyprinus carpio var. koi, along with spinach, Beta vulgaris var. bengalensis. Fish growth performance, plant growth, nutrient dynamics, and nutrient removal and their dependence on different stocking densities, namely 1.4, 2.1, and 2.8, were observed, of the different combinations, fish stocked at 1.4 kg/m3 had the best growth. Percent nutrient removal (NO3–N, PO4–P, and K) was significantly higher at 1.4 kg/m3. Thus, 1.4 kg/m3 stocking density can be suggested as optimum for Koi Carp production in spinach aquaponic systems.  相似文献   

11.
Asian river catfish (Pangasius bocourti Sauvage, 1880) were cultured at five different stocking densities in cages (submerged volume 1 m3) suspended in a dugout pond from August to November 2009. Pangasius bocourti fingerlings (mean weight 27.09 ± 0.54 g) were stocked at densities of 12, 25, 50, 100, and 200 fish m−3. At the end of 3 months, the harvest weights (gross yields) were, respectively, 2.05 ± 0.30, 5.20 ± 0.31, 10.60 ± 0.42, 19.98 ± 0.78, and 42.37 ± 0.41 kg m−3. The mean fish weights among the stocking densities of 25, 50, 100, and 200 fish m−3 were not significantly different, but were significantly higher than that of the 12 fish m−3 density. The specific growth rates among high stocking densities of 50, 100, and 200 fish m−3 were not significantly different; however, they were significantly higher than those of the low stocking densities of 12 and 25 fish m−3. Asian river catfish performed poorly at the lowest density. The results indicate an initial lower stocking threshold for Asian river catfish of above 5.20 kg m−3. The Asian river catfish cultured in small cages placed in a pond reached the desirable market size (>200 g) within a 90-day grow-out period. The results show that the maximum yield for Asian river catfish during a 3-month production cycle was not reached.  相似文献   

12.
The first step for rearing the newly produced hybrid of Asp, Leuciscus aspius ♀, × Caspian Kutum, Rutilus frisii ♂ (so‐called “Aspikutum”) is to understand essential production requirements such as stocking density. For this purpose, fish (60.4 g) were held at five stocking densities of 2, 4, 6, 8, and 10 kg/m3 in circular concrete tanks (603 L) for a period of 56 d. The culture system was maintained at natural temperature and photoperiod. Fish were fed thrice a day using a commercial diet. At the end of the trial, growth indices, including final mean weight, weight gain, and specific growth rate, were significantly higher at the density of 10 kg/m3 compared with 2 kg/m3 (P< 0.05). Feed intake was significantly greater at 10 kg/m3 compared with 2 kg/m3 (P< 0.05); however, feed efficiency, protein efficiency ratio, protein productive value, and hepatosomatic index remained unchanged among the stocking densities (P> 0.05). Increased stocking density caused significant increase in body protein and fat contents (P< 0.05). Condition factor in higher densities (8 and 10 kg/m3) was significantly higher compared with 2 kg/m3 (P< 0.05). The results indicated that rearing this hybrid in the studied weight range at high density of 10 kg/m3 or more is possible without negative impacts on growth performance and body composition.  相似文献   

13.
This research was conducted to investigate the effect of stocking density on the growth performance and yield of Oreochromis niloticus in cage culture in Lake Kuriftu. The treatments had stocking densities of 50 (50F), 100 (100F), 150 (150F), and 200 (200F) fish per m?3. All treatments were in duplicate. Juveniles with an average weight of 45. 76±0.25 g were stocked in the treatments. The fish were fed a composite mixture of mill sweeping, cotton seed, and Bora food complex at 2% of their body weight twice per day using feeding trays for 150 days in powdered form. The growth performance of O. niloticus was density dependent. The final mean weight of O. niloticus ranged 147.76±0.28–219.71±1.42 g and the mean daily weight gain was 0.69±0.01–1.15±0.02 g day?1. Fish held in cages with lower density were heavier than the ones held at higher densities, and showed higher weight gain and daily weight gain. The most effective stocking density, in terms of growth parameters, was 50 fish m?3. The gross yield (4.5–20.55 kg cage?1) showed a significant difference with increasing stocking density (P<0.05). Moreover, the apparent food conversion ratio (2.48–7.22) was significantly affected by stocking density (P<0.05). However, survival rate was not affected by stocking density (P>0.05). It can be concluded that the most effective stocking densities were at 50 fish m?3 cage for larger size fish demand in a short period and 200 fish m?3 for higher gross production with supplementary feed.  相似文献   

14.
A study to determine the effects of four stocking densities on growth and feed utilization of wild‐caught black sea bass Centropristis striata was conducted in a pilot‐scale recirculating tank system. The outdoor system consisted of 12 insulated fiberglass tanks (dia. = 1.85 m; vol. = 2.17 m3) supported by biological filters, UV sterilizers, and heat pumps. Subadults (N= 525; ×± SD = 249 ± 16.8 g) were stocked at densities of 4.6 fish/m3 (1.18 kg/m3), 16 fish/ m3 (3.91 kg/m3), 25.3 fish/m3 (6.83 kg/m3), and 36 fish/m3 (7.95 kg1m3), with three replicate tanks per treatment. Fish were grown under 35 ppt salinity, 21‐25 C, and under ambient photoperiod conditions. A commercial flounder diet containing 50% protein and 12% lipid was hand‐fed twice daily to satiation for 201 d. Mean (range) total ammonia‐nitrogen, 0.61 (0‐2.1) mg/L, nitrite‐nitrogen, 0.77 (0.04‐3.6) mg/L, and nitrate‐nitrogen 40.1 (0‐306) mg/L were significantly higher (P < 0.0001) in the 25.3 and 36 fish/m3 treatments than in the 4.6 and 16 fish/m3 treatments [0.19 (0.05‐0.5), 0.1 (0.24‐0.63), and 11.9 (1.3‐82.2) mg/L, respectively]. However, there were no significant differences (P > 0.05) in growth (RGR = 196.8‐243.1%; DWG = 2.55‐2.83 g/d; and SGR = 0.55‐0.61%/d), coefficient of variation of body weight (CwtV., = 0.24‐0.25), condition factor (K = 2.2‐2.4), feed consumption (FC = 1.45‐1.65%/d), and feed conversion ratio (FCR = 1.45‐1.52) among stocking densities. Final biomass densities on day 201 reached 3.48, 12.0, 21.1, and 27.2 kg/m3 at stocking densities of 4.6, 16, 25.3, and 36 fish/m3, respectively. Survival (83.8‐99.1%) did not differ among treatments. Apparent net protein retention (ANPR) was significantly higher (P < 0.005) for fish stocked at the lower densities of 4.6 and 16 fish/m3 (22.5‐23.7%) than for those stocked at 25.3 and 36 fish/m3 (21‐20.1%). There were no significant differences (P > 0.05) in apparent net energy retention (ANER = 55.9‐59.1 %) among stocking densities. Final whole body protein (15.3‐16.3%) and lipid (23.1‐26.4%) levels did not differ significantly (P > 0.05) among treatments. The results demonstrated that growth, survival, and feed utilization were not impaired under stocking densities ranging from 4.6‐36 fish/m3 (3.48‐27.2 kg/m3), despite a slight reduction in water quality at the higher densities. In addition, growth variation and final whole body protein and lipid levels were not influenced by these densities. The results suggest that black sea bass are tolerant of crowding and moderate variations in water quality during intensive culture in recirculating tank systems and that higher stocking densities are possible.  相似文献   

15.
Experiments for the production of hybrid striped bass (HSB) in in-pond circulation systems (IPCS) were carried out in 2003 and 2004. The circulation system consisted of two channels with a productive volume of 8.5 cubic meters each. The tanks were installed tightly in a pond, which served for the biological cleaning of the expiry water. In the first year HSB fingerlings with an average weight of 46.4 g were produced. The average yield in the basin was 51.2 kg/m3. The survival rate from stocked 0.44 g advanced fry was 97.8%. The food conversion was 1.16. In 2004 two-year-old HSB were reared in the same IPCS. The tanks were stocked at two different stocking densities, 122 and 244 fingerlings/m3 with a mean weight of 36.5 g. In the tank with the larger stocking density, the yield was almost exactly twice as high as in the other tank (50.0 resp. 24.8 kg), which corresponded to a stocking density of 59.1 or 29.3 kg/m3 at the end of the rearing season. The stocking density had no influence on the increase of the individual body weight. Obviously HSB can therefore still be reared at higher stocking densities.  相似文献   

16.
Impact of aeration on growth of silver barb, Puntius gonionotus during fingerling rearing was studied through a 100‐d rearing experiment conducted in 18 concrete tanks of 50 m2 (10 × 5 × 1.2 m) size. Fry (0.74 ± 0.27 g, 35 ± 6 mm) were stocked in the experimental tanks at three stocking densities (25, 50, and 75 fry/m2) and were evaluated with and without provision of 6 h (2400–0600 h) of night time aeration. Aeration resulted in higher pH and dissolved oxygen regime and increased fingerling length and weight. The results suggest a rearing density of 75/m2 to be ideal for rearing fry to fingerling of this species when aeration is provided, whereas, under non‐aerated condition, rearing the fry to fingerling stage at 50/m2 was found advantageous over those at 25 and 75/m2.  相似文献   

17.
Three intensive growout trials using Penaeus vunnumei were conducted in round ponds in Hawaii in 1987. A 337 m2 experimental pond was stocked at 100 shrimp/m2 for two trials; a 2,000 m2 commercial prototype pond was stocked at 75/m2 for one trial. In the experimental pond trials, shrimp survival averaged 88 ± 10% (SE) and feed conversion averaged 2.2 ± 0.2. Growth averaged 1.5 ± 0.3 g/week, yielding 18.2 ± 1.7 gram shrimp in 80 ± 5.5 days. Combined production in the experimental trials was 32,272 kg/ha in 174 days (from stocking of trial 1 to harvest of trial 2). Comparing these results to 1986 results (Wyban and Sweeney 1988), it was concluded that shrimp growth is not affected and production is doubled by increasing stocking density from 45/m2 to 100/m2. Pooling data from 1986 and 1987, a significant linear regression was obtained when weekly growth of shrimp above four grams individual size was regressed on mean weekly pond temperature: growth = 0.37 * temperature - 8.44, (r2= 0.41; P < 0.01). Multiple regression to examine effects of shrimp size, pond biomass, and shrimp age on the temperature-growth relationship was not significant. In the commercial prototype pond trial, survival was 67% and feed conversion was 2.0. Growth averaged 1.4 g/week, yielding 18.1 gram shrimp in 88 days. Production was 9,120 kg/ha. Individual shrimp size distribution at harvest in the commercial pond was similar to experimental pond results, indicating that shrimp growth in the two systems was comparable. Financial characteristics of a hypothetical 24 pond shrimp farm using these results were determined using an electronic spreadsheet model (hung and Rowland 1987). Feed costs were 40% of total operating costs while postlarvae and labor were 14% and 16% of total operating costs, respectively. Breakeven price (BEP) was far more sensitive to changes in revenuedetermining inputs such as survival and growth than to comparable changes in costdetermining inputs such as feed and postlarvae costs. Together these results suggest that commercial scale round pond production mimics experimental scale production and that round pond technology has commercial potential.  相似文献   

18.
Redclaw crayfish, Cherax quadricarinatus, early juveniles were reared at different stocking densities in a closed recirculation system using 12-L plastic containers as rearing tanks. Initial stocking densities were 1.0, 1.5, 2.0, 2.5, and 3.0 per liter (66, 89, 111, 133, and 156 crayfish/m2, respectively). Rearing period was 42 days. Each density was tested with five replicates. Shelter (0.112 m2) was added to double the surface area of rearing tanks. Animals were fed ad libitum twice a day with a commercial diet containing 35% crude protein. There were no significant differences (P < 0.05) in length and specific growth rate (SGR) among stocking densities. Final weight and daily weight gain, however, were significantly higher at the density of 66 per m2 (1.0 per liter). Total biomass at harvest increased with density. Survival was affected by stocking density from day 28 onward, decreasing with density from 62.7 ± 7.6% obtained at 66 crayfish/m2 to 44.85 ± 8.18% at 156 crayfish/m2.  相似文献   

19.
With the objective to develop an indoor tank seed rearing system for pearlspot (Etroplus suratensis), effects of three stocking densities in presence or absence of soil base were evaluated on growth, weight variation, survival and body composition in a 60‐day trial. The experiment had a 3 × 2 factorial design with three levels of stocking density (150, 300 and 450 fish m?3) and two levels of soil base (with and without) in triplicates. Pearlspot fry (27.5 ± 0.5 mm/0.39 ± 0.02 g) were stocked in experimental tanks (Length×Breadth×Height: 0.65 × 0.50 × 0.48 m) and fed with a formulated diet containing 29.85% crude protein. Increasing the stocking density from 150 to 450 fish m?3 significantly decreased the growth (average body weight and total length), daily weight gain, specific growth rate and survival (P < 0.001) and increased the feed conversion ratio (P < 0.01). Significantly lower growth and survival were observed in treatment having soil base compared with that of without soil base (P < 0.001). However, coefficients of variation at harvest weight and body composition of fingerlings were independent to stocking density and presence or absence of soil base (P > 0.05). A significant positive interaction effect of stocking density and presence or absence of soil base was observed on average body weight (P < 0.05) and survival (P < 0.001) of pearlspot fingerlings. This study suggests that stocking density of 150 fish m?3 without soil base in tanks would be appropriate for raising pearlspot fingerlings in brackishwater indoor seed rearing system.  相似文献   

20.
An experimental trial was conducted for 90 days to evaluate the growth performance, immunophysiological response of GIFT strain of Tilapia in biofloc‐based rearing system and to assess the relative percentage survival in 3 days after challenging with the virulent strain of Aeromonas hydrophila. Fingerlings with an average body weight 0.98 ± 0.06 g were stocked in triplicate at different stocking densities of 200 (SD1), 250 (SD2), 300 (SD3) and 350 (SD4) m?3 in biofloc‐based treatments and 150 (C) m?3 in control (clear water). Biofloc‐based units (SD1 and SD2) obtained significantly better (P < 0.05) growth performances at the end of the experimental period. Mean body weight of fish in biofloc‐based units showed a decreasing trend with increase in stocking density with 100% survival in all units including control. The stress parameters were significantly lower in biofloc‐based rearing units especially in treatments SD1 and SD2 as compared to the control. The fish from the biofloc‐based units (SD1 and SD2) possessed significantly (P < 0.05) higher immune status as compared to control and other biofloc treatments in terms of respiratory burst, serum lysozyme and myeloperoxidase activity. Relative survival percentages were significantly better in biofloc treatments with highest in SD1 and SD2 (83.33%) after challenge study. GIFT strain of Tilapia at higher stocking densities 200–250 nos m?3 can be taken as optimum stocking density whereas higher stocking densities up to 350 nos m?3 can be reared in the biofloc systems without compromising the growth and immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号