首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Channel catfish, Ictalurus punctatus, fingerlings were stocked (13,585 fish/ha) in twelve 0.04-ha earthen ponds and fed to satiation with diets containing either 34 or 38% protein (79.1 or 88.8 mg protein/kcal), either once or twice daily for 170 days. Experimental diets with the proper levels of essential amino acids, vitamins, and minerals were formulated by a commercial feed mill. No significant differences (P < 0.05) in growth and body composition of channel catfish were found when analyzed by protein level, feeding frequency, or their interaction. Average individual fish weight at harvest was 461 g. Net production was 4,152 kg/ha. Percentage protein, fat, and ash in the waste (head, skin, viscera, and frame) were 41.5, 41.4, and 12.2%, respectively, while fillet had 65.7, 30.4, and 4.0%, respectively.  相似文献   

2.
Two studies were conducted to evaluate the effects of (I) high-protein (38%) finisher feed fed to satiation for 30,45,60, or 90 days prior to harvest and (2) dietary protein (32 vs. 38%) and feeding regimen (satiation or restricted) on growth and fattiness of channel catfish. Each study was conducted for two years in earthen ponds stocked with channel catfish at a rate of 13,590 fish/ha (35 to 40 g initial weight) for year 1 and 6,800 fish/ha (0.45 to 0.6 kg initial weight) for year 2. Years refer to year of experiment and not fish age class. There were no significant differences in total yield, dressed yield, or muscle fat, regardless of diet or feeding regimen within year. Year-one fish (study 2) fed to satiation tended to gain more weight and appeared to convert feed better than fish fed at a restricted rate. In study 2 there were significant interactions between year and feed, and between year and feeding regimen. Percentage visceral fat was reduced by feeding a high-protein feed during year 1 (study 1). Females also generally had a higher percentage visceral fat than males, regardless of diet. Year-two-fish generally contained a higher percentage of visceral fat as compared to year-one fish. In study 2, there was a significant interaction effect between year, feed, feeding regimen, and sex on visceral fat. Increasing dietary protein or restricting feed appeared to have only marginal effects on fattiness in channel catfish. Fish size and/or age appeared to influence fattiness more than diet or feeding regimen.  相似文献   

3.
We compared production variables between channel catfish, Ictalurus punctatus, nursery ponds fed according to industry standards, that is feeding immediately at stocking, to an alternative practice of delaying feeding for 6 wk after stocking in an effort to utilize natural pond productivity and reduce feed use. Twelve 0.04 ha ponds were fertilized and stocked with swim‐up fry (4–5 d posthatch) at a rate of 10,000/pond (250,000/ha). Ponds were then randomly assigned to either the standard feeding protocol (feeding daily starting immediately at stocking) or an alternative feeding protocol (no feeding until 6 wk post‐stocking). After 18 wk of production, there were no differences in water quality or zooplankton abundance between the two treatments. Fish length was not affected by treatment throughout the study, and survival and total weight harvested were similar. Total kg of feed fed was significantly reduced in the delayed feed treatment, averaging 26 kg/pond less feed fed. If proper fertilization practices are implemented, large numbers of desirable zooplankton for catfish fry culture are attained, and these zooplankton are able to sustain catfish fry stocked up to 250,000/ha. Therefore, no commercial diets are required during the first 6 wk of culture, saving over $95.55/ha in initial feed costs.  相似文献   

4.
Two experiments were conducted to study the effects of feeding frequency on growth, and of handling stress on growth and mortality, in intensive tank culture of the walking catfish Clarias fuscus . In the first experiment, fish were grown from an initial weight of 37 g for 34 d. A fixed ration of 3.0% body weight per day was divided into either 1, 2, or 3 feedings per day, and fish were either handled weekly or left unhandled for the entire experiment. Fish given 3 feedings per day experienced 19% faster growth ( P < 0.05) than fish given the same ration in a single feeding per day. These differences in growth reflect differences in assimilation efficiency, assuming all other metabolic costs were constant among treatments. Handling of individuals caused decreased growth; however, there was no effect on mortality.
In the second experiment, fish were grown from an initial weight of 78 g for 29 d. Fish were fed either 1 or 2 satiation feedings per day and were either handled weekly or left unhandled for the entire experiment. Fish fed 2 satiation feedings per day experienced 47% faster growth ( P < 0.05) than fish fed 1 satiation feeding per day, which was assumed to reflect a higher level of food consumption. No effect of handling on either growth or mortality was observed for fish in experiment 2. Multiple meals per day also reduced depensatory growth among individuals in both experiments.  相似文献   

5.
Channel catfish, Ictalurus punctatus, juveniles (mean weight 78.0 ± 3.5 g) were stocked into nine 0.04-ha earthen ponds at three rates (4,940 fish/ha, 12,350 fish/ha, and 24,700 fish/ha) and fed a prepared diet (32% protein) according to a fish size/water temperature-dependant feeding chart for 160 days during the winter. Morning water temperatures averaged 5.8°c during the study. No significant differences (P > 0.05) were found in individual fish length, survival, and percentage weight gain among treatments and averaged 19.4 cm, 96.2%, and -13.0%, respectively. No significant differences (P > 0.05) in whole-body composition were found among treatments. Percentage moisture, protein, and fat averaged 12.4, 50.8, and 28.4%, repectively. Stocking juvenile channel catfish at the lower rate, 4,940 fish/ha, did not significantly increase winter growth compared to growth of fish stocked at higher rates (12,350) and 24,700 fish/ha).  相似文献   

6.
Abstract.– Experiments were conducted to evaluate the effects of feeding time and frequency on the growth, survival, feed conversion, and body composition of channel catfish Ictalurus punctatus cultured in closed recirculating raceway systems. In separate experiments, two stocking sizes (18 and 232 g/fish) of channel catfish were examined. Treatments consisted of 1) feeding catfish once daily, 3% of body weight at 0800 h; 2) feeding catfish once daily, 3% of body weight at 1200 h; 3) feeding catfish once daily, 3% of body weight at 1700 h; and 4) feeding catfish three times daily, 1% of body weight at 0800 h, 1200 h, and 1700 h. Weight gain, specific growth, feed conversion, percentage survival, and fillet proximate composition of channel catfish among treatments did not differ ( P > 0.05). The percentage visceral fat of channel catfish fed the single meal at 0800 h was significantly lower (P < 0.05) than channel catfish receiving multiple feedings, but was not different than the visceral fat content of channel catfish fed at 1200 h and 1700 h. Under the conditions of this study, results indicate neither feeding time or feeding frequency significantly influences the growth, survival, and body composition of channel catfish raised in closed recirculating raceway systems.  相似文献   

7.
A 2 × 3 factorial experiment was conducted using satiate and restricted feeding with 32% crude protein diets containing low, medium, and high quality protein. Protein quality in the experimental diets was varied primarily by substituting peanut meal and cottonseed meal for soybean meal. Percentages of lysine, the first-limiting amino acid, were 1.14, 1.33, and 1.61 in the low, medium, and high quality protein diets respectively. Digestible energy concentration of the diets was 2.9 kcal/g. Channel catfish were grown from an average weight of 47 g to marketable size over a 15 wk period at a stocking density of 13,750 fish/ha in 400 m2 earthen ponds. Each treatment was replicated in three ponds. Fish in the satiation group were fed as much as they would consume each day for the 15 wk experimental period. Fish in the restricted group were fed as much as they would consume until the daily feed allowance reached 65 kg/ha, which was reached at approximately week 5 of the experiment, and thereafter, there was no further increase in feed allowance. There was no significant interaction between feeding regimen and dietary protein quality for weight gain or feed conversion. Weight gain and feed efficiency under both satiation and restricted feeding increased linearly as protein quality increased. Protein quality had no influence on protein efficiency ratio (PER) under satiate feeding but had a positive effect on PER under restricted feeding. Protein quality had a positive linear effect on dressing percentage under restricted feeding, but in those fish fed to satiation, dressing percentage only increased between the low and high quality protein treatments. Protein quality had a negative linear effect on muscle fat but had no effect on visceral fat under satiate or restricted feeding. These results indicate that channel catfish are sensitive to protein quality differences in practical feeds at both satiate and restricted feeding rates, and that reduction in protein quality reduces dressing yield and increases muscle fat in food size fish.  相似文献   

8.
Effects of a Bacterial Inoculum in Channel Catfish Ponds   总被引:9,自引:0,他引:9  
A commercial bacterial Inoculum cultured on site called Biostart was applied to three channel catfish Ictalurus punctatus ponds at Auburn, Alabama, USA, three times per week from May until October 1996. There were few significant differences (P × 0.1) in concentrations of water quality variables between ponds treated with bacteria and control ponds. In addition, bottom soil carbon and nitrogen did not differ between treated and control ponds. However, survival and net production of fish was significantly (P × 0.1) greater in ponds that received the bacterial inoculum than in controls. The mechanism by which the bacterial treatment influenced fish survival cannot be explained from data collected in this study. Further studies of probiotics are needed to define the potential benefits of these treatments to aquacultural production and to determine their mechanisms of action in pond ecosystems.  相似文献   

9.
The effects of feeding rate and feeding frequency on survival, growth and body composition of ayu post‐larvae (0.15 g in body weight and 3.5 cm in total length) were investigated in this study. A factorial experimental design of two feeding rates (3 and 6% of body weight of fish per meal) five feeding frequencies (one meal in 2 d, one meal a day, two meals a day, four meals a day, and six meals a day) with three replicates was used. Survival of ayu post‐larvae was significantly (P 0.05) affected by feeding frequency but not by feeding rate. Survival of ayu improved linearly with feeding frequency at both feeding rates. Weight and length gains and specific growth rate (SGR) of ayu was significantly (P 0.05) affected by feeding frequency but not by feeding rate, with weight and length gains and SGR linearly elevated with increasing feeding frequency at both feeding rates. The greatest weight and length gains were observed in fish receiving six meals daily at both feeding rates; however, no significant difference in weight gain was observed among two, four, and six meals a day, or in length gain between four and six meals a day. Feed efficiency ratio (FER) was significantly (P 0.05) affected by both feeding rate and feeding frequency. FER linearly decreased with feeding frequency at both feeding rates or feeding rate in the same feeding frequency. When the total daily amount of feed supply was constant with various feeding frequencies at different feeding rates (one meal a day at 3% feeding rate and one meal in 2 d at 6% feeding rate, two meals a day at 3% feeding rate and one meal a day at 6% feeding rate, or four meals a day at 3% feeding rate and two meals a day at 6% feeding rate), improvement in survival, weight and length gains, and SGR was observed in fish with higher feeding frequency at lower feeding rate. Moisture, protein, and lipid content of fish were not significantly (P > 0.05) affected by either feeding rate or feeding frequency. However, lipid content of ayu linearly increased with feeding frequency at 6% feeding rate. The highest body lipid content was observed in fish receiving six meals daily at both feeding rates. Ash content of fish was significantly (P 0.05) affected by feeding frequency but not by feeding rate. Based on performance of ayu, it can be concluded that optimum feeding rate and feeding frequency for ayu post‐larvae (an initial weight of 0.15 g) were 3% per meal and four meals a day, respectively, under these experimental conditions.  相似文献   

10.
Channel catfish fingerlings were stocked into 16 0.04-ha ponds at a rate of 24,700 fish/ha on 5 May 1992. Four replicate ponds were used for each of the following treatments: 1) fed once daily at 0830h; 2) fed once daily at 1600h; 3) fed once daily at 2000h; and 4) fed on demand using demand feeders. Fish on the first three treatments were fed to satiation. All fish were harvested 145d after stocking. Results from this study showed that when channel catfish raised in ponds were fed once daily to satiation, time of feeding had no significant impact on water quality, feed consumption, feed conversion, weight gain, or body proximate composition. Fish fed on demand consumed more feed than fish fed once daily to satiation, but difference in weight gain was not significant. These data indicated that feeding time may not be critical for channel catfish production as long as fish are fed when dissolved oxygen is sufficient. Although feeding at night was not detrimental in this study, night feeding is not recommended on large ponds unless sufficient aeration is available to quickly provide oxygen in an emergency—and even then it would be problematic.  相似文献   

11.
A factorial experiment was conducted to examine effects of dietary protein concentration (24, 28, 32, or 36%) and feeding regimen (feeding once daily or every other day [EOD]) on channel catfish, Ictalurus punctatus, production in earthen ponds. Compared with fish fed daily, fish fed EOD had lower feed consumption, weight gain, net production, and percentage of market‐size fish but had high feed efficiency and required fewer hours of aeration. Fish fed EOD also had lower carcass yield, fillet yield, and visceral and fillet fat. There was a significant interaction between dietary protein and feeding regimen for weight gain. No significant differences were observed in weight gain of fish fed daily with diets containing various levels of protein, whereas weight gain of fish fed EOD with a 24% protein diet was lower than those fed EOD with higher protein diets. Results suggest that response of channel catfish to dietary protein levels depends on whether the fish were fed daily or EOD. Feeding EOD to satiation improved feed efficiency and required less aeration compared with fish fed daily but also reduced net production and processing yield; therefore, EOD feeding should be examined closely before implementation.  相似文献   

12.
Two experiments were conducted in earthen ponds to evaluate the effect of dietary protein concentration and feeding rate on weight gain, feed efficiency, and body composition of channel catfish. In Experiment 1, two dietary protein concentrations (28% or 32%) and four feeding rates (≤ 90. ≤ 112, ≤ 135 kg/ha per d, or satiation) were used in a factorial arrangement. Channel catfish Ictalurus punctatus fingerlings (average size: 27 g/fish) were stocked into 0.04-ha ponds at a rate of 24,700 fish/ha. Fish were fed once daily at the predetermined maximum feeding rates for 282 d (two growing seasons). In Experiment 2, three dietary protein concentrations (24, 28, or 32%) and two feeding rates (≤ 135 kg/ha per d or satiation) were used. Channel catfish (average size: 373 g/fish) were stocked into 0.04-ha ponds at a rate of 17,300 fish/ha. Fish were fed once daily for 155 d. In both experiments, five ponds were used for each dietary treatment. Results from Experiment 1 showed no differences in total feed fed, feed consumption per fish, weight gain, feed conversion ratio (FCR), or survival between fish fed diets containing 28% and 32% protein diets. As maximum feeding rate increased, total feed fed, feed consumption per fish, and weight gain increased. There were no differences in total feed fed, feed consumption per fish, or weight gain between fish fed at ≤ 135 kg/ha per d and those fed to satiation. Fish fed the 28% protein diet had a lower percentage carcass dressout and higher percentage visceral fat than fish fed the 32% protein diet. Dietary protein concentrations of 28% or 32% had no effect on fillet protein, fat, moisture, and ash. Feeding rate did not affect FCR, survival, percentage carcass dressout, or fillet composition, except fillet fat. As feeding rate increased, percentage visceral fat increased. Fish fed at ≤ 90 kg/ha per d had a lower percentage fillet fat than fish fed at higher feeding rates. In Experiment 2, dietary protein concentration or maximum feeding rate did not affect total feed fed, feed consumption per fish, weight gain, FCR, or survival of channel catfish. Feeding rate had no effect on percentage carcass dressout and visceral fat, or fillet composition. This was due to the similar feed consumption by the fish fed at the two feeding rates. Fish fed the 24% protein diet had lower carcass dressout, higher visceral fat and fillet fat than those fed the 28% or 32% protein diet. Results from the present study indicate that both 28% and 32% protein diets provide satisfactory fish production, dressed yield, and body composition characteristics for pond-raised channel catfish fed a maximum rate of 90 kg/ha per d or ahove.  相似文献   

13.
A laboratory study was conducted to compare different animal protein sources in diets containing 32% protein for channel catfish Ictalurus punrtatus . The experimental diets were practical-type diets and formulated to meet or exceed all known nutrient requirements for channel catfish. Twenty juvenile channel catfish (initial weight: 6.4 g/fish) were stocked into each of 25 110-L flow-through aquaria (five aquaria/treatment). Fish were fed twice daily to approximate satiation for 9 wk. Fish in each aquarium were counted and weighed collectively every 3 wk. No significant differences were observed in feed consumption, weight gain, feed efficiency, survival, percentages visceral fat and fillet yield, or proximate composition of fillets among channel catfish fed diets containing either 5% menhaden fish meal, meat and bone/blood meal, catfish by-product meal, poultry by-product meal, or hydrolyzed feather meal with supplemental lysine. The data indicate that these animal protein sources can be used interchangeably in diets for channel catfish without affecting fish growth, feed efficiency, or body composition.  相似文献   

14.
The interspecific hybridization of channel catfish, Ictalurus punctatus, females with blue catfish, I. furcatus, males has been identified as a method to further improve production; however, lack of spawning success has affected its commercial application. To facilitate our understanding of the interaction of brood stock nutrition and reproductive performance, we evaluated the interaction of feed quality and feeding frequency. Channel catfish females were classified into two genetic groups, namely, high and low spawning. The treatments were offered during the spring season 70–90 d prior to the start of the spawning season. Induced reproduction was performed using luteinizing hormone releasing hormone analog. Condition of the fish as well as reproductive performance using spawning success, egg production, egg size, and fertilization at 48 h were determined. Changing protein level of the diet from 32 to 42% did not influence spawning, fecundity, or fertilization, but affected egg size and biochemical composition of the eggs. Increasing the feeding frequency from three to six times per week negatively affected spawning in one of the two genetics groups, did not affect egg production and egg fertilization, but had a significant effect on egg size. Older fish performed better than younger fish in terms of spawning success and egg production.  相似文献   

15.
Two studies were conducted in 110‐L flow‐through aquaria and 0.4‐ha ponds to evaluate effects of periodic feed deprivation on the growth performance of channel catfish Ictalurus punctatus. Fish were deprived of feed 0, 1, 2, or 3 consecutive d/wk, l d per 5‐d period, or 3 consecutive d per 10‐d period and fed to satiation on days fish were fed. In Experiment 1, fish fed less frequently than daily consumed significantly less feed (over the experimental period) and gained significantly less weight than fish fed daily, except that feed consumption of fish deprived of feed 1 d/wk was not significantly different from that of fish fed daily. Compared with fish fed daily, fish deprived of feed 2 d/wk had significantly lower feed conversion ratio (FCR). Visceral fat of fish deprived of feed 1 or 2 d/wk was similar to that of fish fed daily, but fish deprived of feed for longer periods had significantly lower visceral fat than fish fed daily. Regression analysis indicated that feed consumption, weight gain, and visceral fat increased linearly as the number of days that fish were fed increased. In Experiment 2, there were no significant differences in the amount of feed fed between fish deprived of feed 1 d/wk and those fed daily. Net production of fish deprived of feed 1 or 2 d/wk or 1 d per 5‐d period was not significantly different from that of fish fed daily, but fish deprived of feed for longer periods had significantly lower net production than fish fed daily. Visceral fat of fish deprived of feed 1 d/wk or 1 d per 5‐d period was similar to that of fish fed daily, but fish on other treatments had significantly lower visceral fat than fish fed daily. Regression analysis showed that as the number of days fed increased the amount of feed fed and net production increased quadratically. Feed conversion ratio, carcass yield, visceral fat, and fillet fat increased, while fillet moisture decreased linearly as the number of days fed increased. Although feeding less frequently than daily may improve feed efficiency, and fish deprived of feed may demonstrate compensatory growth when a full feeding regime is resumed, it may be difficult to provide enough feed to satiate all size‐classes of fish under a multiple‐batch cropping system without causing water quality problems. Under normal economic conditions, fish should be fed daily to apparent satiation without waste and without causing water quality problems. However, during periods of unfavorable economic conditions, channel catfish raised from advanced fingerlings to market size may be fed less frequently than daily to reduce production cost. Results from the present study indicated that feeding channel catfish to satiation 5 or 6 d/wk (not feeding on one or two weekend days) could provide some benefits in reducing production cost through reduced feed and labor costs for food‐sized channel catfish during periods of low fish prices and high feed prices.  相似文献   

16.
A 2 ± 4 factorial experiment was conducted to examine effects of dietary protein level (28, 32, 36, and 40%) and feeding rate (satiation or ± 90 kg/ha per d) on production characteristics, processing yield, body composition, and water quality for pond-raised channel catfish Ictalurus punctatus. Fingerling channel catfish with a mean weight of 64 g/fish were stocked into 40 0.04-ha ponds at a rate of 17,290 fish/ha. Fish were fed once daily to apparent satiation or at a rate of ± 90 kg/ha per d for 134 d during the growing season. Dietary protein concentration had no effect on feed consumption, weight gain, feed conversion, survival, aeration time, or on fillet moisture, protein, and fat levels. Fish fed to satiation consumed more feed, gained more weight, had a higher feed conversion, and required more aeration time than fish fed a restricted ration. Visceral fat decreased, and fillet yield increased as dietary protein concentration increased to 36%. Carcass yield was lower for fish fed a diet containing 28% protein. Increasing feeding rate increased visceral fat but had no major effect on carcass, fillet, and nugget yields. Fish fed to satiation contained less moisture and more fat in the fillets that those fed a restricted ration. Nitrogenous waste compounds were generally higher where the fish were fed the higher protein diets. Although there was a significant interaction in pond water chemical oxygen demand between dietary protein and feeding rate, generally ponds in the satiation feeding group had higher chemical oxygen demand than ponds in the restricted feeding group. There was a trend that pond water total phosphorus levels were slightly elevated in the satiation feeding group compared to the restricted feeding group. However, pond water soluble reactive phosphorus and chlorophyll-a were not affected by either diet or feeding rate. Results from the present study indicate that a 28% protein diet provides the same level of channel catfish production as a 40% protein diet even when diet is restricted to 90 kg/ha per d. Although there was an increase in nitrogenous wastes in ponds where fish were fed high protein diets, there was little effect on fish production. The long term effects of using high protein diets on water quality are still unclear. Feeding to less than satiety may be beneficial in improving feed efficiency and water quality.  相似文献   

17.
Two feed regimens were evaluated at two densities of market-sized ( > 0.5 kg) channel catfish, "Ictalurus punctatus," in a factorial experiment. Reducing density from 7,410 to 4,940/ha produced significant (P < 0.05) increases in weight gain, while low temperature feeding below 10°C) did not. There were no significant (P > 0.05) interactions between density and feeding regimen in fish production variables. Fish overwintered at low density without low-temperature feeding gained more weight than fish overwintered at high density and fed during the winter.  相似文献   

18.
Many fish culturists are interested in applying copper sulfate pentahydrate (CSP) to channel catfish, Ictalurus punctatus, nursery ponds as a prophylactic treatment for trematode infection and proliferative gill disease by killing snails and Dero sp., respectively, before stocking fry. However, copper is an algaecide and may adversely affect phytoplankton and zooplankton populations. We evaluated the effects of prophylactic use of copper sulfate in catfish nursery ponds on water quality and phytoplankton and zooplankton populations. In 2006, treatments of 0 mg/L CSP, 3 mg/L CSP (0.77 mg/L Cu), and 6 mg/L CSP (1.54 mg/L Cu) were randomly assigned to 0.04‐ha ponds. In 2007, only treatments of 0 and 3 mg/L CSP were randomly assigned to the 16 ponds. Ponds treated with CSP had significantly higher pH and significantly lower total ammonia concentrations. Treatment of both CSP rates increased total algal concentrations but reduced desirable zooplankton groups for catfish culture. CSP has been shown to be effective in reducing snail populations at the rate used in this study. CSP treatment also appears to be beneficial to the algal bloom, shifting the algal population to green algae and increasing total algal biomass within 1 wk after CSP treatment. Although zooplankton populations were adversely affected, populations of important zooplankton to catfish fry began rebounding 6–12 d after CSP treatment. Therefore, if CSP is used to treat catfish fry ponds of similar water composition used in this study, fry should not be stocked for about 2 wk after CSP application to allow time for the desirable zooplankton densities to begin increasing.  相似文献   

19.
Effects of feeding 17-α-methyltestosterone (MT) to channel catfish ( Icralurus punctatus ) grown to harvestable size in earthen ponds were examined. Channel catfish fingerlings (mean weight, 14.4 g), stocked in 0.04 ha ponds (7,410 fish/ha) were fed diets containing MT at concentrations of 0, 2.5, and 10 mg/kg for 123 days. Weight gain by fish fed the control diet (0 MT) was higher ( P < 0.05) than that of fish fed the treated diets. Increasing the dietary concentration of MT reduced weight gain further ( P < 0.05). Both male and female fish fed MT had enlarged and thickened heads, and their skins were dark. Their dorsal and pectoral spines were short and the tips, which are normally very sharp, were soft and blunt. Weight of the rib bones per unit of length decreased ( P < 0.05) as MT was added to the diet. Breaking strength of the ribs (force required to break the bone at its midpoint) measured by an Instron shear press, was less ( P < 0.05) for fish fed MT than for control fish. The ratio of calcium to phosphorus in bones was lower ( P < 0.05) in fish fed MT. These results indicate that feeding MT at these doses (2.5 mg/kg or above) to channel catfish suppresses growth rate and reduces size and strength of bones.  相似文献   

20.
Research was conducted to determine the influence of water velocity on growth, dressout characteristics and fillet proximate composition of channel catfish, Ictalurus punctatus, raised in circular tanks. In this study, channel catfish cultured in water velocities of 4 cm/second averaged 75 g/fish higher weight gain and 0.12%/day greater specific growth rates than channel catfish cultured in tanks having no water velocity (P < 0.05). Channel catfish cultured at water velocities of 4 cm/second had significantly higher (P < 0.05) feed conversion efficiency and condition factor than channel catfish cultured in tanks having no water velocity. Channel catfish cultured at water velocities of 4 cm/second had significantly higher (P < 0.05) percentage carcass weight, fillet weight, and fillet moisture. The percentage visceral and fillet fat of channel catfish cultured at 4 cm/second was significantly lower (P < 0.05) than that for channel catfish raised in tanks having no water velocity. These results indicate that when cultured from initial weights of approximately 100 g to final weights exceeding 454 g in an environment having a water velocity of 4 cm/second, channel catfish have greater growth, dressout and lower fat levels than channel catfish produced in tanks having the identical water exchange rates but no water velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号