首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Diets containing 28% and 32% crude protein were compared for pond‐raised channel catfish Ictalurus punctatus stocked at densities of 14,820, 29,640, or 44,460 fish/ha. Fingerling channel catfish with average initial weight of 48.5 g/fish were stocked into 30 0.04‐ha ponds. Five ponds were randomly allotted for each dietary protein ± stocking density combination. Fish were fed once daily to satiation for two growing seasons. There were no interactions between dietary protein concentration and stocking density for any variables. Dietary protein concentrations (28% or 32%) did not affect net production, feed consumption and weight gain per fish, feed conversion ratio, survival, processing yields, fillet moisture, protein and ash concentrations, or pond water ammonia and nitrite concentrations. Fish fed the 32% protein diet had slightly but significantly lower levels of visceral and fillet fat than fish fed the 28% protein diet. As stocking density increased, net production increased, while weight gain of individual fish, feed efficiency, and survival decreased. Stocking densities did not affect processing yield and fillet composition of the fish. Although highly variable among different ponds and weekly measurements, ponds stocked at the highest density exhibited higher average levels of total ammonia‐nitrogen (TAN) and nitrite‐nitrogen (NO2‐N) than ponds stocked at lower densities. However, stocking density had no significant effect on un‐ionized ammonia‐nitrogen (NH3‐N) concentrations, calculated based on water temperature, pH, and TAN. By comparing to the reported critical concentration, a threshold below which is considered not harmful to the fish, these potentially toxic nitrogenous compounds in the pond water were generally in the range acceptable for channel catfish. It appears that a 28% protein diet can provide equivalent net production, feed efficiency, and processing yields as a 32% protein diet for channel catfish raised in ponds from advanced fingerlings to marketable size at densities varying from 14,820 to 44,460 fish/ha under single‐batch cropping systems. Optimum dietary protein concentration for pond‐raised channel catfish does not appear to be affected by stocking density.  相似文献   

2.
Channel catfish Ictalurus punctatus farming is the largest component of aquaculture in the USA. Culture technologies have evolved over time, and little recent work has been conducted on the effects of stocking density on production characteristics and water quality. Twelve 0.1‐ha ponds were stocked with 13‐ to 15‐cm fingerlings (16 g) at either 8600, 17,300, 26,000, or 34,600 fish/ha in single‐batch culture with three replicates per treatment. Fish were fed daily to apparent satiation with a 32% floating commercial catfish feed. Nitrite‐N, nitrate‐N, total ammonia nitrogen (TAN), total nitrogen, total phosphorus, chemical oxygen demand (COD), Secchi disk visibility, chlorophyll a, chloride, total alkalinity, total hardness, pH, temperature, and dissolved oxygen (DO) were monitored. Ponds were harvested after a 201‐d culture period (March 26, 2003 to October 13, 2003). Net yield increased significantly (P < 0.05) as stocking density increased, reaching an average of 9026 kg/ha at the highest density. Growth and marketable yield (>0.57 kg) decreased with increasing stocking density. Survival was not significantly different among densities. Mean and maximum daily feeding rates increased with density, but feed conversion ratios did not differ significantly among treatments (overall average of 1.42), despite the fact that at the higher stocking densities, the feeding rates sometimes exceeded 112 kg/ha per d (100 lb/ac per d). Morning DO concentrations fell below 3 mg/L only once in a 34,600 fish/ha pond. Concentrations of chlorophyll a, COD, nitrite‐N, and TAN increased nominally with increasing feed quantities but did not reach levels considered problematic even at the highest stocking densities. Breakeven prices were lowest for the highest stocking density even after accounting for the additional time and growth required for submarketable fish to reach market size. While total costs were higher for the higher density treatments, the relatively higher yields more than compensated for higher costs.  相似文献   

3.
Abstract.— Channel catfish Ictalurus punctatus fry are typically held under hatchery conditions for 7 to 14 d after hatching to allow feeding and growth before they are stocked into nursery ponds to produce fingerling catfish. In an attempt to reduce hatchery operating costs, several catfish fingerling producers in Louisiana presently stock fry within 2 d after hatching before yolk absorption is complete. Fry at this stage of development are commonly referred to as "sac-fry." Although research has shown that fry can be stocked at the onset of yolk absorption with no detrimental effects on subsequent fingerling production, stocking sac-fry has been reported to result in reduced fingerling survival. To further investigate this topic, production trials were conducted in experimental outdoor pools over the course of two growing seasons to evaluate the effect of stocking fry of three different ages (2-, 7-, and 14-d post-hatch, DPH) on survival, growth (weight and length), condition factor (K), yield, feed consumption, and feed conversion ratio (FCR) of fingerling catfish. Results from both trials indicated that the age at which fry were stocked had no effect on production characteristics with the exception of growth. Specifically, fingerlings reared from fry stocked at 2 and 7 DPH were significantly larger than fingerlings reared from fry stocked at an age of 14 DPH. These findings suggest that the practice of stocking sac-fry may be a suitable alternative to the traditional procedure of holding and feeding fry under hatchery conditions prior to stocking. However, in order to fully evaluate the effects of early-age stocking of catfish fry on fingerling production, additional studies must be conducted under pond conditions. Furthermore, these studies must be coupled with a rigorous economic analysis before the practice of stocking sac-fry can be recommended to the catfish industry.  相似文献   

4.
Feed represents the largest cost input in intensive catfish Ictalurus punctatus production. Daily feed rations are generally related to stocking densities, up to a point at which high feeding rates begin to affect water quality. There has been no prior research to analyze the economic interactions between feeding and stocking rates. Econometric techniques were used to estimate a Just-Pope catfish production function, which was used to compute marginal products of inputs, and to identify stocking and feeding rates associated with the boundaries between Stages I, II, and III of the production function. Survey data collected by USDA National Animal Health Monitoring System were used for this analysis. Maximum yield, when accounting for both stocking and feeding rates, occurred at about 30,000 fingerlings/ha. However, profit-maximizing stocking densities ranged between 16,942 and 21,312 fingerlings/ha, depending upon expected catfish and feed prices. Farmers stocking at higher rates could be attempting to maximize yield instead of profit.  相似文献   

5.
A study of the biochemical oxygen demand (BOD) of waters from ten channel catfish ponds at Auburn, Alabama, revealed that the 5-d BOD (BOD5) seldom exceeded 8 mg/L and that the ultimate BOD (BODu) was usually less than 30 mg/L. Water samples from catfish ponds usually needed to be diluted only 2 or 3 times to permit BOD5 measurements, and nitrification occurred even during a 5-d incubation period. Catfish pond waters were not extremely high in ammonia nitrogen concentration, and ammonia nitrogen introduced in the ammonium chloride-enriched dilution water caused an appreciable increase in BOD of some samples. Plankton respiration is a major component of carbonaceous BOD (CBOD) in catfish pond waters. Thus, the BOD is not expressed as rapidly during 5-d incubations as in typical waste-water. The ultimate BOD (BODu) would be a good measurement of oxygen demand for catfish pond effluents, but it is difficult to measure. Data from this study suggest that BODu can be estimated from BOD5, but the correlation is not strong ( R 2= 0.62). An alternative is to develop a short-term BOD measurement specifically for effluents from channel catfish and other aquaculture ponds. This study suggests that a 10-d BOD conducted without nitrification inhibition or addition of ammonia nitrogen in dilution water might be a better alternative to standard BOD5 or BODu measurements normally used in wastewater evaluation.  相似文献   

6.
An in‐pond confinement system to separate channel catfish, Ictalurus punctatus, by size within a single pond provides an opportunity for improved growth of understocked fish in ponds with larger market‐sized fish. A barrier of polyvinyl chloride–coated galvanized wire mesh was constructed in five 0.10‐ha earthen ponds to partition the pond into one‐third and two‐third sections, while five other 0.10‐ha ponds were left as traditional open ponds for a control. To evaluate catfish performance in this confinement system, fingerlings (25 g) were stocked at 14,820/ha into the smaller one‐third section of the barrier and carryover fish (408 g) at 2580 kg/ha into the larger two‐third section of the barrier. The control ponds were stocked with the same sizes and numbers of fish in a traditional earthen pond without a barrier. Yield, survival, feed conversion ratio (FCR), growth, and economics were compared between treatments. Fingerling yields were greater in the barrier system that allowed fingerlings to be separated physically from larger carryover fish. There were no differences in yield of carryover fish, survival, FCR, or growth between the control and the barrier ponds. Partial budget analysis revealed a positive net change of $367/ha or $38,125 for a 104‐ha catfish farm (at a market price of $1.54/kg of additional stockers produced). The value of the greater weight of understocked fish produced in the barrier system was greater than the annualized cost of installing the barrier, for farmers raising fish in multiple batch. Thus, on an experimental basis, the confinement system was economically profitable; however, trials on commercial farms are needed to evaluate performance on a larger scale.  相似文献   

7.
To quantitatively define relationships among stocking densities, feeding rates, water quality, and production costs for channel catfish, Ictalurus punctatus, grown in multiple‐batch systems, twelve 0.1‐ha earthen ponds were stocked at 8,600, 17,300, 26,000, or 34,600 fingerlings/ha along with 2,268 kg/ha of carryover fish. Fish in all ponds were fed daily to apparent satiation using 32% protein floating feed. Temperature and dissolved oxygen in each pond were monitored twice daily; pH weekly; nitrite‐N, total ammonia nitrogen, and Secchi disk visibility every 2 wk; nitrate‐N, chlorophyll a, total nitrogen, total phosphorus, and chemical oxygen demand monthly; and chloride every other month. The costs of producing channel catfish at different stocking densities were estimated. There were no significant differences (P > 0.05) as a result of stocking density among treatment means of (1) gross or net yields, (2) mean weights at harvest, and (3) growth or survival of fingerlings (24–36%) and carryover fish (77–94%). Mean and maximum daily feeding rates ranged from 40 to 53 kg/ha/d and 123 to 188 kg/ha/d, respectively, and feed conversion ratios averaged 1.75. There were no differences in any feed‐related parameter as a result of density. Water quality variables showed few differences among densities at samplings and no differences when averaged across the production season. Yield of fingerlings increased as stocking density increased with significant differences between the two highest and the two lowest stocking densities. Breakeven prices were lower at the higher stocking densities as a result of the higher yield of understocked fish and similar mean individual fish weights produced at these higher stocking densities. Overall, varying stocking densities of fingerlings in multiple‐batch systems had little effect on production efficiency and water quality. Additional research on managing the population structure of carryover fish in commercial catfish ponds may be warranted.  相似文献   

8.
斑点叉尾鮰de生殖特性及人工繁殖技术   总被引:2,自引:0,他引:2  
斑点叉尾鮰是近20年来从国外引进的淡水养殖鱼类。由于其初始性成熟年龄较大,繁殖力偏低,制约了苗种的规模化生产,造成苗种供应紧张。笔者自1997年以来观察了该鱼的生殖特性,并进行了人工繁殖试验,累计催产亲鱼1050组,共获苗500多万尾。  相似文献   

9.
This study was conducted to compare water quality and channel catfish production in earthen ponds located in two dissimilar physiographic regions of the southeastern United States and supplied with water of disparate quality. Ponds at Auburn, Alabama are on acidic Piedmont soils and filled with poorly mineralized runoff water; ponds at Stoneville, Mississippi are on slightly alkaline alluvial clays and filled with groundwater of high total alkalinity and hardness. Channel catfish were stocked at 8,750 fish/ha, fed daily, and provided nightly aeration in 0.04-ha ponds at both sites. Ponds were managed as similarly as possible. Minimum daily water temperatures and pH were higher at Stoneville than at Auburn, and there were greater concentrations of suspended clay turbidity, dissolved inorganic phosphorus, total ammonia-nitrogen, and nitrite-nitrogen at Auburn than at Stoneville. The taxonomic composition of the phytoplankton community was broadly different between the two sites. Taste tests revealed off-flavor in fish at both sites, but there were no significant differences (P > 0.05) in flavor scores between sites. The quality of flavor was somewhat different between sites, and these differences in quality were thought to result from observed differences in the taxonomic composition of phytoplankton communities. All differences in water quality seemed to be directly or indirectly related to the dissimilarity in the quality of the water supply and soils at the two locations. Although some water quality variables differed between sites and changed over time at both sites, environmental conditions never deteriorated enough at either site to cause serious stress or mortality in fish. There were no significant differences (P > 0.05) in average net fish production, survival, weight of individual fish at harvest, or feed conversion ratios. Average net fish production and feed conversion ratios, respectively, were 4,905 kg/ha and 1.27 at Auburn and 5,286 kg/ha and 1.27 at Stoneville. The results of this study demonstrate the need for site-specific investigations when conducting certain types of aquaculture research.  相似文献   

10.
Economic trade-offs associated with single- and multiple-batch production of channel catfish, "Ictalurus punctatus," were analyzed using multi-period and risk programming mathematical models. Single-batch stocking strategies maximized net returns above variable cost, primarily because poorer feed conversions in multiple-batch systems resulted in lower net returns. In the absence of off-flavor, single-batch production would increase annual net returns by 5%. For every 25% reduction in off-flavor incidence, annual net returns increased by 1-3%. The 10-year average fall-to-spring price differential was less than the cost of holding fish through the winter, based on an assumed inventory holing cost of $0.08/kg/month. For each reduction in holding cost of $0.02/kg/month, annual net returns increased by 8-9%. Multiple stocking was selected as a risk-reducing strategy, but expected income decreased by 8% to 35% depending on the number of ponds stocked in multiple batches. Cash flow restrictions decreased annual net returns by 18% because multiple-batch stocking strategies were required to meet financial obligations.  相似文献   

11.
Abstract

A feeding trial was conducted to evaluate low-quality diets for growout of pond-raised channel catfish. Five practical diets containing various levels of protein (10-28%) of varying quality (with or without animal protein and/or soybean meal), and with or without certain nutrient supplements (vitamin, minerals, lysine, or fat) were fed to channel catfish, Ictalurus punctatusstocked in 0.04-ha earthen ponds at a rate of 17,290 fish/ha. The diets were as follows: (1) 28% protein, nutritionally complete control; (2) 28% protein without supplemental vitamins, minerals, or fat; (3) 18% protein + supplemental lysine, vitamins, and minerals, but without animal protein; (4) 10% protein without animal protein, soybean meal, or supplemental vitamins and minerals; and (5) 10% protein + supplemental lysine, vitamins, and minerals, but without animal protein or soybean meal. Each diet was fed once daily to apparent satiation to fish in five replicate ponds for a single growing season. Fish fed diets containing 18% or 28% protein without supplements had similar diet consumption rates and weight gain as those fed the 28% control diet, but the fish fed the control diet converted diet more efficiently. Fish fed the 10% protein diet without supplements consumed less diet, converted diet less efficiently, and gained less weight than fish fed diets containing higher levels of protein. The addition of supplements to the 10% protein diet increased weight gain and processing yield as compared to fish fed the 10% protein diet without supplements. Body fattiness increased, fillet protein decreased, and carcass, fillet and nugget yields decreased as dietary protein decreased. The data show that pond-raised channel catfish can be grown effectively on a diet containing 18% protein that is of relatively low quality, but fattiness is increased and processing yield is decreased. However, because of the negative aspects of this diet, we would not recommend it for general use in commercial catfish culture. It could be used where fattiness and processing yield are not of consequence, such as recreational ponds. For that matter, the 10% diet without supplements could be used as well in these situations if maximum growth is not desired.  相似文献   

12.
Behavioral interactions among juvenile channel catfish, "Ictalurus punctatus," were observed, and fixed action patterns were described and anlyzed. Dominant fish engaged regularly in aggressive activities and never in submissive activities, whereas subordinate fish were observed in submissive activities on a regular basis and rarely in those that were aggressive. Activity levels were significantly higher in dominant fish; however, there was no difference in activity levels between pairs of equal and unequal size fish. A factor analysis indicated that there were three general categoris of behavior in juvenile channel catfish. In addition, two behaviors (which appeared to be displacement activities) were functioning in agnostic encounters. Plasma cortisol concentrations measured in sigle fish and pairs of fish in aquaria and individuals from a holding tank indicated that the least amount of stress occurred in fish that were not interacting with any other individuals. Cortisol levels, however, were lower that those associated with stress levels in fish from other studies.  相似文献   

13.
Abstract.— Similarities among multi-locus DNA fingerprints of five channel catfish Ictalurus punctatus strains and the ability to identify the strain of a fish based on its fingerprint pattern were investigated. Five restriction enzymes and 13 multi-locus DNA probes were screened to identify enzyme-probe combination useful for DNA fingerprinting channel catfish. Restriction enzymes Hinf I and Dpn II, in combination with probes (CAC)n, (CGC)n, (CTC)n, (ATCC)n, and (GATA)n, produced useful fingerprints (20–30 resolvable bands for each enzyme-probe combination). Thirty individuals (3 pools of 10 individuals each) from each of five channel catfish strains (albino, Mississippi normal, USDA-102, USDA-102 select, and USDA-103) were fingerprinted with all useful enzyme-probe combinations. Band sharing among samples was higher within strains than among strains and band sharing among strains was higher for strains whose breeding history indicated a high degree of relatedness. Individual fingerprints of 18 fish from each of the USDA-102 select and USDA-103 strains revealed no strain-specific bands, but several diagnostic bands (present at high frequencies in either USDA-102 select or USDA-103 strains and at a low frequencies in other strains) were identified. Band sharing at diagnostic bands was used to correctly identify fish as USDA-102 select or USDA-103 strains with 82% accuracy from fingerprints of 17 USDA-102 select strain fish, 18 USDA-103 strain fish, and 38 fish collected from three commercial farms.  相似文献   

14.
Rising costs of inputs have created a need to improve catfish production efficiencies. An inexpensive confinement system was evaluated for channel catfish Ictalurus punctatus foodfish production. Barriers were constructed in five 0.1-ha earthen ponds to partition ponds into 1/3 and 2/3 sections. Large fingerling (136 g) catfish were stocked at 11,115 fish/ha in the smaller 1/3 section (shallow end) of the confinement ponds or in open ponds (control). Seining efficiency was significantly greater for the confinement system. Yield and daily growth of food fish were significantly lower and feed conversion ratio higher in the confinement system compared to open ponds. Partial budget analysis showed a net loss of –$313/ha. Additional work is needed to develop inexpensive production systems to capture efficiencies of confinement without decreasing production.  相似文献   

15.
Catfish were cultivated in 0.3 m3 site-specific cages built for fish culture in irrigation ditches. Poor growth (239 g ± 4.2) in 1989 was probably due to velocity of water and variability of fish size at stocking. Addition of baffles to the cages and hand grading of fish eliminated these problems in 1990. A power failure near the middle of the 1990 growing season forced the brief move of the fish from the ditch to a pond. Catfish reached an average weight of 465 g in 1990 over roughly the same growing season as in 1990. Before the cages were moved, fish at lower densities had significantly higher growth (588 ± 3, 515 ± 3) than those at higher densities (396 ± 4.6, 334 ± 4). However, at the end of the experiment, growth was not significantly different between densities (P > 0.05). Perhaps stress to fish caused by moving cages obliterated the previous density differences in growth.  相似文献   

16.
Four treatment groups that received repeating cycles of fixed feed deprivation for either 0, 1, 2, or 3 d (control, treatment 1, treatment 2, and treatment 3, respectively), followed by periods of refeeding with a 36% protein commercial catfish feed once daily as long as the active phase of compensatory growth (CG) persisted, were assessed in flow-through aquaria. No-feed periods elicited the CG state and were immediately followed by days of ad libatum refeeding. At the end of 10 wk, average growth rate (AGR) of fish was higher ( P < 0.05) than the control by 40%, 180%, and 191% for treatment 1, treatment 2, and treatment 3, respectively. The average weight of fish in treatment 3 was heavier ( P < 0.05) than the average control group at the end of the study period. Mean daily feed consumption was 3.91%, 5.03%, 5.36%, and 5.98% for control, treatment 1, treatment 2, and treatment 3, respectively. Mean feed consumption per fish per day was 24%, 71.3%, and 70.7% higher than the control in treatment 1, treatment 2, and treatment 3, respectively. Restricted feeding is one of the effective methods to contain ESC-related losses in commercial channel catfish fingerling operations. The mean cumulative survival of treatment groups registered higher ( P < 0.05) survival to Edwardsiella ictaluri infection compared to the daily fed control fish. Results from this study show that compensatory growth response triggered by periodic non-feeding days can improve growth rate, feed consumption, and improved survival to ESC infections in channel catfish fingerlings.  相似文献   

17.
ABSTRACT

The Japanese flounder, Paralichthys olivaceus, is one of the most common finfish cultured in Japan and Korea. Despite the relatively high production of fingerlings, some problems remain, mainly related to the larval feeding and cost of maintaining microalgae and rotifers. In order to determine the effects of different diets on the Japanese flounder larval growth and survival, a series of experiments was carried out related to the size and nutritional value of different live feeds. The larvae culture conditions were at 10 or 20 larvae/L in 50 to 2,000 L tanks, with aeration and with or without “green water,” and a temperature range of 18.5 to 22.5°C. The live foods used were microalgae (Chlorella ellipsoidea and Nannochloris oculata), baker's yeast, experimental n-yeasts, oyster trochophore larvae, three strains of rotifer Brachionus plicatilis (L-type, S-type and U-type) and Artemia nauplii. Variations were detected in size, dry weight, and chemical composition of the three strains of rotifers used. The maximum number of rotifers ingested by flounder larvae increased steadily from 7 individuals, at first feeding (3.13 mm), to 42 individuals at 5.25 mm of total length (6 days after first feeding). There was a relationship between larval total length and size of the rotifers ingested. The effect of rotifer size on larval growth and survival appeared to be limited to the first two days of feeding. Of the diets tested in the growth and survival of larval flounder during 14 days after hatching, rotifers fed on C. ellipsoidea and raised in green-water gave the best results. Rotifers cultured on enriched N. oculata and n-yeasts did not support larval growth and caused higher mortalities. The n-yeasts used as rotifer enrichment appeared to satisfy, partially, the nutritional requirement of 7-day-old flounder larvae, as did n-yeast squid wintering oil the requirements of 14-day-old larvae. From 7-9-days after hatching and throughout the second 14-day period, rotifers and Artemia cultured on N. oculata improved the survival of flounder compared with those fed on rotifers cultured on C. ellipsoidea. Moreover, the larval growth did not vary significantly between both microalgae-rotifer feedings. No clear relation was found between total protein, lipid, amino acids and fatty acids of live feeds with the growth and survival of flounder larvae, although the total lipid was higher in C. ellipsoidea than in N. oculata. The Artemia nauplii San Francisco strain appeared to be more suitable for the growth and survival of flounder larvae, than the Utah strain. The nutritional value of Artemia nauplii (Utah strain) for flounder larvae remained unchanged despite the use of either microalgae as nauplii enrichment.  相似文献   

18.
A factorial experiment was conducted to examine effects of dietary protein concentration (24, 28, 32, or 36%) and feeding regimen (feeding once daily or every other day [EOD]) on channel catfish, Ictalurus punctatus, production in earthen ponds. Compared with fish fed daily, fish fed EOD had lower feed consumption, weight gain, net production, and percentage of market‐size fish but had high feed efficiency and required fewer hours of aeration. Fish fed EOD also had lower carcass yield, fillet yield, and visceral and fillet fat. There was a significant interaction between dietary protein and feeding regimen for weight gain. No significant differences were observed in weight gain of fish fed daily with diets containing various levels of protein, whereas weight gain of fish fed EOD with a 24% protein diet was lower than those fed EOD with higher protein diets. Results suggest that response of channel catfish to dietary protein levels depends on whether the fish were fed daily or EOD. Feeding EOD to satiation improved feed efficiency and required less aeration compared with fish fed daily but also reduced net production and processing yield; therefore, EOD feeding should be examined closely before implementation.  相似文献   

19.
The effects of the putative hormonal pheromones 17α, 20β‐dihydroxy‐4‐pregnene‐3‐one (17,20β‐P), 17,20β‐P‐20‐glucosiduronate, and prostaglandin F‐2α (PGF‐2α) injected into female channel catfish, Ictalurus punctatus, were investigated to determine whether male channel catfish and blue catfish, Ictalurus furcatus, could be attracted to the injected females. Females were distributed into traps placed in ponds containing either male channel catfish or blue catfish. Traps were checked six times in a 96‐h period. Males were 17.9 times more likely to be captured with a PGF‐2α‐injected female than with an ethanol‐only injected female, or a 17,20β‐P‐injected female, and 3.5 times more likely to be captured with a PGF‐2α‐injected female than with a 17,20β‐P‐glucosiduronate‐injected female. Males were 6.0 times more likely to be caught between 48 and 96 h post‐injection than between 12 and 24 h post‐injection. These results suggest that the overall best pheromone to attract blue catfish and channel catfish males is PGF‐2α at 48–96 h post‐injection.  相似文献   

20.
A comparative study was conducted on growth and protein requirements of channel catfish, Ictalurus punctatus, and blue catfish, Ictalurus furcatus. Four diets containing 24, 28, 32, or 36% protein were fed to both channel (initial weight 6.9 g/fish) and blue (6.6 g/fish) catfish for two growing seasons. There were significant interactions between dietary protein and fish species for weight gain and feed conversion ratio (FCR). No significant differences were observed in weight gain of channel catfish fed various protein diets, whereas higher protein diets (32 and 36%) resulted in better weight gain in blue catfish than lower protein diets (24 and 28%). No consistent differences were observed in the FCR of channel catfish fed various levels of dietary protein, whereas significantly higher FCRs were noted in blue catfish fed the 24 and 28% protein diets compared with fish fed 32 and 36% protein diets. Regardless of dietary protein levels, blue catfish had higher carcass, nugget, and total meat yield, and higher fillet moisture and protein, but lower fillet yield and fillet fat. Regardless of fish species, fish fed the 36% protein diet had higher carcass, fillet, and total meat yield than fish fed the 28 and 32% protein diets, which in turn had higher yields than fish fed the 24% protein diet. It appears that blue catfish can be successfully cultured by feeding a 32% protein diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号